STAT 571, Solution for Assignment \#9

November 12, 2003

1. (a.) inexpensive instrument: $\bar{x}_{1}=5.887, s_{1}^{2}=2.0164, n_{1}=8$, expensive instrument: $\bar{x}_{2}=6.8231, s_{2}^{2}=0.0569, n_{2}=13$, Test $H_{0}: \mu_{1}-\mu_{2}=0$ versus $H_{A}: \mu_{1}-\mu_{2} \neq 0$.
(i) Assuming equal variances.
$s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{(8-1) 2.0164+(13-1) 0.0569}{8+13-2}=\frac{14.7976}{19}=0.7788$,
$s_{p}=\sqrt{.7788}=.882$,
$s_{\left(\bar{X}_{1}-\bar{X}_{2}\right)}=\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=0.397$.
Test statistic $t=\frac{\bar{X}_{1}-\bar{X}_{2}}{s_{\left(\bar{X}_{1}-\bar{X}_{2)}\right)}}=\frac{5.887-6.8231}{0.397}=-2.358$.
$.02<\mathrm{p}$-value $=2 P(T>2.358)<.05$ (degrees of freedom of the t-distribution is 19).
(ii) Assuming unequal variances.
$s_{\left(\bar{X}_{1}-\bar{X}_{2}\right)}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}=0.506$,
Test statistic $t^{\prime}=\frac{\bar{X}_{1}-\bar{X}_{2}}{s_{\left(\bar{X}_{1}-\bar{X}_{2}\right)}}=\frac{5.887-6.8231}{0.506}=-1.85$
adjusted degrees of freedom $a d f=\frac{\left(v r_{1}+v r_{2}\right)^{2}}{\left(\frac{v r_{1}^{2}}{n_{1}-1}\right)+\left(\frac{v r_{2}^{2}}{n_{2}-1}\right)}=7.24=7$,
where $v r_{1}=\frac{s_{1}^{2}}{n_{1}}=.252, v r_{2}=\frac{s_{2}^{2}}{n_{2}}=.0044$
$.10<\mathrm{p}$-value $=2 P(T>1.85)<.20$, using T-distribution with degrees of fredom 7 .
(b.) R output:

Neither of the QQnorm plots display serious deviation from the normality assumption.

```
i.
    > t.test(inexpensive,expensive,var.equal=TRUE)
            Two Sample t-test
data: inexpensive and expensive
t = -2.3597, df = 19, p-value = 0.02914
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -1.7654302 -0.1057237
sample estimates:
mean of x mean of y
    5.887500 6.823077
ii.
> t.test(inexpensive,expensive)
            Welch Two Sample t-test
data: inexpensive and expensive
t = -1.8479, df = 7.244, p-value = 0.1057
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -2.1246107 0.2534568
sample estimates:
mean of x mean of y
    5.887500 6.823077
```

(c.) Use Levene's method to test the assumption of equal variances $\left(\sigma_{1}^{2}=\right.$ σ_{2}^{2}):

1) The median for inexpensive instrument is 5.8 , and the median for expensive instrument is 6.8.
2) Calculate the absolute value of all deviations from the median. We get
inexpensive instrument: 1.32 .30 .12 .11 .40 .40 .10 .8
expensive instrument: 0.10 .20 .40 .500 .10 .20 .20 .300 .100 .2
3) Delete one value 0 in expensive instrument.
inexpensive instrument: 1.32 .30 .12 .11 .40 .40 .10 .8
expensive instrument: 0.10 .20 .40 .50 .10 .20 .20 .300 .100 .2
4) Perform a T-test for comparing the means of the two lists of numbers(with variances assumed equal). We obtain a p-value=$=0026$. Thus there's strong evidence that the variances σ_{1}^{2} and σ_{2}^{2} are not equal.
(d.) According to part(c), the t^{\prime}-test assuming unequal variance is more appropriate. Since the expensive sample has a larger n, the pooled variance in the first test will be 'pulled' more in that direction.
2. (a). p_{1} is the proportion of abnormal seeds early in the season, p_{2} is the proportion of abnormal seeds early in the season. $H_{0}: p_{1}=p_{2}, \quad H_{A}: p_{1} \neq p_{2}$.
Use Z statistic

$$
Z=\frac{\hat{p_{1}}-\hat{p_{2}}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

From the data, we calculate

$$
\hat{p_{1}}=\frac{25}{66}=0.3788, \hat{p_{2}}=\frac{32}{115}=0.2783, \hat{p}=\frac{25+32}{66+115}=0.3149 .
$$

The one we've observed is: $z=1.40$, then, p -value $=2 P(Z \geq 1.40)=2(0.0808)=0.1616$.
(b). 99% C. I. for $p_{1}-p_{2}$ is given by

$$
\begin{aligned}
& \left(\hat{p_{1}}-\hat{p_{2}}\right) \pm Z_{0.005} \sqrt{\frac{\hat{p_{1}}\left(1-\hat{p_{1}}\right)}{n_{1}}+\frac{\hat{p_{2}}\left(1-\hat{p_{2}}\right)}{n_{2}}} \\
& -0.0878 \leq p_{1}-p_{2} \leq 0.2888 .
\end{aligned}
$$

(c). Assumptions:

1. Both samples constitute independent binomial experiements;
2. We assume independence of the trials from one sample to the other;
3. The sample size must be large enough so that we can use the normal approximations.
4.

