Solution for Assignment 7

- 1. (a) > draws=matrix(rnorm(200*15,62,9),15)
 - > get.conf.int=function(x) t.test(x)\$conf.int
 - > conf.int=apply(draws,2,get.conf.int)
 - > plot(range(conf.int),c(0,201),type="n",xlab="confidence interval for mean",
 - + ylab="sample run")
 - > for(i in 1:200) lines(conf.int[,i],rep(i,2))
 - > abline(v=62, lwd=2,lty=2)
 - > sum(conf.int[1,]<=62 & conf.int[2,]>=62)
 [1] 191
 - (b) About the same proportion since $1 \alpha = 95\%$ C.I. covers 62 if and only if you do not reject $H_0: \mu = 62$ at $\alpha = 0.05$.
- 2. (a) > mydata=matrix(rnorm(3*10,75,10),10) > par(mfrow=c(1,3)) > for (i in 1:3) qqnorm(mydata[,i])
 - (b) > mydata=matrix(rnorm(3*40,75,10),40) > par(mfrow=c(1,3)) > for (i in 1:3) qqnorm(mydata[,i])
 - (c) From the plots, we can see that for small sample size it is not easy to detect normality from the stem-and-leaf display. Normal score plot is better for detecting normality. And the normal score plot fits a straight line better for large sample size(n = 40) than samll sample size(n = 10).
- 3. From the normal score plots, we find the one for the log units appears more normal. So we contruct 0.95 t-interval for log units with base e

$$\bar{x} \pm t_{0.025} s / \sqrt{12} = 15.332 \pm 2.201 \times 0.918 / \sqrt{12}$$

= (14.749, 15.915)

With base 10

$$\bar{x} \pm t_{0.025} s / \sqrt{12} = 6.659 \pm 2.201 \times 0.399 / \sqrt{12}$$

= (6.405, 6.913)

4.

power(when
$$\mu = \mu_0$$
) = $P(\text{reject } H_0 | \mu = \mu_0)$
= $P(\bar{X} \le 113.2 \text{ or } \bar{X} \ge 126.8 | \mu = \mu_0)$
= $P(Z \le \frac{113.2 - \mu_0}{12/\sqrt{24}}) + P(Z \ge \frac{126.8 - \mu_0}{12/\sqrt{24}})$

Then you can obtain the following powers:

mu	108	112	116	120	124	128	132
power C	.9831	0.6879	0.1265	0.0055	0.1265	0.6879	0.9831

The power at $\mu = 120$ means α or type I error probability.

```
> mus=seq(100,140,by=1)
> plot(mus,pnorm(113.2,mus,12/sqrt(24))+pnorm(126.8,mus,12/sqrt(24),lower.tail=F),
+ type='l',xlab="population mean",ylab="power")
```


5. This is to do test:

$$H_0: \mu \le 15.0 \text{ vs. } H_A: \mu > 15.0.$$

(a) Suppose the rejection criterion is that $\bar{X} \ge c$ and the required sample size is n, then we have

 $\alpha = P(\text{reject } H_0|H_0) = P(\bar{X} \ge c|\mu = 15) = P(Z \ge \frac{c-15}{3.8/\sqrt{n}})$ power=1- β =P(reject $H_0|H_A$ at $\mu = 17.2$)= $P(\bar{X} \ge c|\mu = 17.2) = P(Z \ge \frac{c-17.2}{3.8/\sqrt{n}})$ From above we have the following two equations:

$$\frac{c-15}{3.8/\sqrt{n}} = Z_{\alpha}$$
$$\frac{c-17.2}{3.8/\sqrt{n}} = -Z_{\beta}$$

For (a), plug in $\alpha = 0.025$ and $\beta = 0.1$, solve these two equations for c and n, we have $n = 31.3 \approx 32$, c = 16.33.

- (b) For (b), plug in $\alpha = 0.10$ and $\beta = 0.1$, solve those two equations for c and n, we have $n = 19.6 \approx 20, c = 16.1$.
- (c) For (c), plug in $\alpha = 0.025$ and $\beta = 0.25$, solve those two equations for c and n, we have $n = 20.7 \approx 21, c = 16.64$.
- (d) Smaller α or larger power will require a larger sample size.