Solutions for Homework 8

1. (a) Null hypotheses $H_{0}: p=0.25$, alternative hypotheses $H_{A}: p>0.25 . p$ is the chance of remission with the treatment.
(b) $\alpha=\mathrm{P}($ Type I error $)=\mathrm{P}\left(\right.$ reject $\left.H_{0} \mid H_{0}\right)=P(X \geq 150 \mid p=0.25)$

Using normal approximation to Binomial data,
$\alpha=P\left(Z>\frac{150-500(.25)}{\sqrt{500(.25)(.75)}}\right)=P(Z>2.582)=.0049$
(c) Power $=\mathrm{P}\left(\right.$ reject $\left.H_{0} \mid p=0.35\right)=P(X \geq 150 \mid p=0.35)=P\left(Z>\frac{150-500(.35)}{\sqrt{500(.35)(.65)}}\right)$ $=P(Z>-2.344)=.9905$
(d) P -value $=P(X \geq 154 \mid p=0.25)=P\left(Z>\frac{154-500(.25)}{\sqrt{500(.25)(.75)}}\right)=P(Z>2.995)=.0014$
2. (paired experiment)

The yield differences of the two varieties are: -2.2-1.3 0.0-2.0-1.8-0.8 1.2-4.1-1.6-0.9
(a) We need to assume that the yield differences of the two varieties is normally distributed. The normality assumption can be checked by a normal score plot:

(b) Test $H_{0}: \mu_{1}-\mu_{2}=0$ versus $H_{A}: \mu_{1}-\mu_{2} \neq 0$.
$\bar{d}=-1.35, s_{d}=1.407$, the test statistic $t=\frac{-1.35-0}{1.407 / \sqrt{10}}=-3.034$,
using a t-distribution with degree of freedom 9 , we can get the p-value of the test:
$2(.005)<\mathrm{p}$-value $=2 P(T<-3.034)<2(.01), \quad$ i.e., $.01<\mathrm{p}$-value $<.02$.
(c) A 99% C.I. for $\mu_{1}-\mu_{2}$ is given by:

$$
\bar{d} \pm t_{.005} \frac{s_{d}}{\sqrt{10}}=-1.35 \pm 3.250 \frac{1.407}{\sqrt{10}}=-1.35 \pm 1.446=(-2.796,0.096)
$$

The interval covers 0 , so H_{0} won't be rejected at $\alpha=0.01$.
3. (independent samples with same sample size)

Species A: $\bar{x}_{1}=4.764, s_{1}^{2}=0.25, n_{1}=9$,
Species B: $\bar{x}_{2}=4.242, s_{2}^{2}=0.29, n_{2}=9$.
(a) We assume independence, normality and equal variance.
(b) Test $H_{0}: \mu_{1}-\mu_{2}=0$ versus $H_{A}: \mu_{1}-\mu_{2} \neq 0$.
since $n_{1}=n_{2}, s_{p}^{2}=\frac{s_{1}^{2}+s_{2}^{2}}{2}=0.27, s_{\left(\bar{X}_{1}-\bar{X}_{2}\right)}=\sqrt{2 s_{p}^{2} / 9}=0.245$.
Test statistic $t=\frac{\bar{X}_{1}-\bar{X}_{2}}{s_{\left(\bar{X}_{1}-\bar{X}_{2}\right)}}=\frac{4.764-4.242}{0.245}=2.13$.
$.02<\mathrm{p}$-value $=2 P(T>2.13)<.05$ (degrees of freedom of the t -distribution is 16). We have moderate evidence that the two Species don't have the same mean egg weight.
(c) A 95% C.I. for $\mu_{1}-\mu_{2}$ is given by:

$$
\begin{aligned}
& \left(x_{1}-x_{2}\right) \pm t_{.025} s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}=(4.764-4.242) \pm 2.120 \sqrt{.27} \sqrt{\frac{1}{9}+\frac{1}{9}} \\
& \quad=.522 \pm .5197=(.0023,1.0417)
\end{aligned}
$$

(d) Test $H_{0}: \mu_{1}-\mu_{2}=-0.5$ versus $H_{A}: \mu_{1}-\mu_{2} \neq-0.5$.

Test statistic $t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-(-0.5)}{s_{\left(\bar{X}_{1}-\bar{X}_{2}\right)}}=\frac{(4.764-4.242)+0.5}{0.245}=4.17$.
p -value $=2 P(T>4.17)<.002$. We have strong evidence that the mean egg weight of Species B eggs doesn't equal the mean weight of Species A eggs plus 0.5.
4. (Independent samples with unequal sample sizes)

Tree 1: $\bar{x}_{1}=145.5, s_{1}^{2}=164.76, n_{1}=13, \quad$ Tree 2: $\bar{x}_{2}=154.1, s_{2}^{2}=162.77, n_{2}=10$,
Assuptions: independent random samples from normal populations with equal variances. We can use Levene's method to check the assumption of equal variances $\left(\sigma_{1}^{2}=\sigma_{2}^{2}\right)$:

1) The median for Tree 1 is 145 , and the median for Tree 2 is 155.5 .
2) Calculate the absolute value of all deviations from the median. We get

Tree 1: 242512021259176246
Tree 2: 2.58 .518 .526 .513 .512 .56 .57 .53 .523 .5
3) Delete the value 0 in Tree 1.

Tree 1: 24251221259176246
Tree 2: 1.58 .514 .515 .529 .51 .517 .51 .57 .512 .5
4) Perform a T-test for comparing the means of the two lists of numbers(with variances assumed equal). There's no evidence that the variances σ_{1}^{2} and σ_{2}^{2} differ, by calculating P-value.

So, we will perform a T-test assuming equal variances.
Test $H_{0}: \mu_{1}-\mu_{2}=0$ versus $H_{A}: \mu_{1}-\mu_{2} \neq 0$.
$s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{(13-1) 164.76+(10-1) 162.77}{13+10-2}=\frac{3442.05}{21}=163.91$,
$s_{\left(\bar{X}_{1}-\bar{X}_{2}\right)}=\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=5.38$.
Test statistic $t=\frac{\bar{X}_{1}-\bar{X}_{2}}{s_{\left(\bar{X}_{1}-\bar{X}_{2}\right)}}=\frac{145.5-154.1}{5.38}=-1.598$.
p-value $=2 P(T>1.59)<.20$ (degrees of freedom of the t-distribution is 21). We have stropng evidence that the mean weights of the samaras of tree 1 and tree 2 differ.
5. Test $H_{0}: \sigma^{2}=4$ versus $H_{A}: \sigma^{2}>4$ at $\alpha=0.05 . \quad n=15$.

We will reject H_{0} if the sample variance $s^{2}>a$,
$0.05=\alpha=P\left(\right.$ reject $\left.H_{0} \mid H_{0}\right)=P\left(s^{2}>a \mid \sigma^{2}=4\right)=P\left(V^{2}=\frac{(15-1) s^{2}}{4}>\frac{(15-1) a}{4}\right)$, where V^{2} has χ^{2}-distribution with d.f. $=14$.
So, $\frac{(15-1) a}{4}=23.68, a=\frac{4(23.68)}{15-1}=6.77$. Rejection region: we will reject H_{0} if $s^{2}>6.77$.
Power at $\sigma^{2}=13$ is
$P\left(\right.$ reject $\left.H_{0} \mid \sigma^{2}=13\right)=P\left(s^{2}>6.77 \mid \sigma^{2}=13\right)=P\left(V^{2}>\frac{(15-1) 6.77}{13}\right)=P\left(V^{2}>7.29\right) \approx .925$.

