Solutions for Homework 5

1. Normal data with $\sigma=8$. Test $H_{0}: \mu=60$ versus $H_{A}: \mu \neq 60$.
(a) $n=16$ and $\bar{x}=63$,
$z=\frac{\bar{x}-60}{\sigma / \sqrt{n}}=\frac{63-60}{8 / \sqrt{16}}=1.5$,
$p-$ value $=P(Z \leq-1.5)+P(Z \geq 1.5)=2 P(Z \geq 1.5)$
$=2(.0668)=.1336>0.05$
Not significant at 5%.
(b) $n=64$ and $\bar{x}=63$,
$z=\frac{\bar{x}-60}{\sigma / \sqrt{n}}=\frac{63-60}{8 / \sqrt{64}}=3$,
$p-$ value $=P(Z \leq-3)+P(Z \geq 3)=2 P(Z \geq 3)$
$=2(.0013)=.0026<0.05$
Significant at 5%.
(c) $\sigma=4, n=16$ and $\bar{x}=63$,
$z=\frac{\bar{x}-60}{\sigma / \sqrt{n}}=\frac{63-60}{4 / \sqrt{16}}=3$,
$p-$ value $=P(Z \leq-3)+P(Z \geq 3)=2 P(Z \geq 3)$
$=2(.0013)=.0026<0.05$
Significant at 5\%.
(d) Conclusion: when σ gets smaller or the sample size gets larger, the p-value will get smaller for the same test.
2. (a) stem-leaf display:
$10 \mid 7$
$13 \mid 236$
$14 \mid 5$
$15 \mid 2$
$16 \mid 5$
$17 \mid 6$
$18 \mid 7$
(b) $\mathrm{n}=9, \sigma=220$. Test $H_{0}: \mu=1620$ versus $H_{A}: \mu \neq 1620$,
$\bar{x}=$
$z=\frac{\bar{x}-1620}{\sigma / \sqrt{n}}=\frac{1480-1620}{\sqrt{48400 / 9}}=-1.91$,
$p-$ value $=P(Z \leq-1.91)+P(Z \geq 1.91)=2 P(Z \geq 1.91)=$ $2(0.0281)=0.0562>0.05$.
Not significant at $\alpha=0.05, \alpha=0.01$ Significant at $\alpha=0.1$. We accept the claim at leve 5% and 1%, reject it at level 10%.
3. (a) stem-leaf display:

$$
\begin{array}{ll}
-4 \mid & 3 \\
-3 \mid & 86 \\
-3 \mid & 31 \\
-2 \mid & 977 \\
-2 \mid & 33210 \\
-1 \mid & 96 \\
-1 \mid & 3 \\
-0 \mid & 9 \\
-0 & 2
\end{array}
$$

(b) Test $H_{0}: \mu=-3.0$ versus $H_{A}: \mu \neq-3.0$,

Assume normal data, $\bar{x}=-2.4, s=1.036, n=18$.
$t=\frac{\bar{x}-(-3.0)}{s / \sqrt{n}}=\frac{-2.4-(-3.0)}{1.036 / \sqrt{18}}=2.457$,
$p-$ value $=P(T \leq-2.457)+P(T \geq 2.457)=2 P(T \geq 2.457)$
$0.01<P(T \geq 2.457)<0.025$ (d. $\mathrm{f}=17$), so p-value is between 0.02 and 0.05 .
The claim will be rejected at $\alpha=0.05$. There's a moderate evidence against the null hypothesis.
4. $m=80, X \sim \operatorname{Bin}(80, p)$. Test $H_{0}: p=0.70$ versus $H_{A}: p \neq 0.70$.
(a) $p-$ value $=2 P(X \leq 50)=2 P\left(Z_{N A} \leq \frac{50-80(.70)}{\sqrt{80(.70)(.30)}}\right)$
$=2 P\left(Z_{N A} \leq-1.46\right)=2(.0721)=.1442$
No evidence against the claim.
(b) $n=320, x=200, X \sim \operatorname{Bin}(30, p)$,
$p-$ value $=2 P(X \leq 200)=2 P\left(Z_{N A} \leq \frac{200-320(.70)}{\sqrt{320(.70)(.30)}}\right)$
$=2 P\left(Z_{N A} \leq-2.92\right)=2(.0018)=.0036$
There's strong evidence against the claim.
(c) With the same proportion $\frac{x}{n}$, the larger n, the smaller $\mathrm{p}=$ value we'll obtain.
5. Let $X=$ number of contaminated wells, $X \sim \operatorname{Bin}(10, p)$. Test $H_{0}: p=$ 0.45 versus $H_{A}: p \neq 0.45$.
$p-$ value $=2\left(P\left(X=8 \mid H_{0}\right)+P\left(X=9 \mid H_{0}\right)+P\left(X=10 \mid H_{0}\right)\right)$
We cannot use the normal approximation, because $n p=10(0.45)=4.5<$ 5
$P-$ value $=0.0548>0.05$.
Or you can do onesided test, get P -value $=0.0274$, we decline null hypothesis
6. (a) False. It depends on the standard deviation.
(b) True

