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Real knowledge is to know the extent of one’s ignorance. 
Confucius (on a bench in Seattle)

Daily Schedule
Monday
8:30-10 Introductions; Overview of System Genetics 1-50
10:30-12 QTL Model Selection 51-100
1:30-3 Gene Mapping for Multiple Correlated Traits 101-150
3:30-5 Hands On Lab: R/qtl 151-200
Tuesday 
8:30-10 Permutation Tests for Correlated Traits 201-250
10:30-12 Scanning the Genome for Causal Architecture 251-300
1:30 3 Causal Phenotype Models Driven by QTL 301 3501:30-3 Causal Phenotype Models Driven by QTL 301-350
3:30-5 Hands On Lab: R/qtlhot, R/qtlnet 351-400
Wednesday 
8:30-10 Incorporating Biological Knowledge 401-450
10:30-12 Platforms for eQTL Analysis 451-500
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Overview of Systems Genetics

• Big idea: how do genes affect organisms?• Big idea: how do genes affect organisms? 
• Measuring system(s) state(s) of an organism
• QTL mapping as tool toward goal
• Making sense of multiple traits

C ti t it t bi h i l th• Connecting traits to biochemical pathways
• Putting it all together: workflows
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How do genes affect organisms?

• Dogma (with exceptions)• Dogma (with exceptions)
– DNA -> RNA -> protein -> phenotype
– redundancy/overlap of biochemical pathways

• System state of organism
– accumulated effects over time of many genesy g
– environmental influences
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www.accessexcellence.org/RC/VL/GG/central.php
www.nobelprize.org/educational/medicine/dna

Biochemical Pathways chart, Gerhard Michal, Beohringer Mannheim
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http://web.expasy.org/pathways/



http://web.expasy.org/pathways/
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systems genetics approach
• study genetic architecture of quantitative traits 

– in model systems, and ultimately humans
i t t i l l ti f i ti• interrogate single resource population for variation

– DNA sequence, transcript abundance, proteins, metabolites
– multiple organismal phenotypes
– multiple environments

• detailed map of genetic variants associated with
– each organismal phenotype in each environment

• functional context to interpret phenotypes
– genetic underpinnings of multiple phenotypes
– genetic basis of genotype by environment interaction

Sieberts, Schadt (2007 Mamm Genome); Emilsson et al. (2008 Nature) 
Chen et al. 2008 Nature); Ayroles et al. MacKay (2009 Nature Genetics)
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Measuring an organism

• Phenotype measurement is challenging!• Phenotype measurement is challenging!
• Cannot measure exactly what is important
• Instead measure multiple related traits
• Multiple traits at one time

S t it d ti• Same trait measured over time
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QTL as tool toward goal 
• Identifying important genomic region(s)
• But they may contain many genes
• Journey from QTL to gene

– References…
• Corroborative evidence from multiple traits

– Reassurance
– Increased power?
– Evidence at a system level (pathways, etc.)?
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cross two inbred lines 
→ linkage disequilibrium 

→ associations

QTL

→ associations
→ linked segregating QTL

(after Gary Churchill)
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Marker Trait

Making sense of multiple traits

• Aligning QTL mapping results• Aligning QTL mapping results
• Mapping correlated traits
• Inferring hot spots where many traits map
• Organizing traits into correlated sets

Function clustering QTL alignment– Function, clustering, QTL alignment
• Inferring (causal) networks
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Genetic architecture of gene expression in 6 tissues.
A Tissue‐specific panels illustrate the relationship between the genomic location of a gene (y‐axis) to where that gene’s mRNA shows
an eQTL (LOD > 5), as a function of genome position (x‐axis). Circles represent eQTLs that showed either cis‐linkage (black) or trans‐
linkage (colored) according to LOD score. Genomic hot spots, where many eQTLs map in trans, are apparent as vertical bands that
show either tissue selectivity (e.g., Chr 6 in the islet, ) or are present in all tissues (e.g., Chr 17, ). B The total number of eQTLs
identified in 5 cM genomic windows is plotted for each tissue; total eQTLs for all positions is shown in upper right corner for each
panel. The peak number of eQTLs exceeding 1000 per 5 cM is shown for islets (Chrs 2, 6 and 17), liver (Chrs 2 and 17) and kidney (Chr
17).



Figure 4 Tissue‐specific hotspots with eQTL and SNP architecture
for Chrs 1, 2 and 17.
The number of eQTLs for each tissue (left axis) and the number of SNPs between B6 and BTBR (right axis) that were identified within
a 5 cM genomic window is shown for Chr 1 (A), Chr 2 (B) Chr 17 (C). The location of tissue‐specific hotspots are identified by their
number corresponding to that in Table 1. eQTL and SNP architecture is shown for all chromosomes in supplementary material.