(a). From the stem-leaf plot we know that both are not from normal distribution.
(b). 1) $n_{1}=12, n_{2}=15$.
2)

$$
\begin{aligned}
T^{*} & =\text { sum of ranks in the small group } \\
& =130.5
\end{aligned}
$$

3) $T^{* *}=n_{1}\left(n_{1}+n_{2}+1\right)-T^{*}=205.5$
4) $T=\min \left(T^{*}, T^{* *}\right)=130.5$
5) From the table, at $\alpha=5 \%$, reject Ho if $T \leq 127$,
$0.05<p$-value. We have no evidence to reject Ho.
4. a. $S_{p}^{2}=\frac{S_{1}^{2}+S_{2}^{2}+S_{3}^{2}+S_{4}^{2}}{4}=5.95$.
$V^{2}=\frac{(N-4) S_{p}^{2}}{\sigma^{2}} \sim \chi_{N-4}^{2}, N=4(8)=32$.
$95 \% \mathrm{CI}$ for σ^{2} is

$$
\begin{gathered}
\frac{(32-4)(5.95)}{\chi_{28,0.025}^{2}} \leq \sigma^{2} \leq \frac{(32-4)(5.95)}{\chi_{28,0.975}^{2}} \\
3.747 \leq \sigma^{2} \leq 10.882 .
\end{gathered}
$$

b.

$$
\begin{gathered}
s_{p}^{2}=3.25,2.047 \leq \sigma^{2} \leq 5.944 \\
s_{p}^{2}=9.41,5.928 \leq \sigma^{2} \leq 17.211 \\
s_{p}^{2}=6.46,4.070 \leq \sigma^{2} \leq 11.8115
\end{gathered}
$$

Since s_{4}^{2} is the smallest one, s_{p}^{2} is the smallest when we assign 26 observations to the fourth group; While s_{2}^{2} is the largest one, so s_{p}^{2} is the largest when we assign 22 observations to the second group; and s_{p}^{2} for the third assignment is the middle one.
5. a. ANOVA table

Source	df	SS	MS
Treatment	3	5521.67	1840.56
Error	8	2956	369.5
Total	11	8477.67	

b. 1. Assumption
(a) Independence assumption: Observations within a treatment and across all treatments are independent
(b) Normal assumption: $X_{i j} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right) \quad i=1, \ldots, k, \quad j=$ $1, \ldots, n_{i}$
(c) Equal variance assumption: $\sigma_{1}^{2}=\sigma_{2}^{2}=\ldots=\sigma_{k}^{2}$
2. Notations

$$
\begin{aligned}
& \text { SSTot }=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{. .}\right)^{2}=\sum_{\text {all obs }}\left(x_{i j}\right)^{2}-\frac{(x . .)^{2}}{N} \\
& \text { SSTrt }=\sum_{i=1}^{k} n_{i}\left(\bar{x} .-\bar{x}_{. .}\right)^{2}=\sum_{i=1}^{k} \frac{1}{n_{i}}\left(x_{i .}\right)^{2}-\frac{(x . .)^{2}}{N} \\
& \text { SSErr }=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i .}\right)^{2}=\sum_{i=1}^{k}\left(n_{i}-1\right) s_{i}^{2}
\end{aligned}
$$

3. Model : $X_{i j}=\mu_{i}+e_{i j}$ or $X_{i j}=\mu+\alpha_{i}+e_{i j}$, where $e_{i j} \sim N\left(0, \sigma^{2}\right)$
c. Hypothesis $H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{k} \quad H_{A}$:not all μ_{i} are equal.

Test statistics : $F=\frac{1840.56}{369.5}=4.98$
p-value $=P\left(F_{3,8} \geq 4.98\right)$
From the table, $F_{3,8,0.05}=4.07, F_{3,8,0.01}=7.59$.
So $0.01<p$-value <0.05.
We have moderate evidence to reject Ho.
6.

$$
\begin{aligned}
& \operatorname{power}\left(\mu_{2}=20, \mu_{1}=28\right) \\
= & P\left(\text { reject } \mathrm{Ho} \mid \mu_{2}=20, \mu_{1}=28\right) \\
= & P\left(\bar{X}_{1}-\bar{X}_{2}>6 \mid \mu_{2}=20, \mu_{1}=28\right) \\
= & P(Z \geq-.96) \\
= & .8315
\end{aligned}
$$

