STAT 571, Solution for Assignment \#6

October 22, 2003

1. (a). $\alpha=0.1$, on average $200(0.1)=20$ times that the H_{o} will be rejected;
$\alpha=0.05$, on average $200(0.05)=10$ times that the H_{o} will be rejected;
$\alpha=0.01$, on average $200(0.01)=2$ times that the H_{o} will be rejected.
(b). Perform the simulations. Compare the p-values (calculated by R) with each level of α, and count the times that H_{o} is actually rejected. We will find these realized results are close to the on average results from part (a).
2. $H_{o}: \sigma^{2}=40000, H_{A}: \sigma^{2} \neq 40000$.
$V^{2}=\left.\frac{(n-1) S^{2}}{\sigma^{2}}\right|_{H_{o}}=\frac{8 S^{2}}{0.01}$,
$v^{2}=\frac{8(61991)}{40000}=12.40$.
p-value $=2 P\left(V^{2} \geq 12.40\right)$.
By looking up the table, we find $0.2<\mathrm{p}$-value <0.5.
3. $n=9, \quad \bar{X}=2.5156$ $s=0.276$.

90% C. I. for $\mu: 2.344 \leq \mu \leq 2.687$,
95% C. I. for $\mu: 2.303 \leq \mu \leq 2.728$.
(b). $1-\alpha$ C. I. for $\sigma^{2}: \frac{(n-1) s^{2}}{\chi_{\frac{\alpha}{2}}^{2}} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}}$.
90% C. I. for $\sigma^{2}: 0.0393 \leq \sigma^{2} \leq 0.2230$,
95% C. I. for $\sigma^{2}: 0.0348 \leq \sigma^{2} \leq 0.2796$.
(c). 95% C. I. for $\mu: 2.422 \leq \mu \leq 2.609$,

The C.I is narrower than that in part (a).
4. (a). 90% C. I. for p:

$$
\begin{aligned}
\hat{p}-Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} & \leq p \leq \hat{p}+Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\
0.625-1.645 \sqrt{\frac{625(.375)}{80}} & \leq p \leq 0.625+1.645 \sqrt{\frac{625(.375)}{80}} \\
0.536 & \leq p \leq 0.714 .
\end{aligned}
$$

(b). 90% C. I. for p:

$$
\begin{aligned}
& \hat{p}-Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq p \leq \hat{p}+Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\
& 0.625-1.645 \sqrt{\frac{625(.375)}{320}} \leq p \leq 0.625+1.645 \sqrt{\frac{625(.375)}{320}} \\
& 0.5805 \leq p \leq 0.6695,
\end{aligned}
$$

The C. I is narrower than that in part (a).
5. (a). Population $N(\mu, 16)$, so 90% C. I. for μ :

$$
\bar{x}-Z_{0.05} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+Z_{0.05} \frac{\sigma}{\sqrt{n}} .
$$

So $W($ length $)=\left(\bar{x}+Z_{0.05} \frac{\sigma}{\sqrt{n}}\right)-\left(\bar{x}-Z_{0.05} \frac{\sigma}{\sqrt{n}}\right)=2 Z_{0.05} \frac{\sigma}{\sqrt{n}}=0.5$.
That is $2(1.645) \frac{4}{\sqrt{n}}=0.5$.
We get $n=\left(\frac{2(1.645)(4)}{0.5}\right)^{2}=692.74 \approx 693$.
(b). 90% C. I. for $\mu: 19.51 \leq \mu \leq 21.88, \Longrightarrow$ we reject H_{o} at $\alpha=10 \%$;
95% C. I. for $\mu: 19.24 \leq \mu \leq 22.16, \Longrightarrow$ we accept H_{o} at $\alpha=5 \%$;
99% C. I. for $\mu: 18.60 \leq \mu \leq 22.79, \Longrightarrow$ we accept H_{o} at $\alpha=1 \%$.
(c). i. $T=\frac{Z-\mu_{0}}{s / \sqrt{n}}=\frac{20.7-22}{2.042 / 3.162}=-2.013$.
p-value $=2 P(T \leq-2.013)=0.07$ (from R).
At $\alpha=10 \%$, reject H_{o};
At $\alpha=5 \%$ and 1%, accept H_{o}.
This is consistent to results from part (b).
ii. Find 99.5% C. I. for μ.
$\mathrm{df}=9, \alpha=0.005$, then $\alpha / 2=0.0025$.
$P\left(T \leq t^{*}\right)=0.0025$, then $t^{*}=-3.6897$, (from R). So 99.5% C. I. for μ is:

$$
\begin{aligned}
20.7-3.6897\left(\frac{2.04}{3.16}\right) & \leq \mu \leq 20.7+3.6897\left(\frac{2.04}{3.16}\right) \\
18.32 & \leq \mu \leq 23.08
\end{aligned}
$$