BxH ApoE-/- chr 2:  causal architecture

hotspothotspot

12 causal calls12 causal calls
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BxH ApoE-/- causal network
for transcription factor Pscdbp

causal traitcausal trait

work of
Elias Chaibub Neto
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Connecting to biochemical pathways
• Gene ontology (GO)

– Functional groups
– Gene enrichment tests

• KO, PPI, TF, interactome databases
– Networks built from databases
– Hybrid networks using QTL and databases

• Proof of concept experiments
– Do findings apply to your organisms?

SysGen: Overview Seattle SISG: Yandell © 2012 18



KEGG pathway: pparg in mouse
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phenotypic buffering
of molecular QTL
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Fu et al. Jansen (2009 Nature Genetics)



Putting it all together: workflows
• Ideally have all tools & data connected

– Reduce duplication of copies, effort
– Reduce errors, save time

• Make tools more broadly available
– User-friendly interfaces

D t ti & l– Documentation & examples
• Enable comparison of methods

– Reduce start-up time & translation errors
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eQTL Tools Seattle SISG: Yandell © 2010
Swertz & Jansen (2007) 
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what is the goal of QTL study?
• uncover underlying biochemistry

– identify how networks function break downidentify how networks function, break down
– find useful candidates for (medical) intervention
– epistasis may play key role
– statistical goal: maximize number of correctly identified QTL

• basic science/evolution
– how is the genome organized?
– identify units of natural selection
– additive effects may be most important (Wright/Fisher debate)
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y p ( g )
– statistical goal: maximize number of correctly identified QTL

• select “elite” individuals
– predict phenotype (breeding value) using suite of characteristics 

(phenotypes) translated into a few QTL
– statistical goal: mimimize prediction error

problems of single QTL approach

• wrong model: biased viewwrong model: biased view
– fool yourself: bad guess at locations, effects
– detect ghost QTL between linked loci
– miss epistasis completely

• low power
• bad science
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– use best tools for the job
– maximize scarce research resources
– leverage already big investment in experiment



advantages of multiple QTL approach
• improve statistical power, precision

– increase number of QTL detected
– better estimates of loci: less bias, smaller intervals

• improve inference of complex genetic architecture
– patterns and individual elements of epistasis
– appropriate estimates of means, variances, covariances

• asymptotically unbiased, efficient
– assess relative contributions of different QTL
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• improve estimates of genotypic values
– less bias (more accurate) and smaller variance (more precise)
– mean squared error = MSE = (bias)2 + variance

3

ec
t

Pareto diagram of QTL effects
major QTL on
linkage map

i
(modifiers)

0 5 10 15 20 25 30

0
1

2

rank order of QTL

ad
di

tiv
e 

ef
fe

54

3

2

g p
major
QTL

minor
QTL

polygenes

SysGen: Overview Seattle SISG: Yandell © 2012 26

54
1



Gene Action and Epistasis
additive, dominant, recessive, general effects

of a single QTL (Gary Churchill)
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additive effects of two QTL
(Gary Churchill)

μ = μ + β + βμq = μ + βq1 + βq2
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Epistasis (Gary Churchill)

The allelic state at one locus can mask or 

uncover the effects of allelic variation at another.

- W. Bateson, 1907.
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epistasis in parallel pathways (GAC)
• Z keeps trait value low X E1 

• neither E1 nor E2 is rate 
limiting

• loss of function alleles are

Z

Y E2 
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segregating from parent A at 
E1 and from parent B at E2



epistasis in a serial pathway (GAC)

E E
• Z keeps trait value high

• either E1 or E2 is rate limiting

ZX Y
E1  E2 
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• loss of function alleles are
segregating from parent B at 
E1 or from parent A at E2

3. Bayesian vs. classical QTL study
• classical study

– maximize over unknown effects
– test for detection of QTL at loci
– model selection in stepwise fashion

• Bayesian study
– average over unknown effects
– estimate chance of detecting QTL
– sample all possible models
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• both approaches
– average over missing QTL genotypes
– scan over possible loci



• Reverend Thomas Bayes (1702-1761)
– part-time mathematician

buried in Bunhill Cemetary Moongate London

Bayesian idea

– buried in Bunhill Cemetary, Moongate, London
– famous paper in 1763 Phil Trans Roy Soc London
– was Bayes the first with this idea? (Laplace?)

• basic idea (from Bayes’ original example)
– two billiard balls tossed at random (uniform) on table
– where is first ball if the second is to its left?
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where is first ball if the second is to its left?
• prior: anywhere on the table
• posterior: more likely toward right end of table

QTL model selection: key players
• observed measurements

– y = phenotypic trait
– m = markers & linkage map
– i = individual index (1,…,n)

observed X Yym
• missing data

– missing marker data
– q = QT genotypes

• alleles QQ, Qq, or qq at locus

• unknown quantities
– λ = QT locus (or loci)
– μ = phenotype model parameters
– γ = QTL model/genetic architecture

• pr(q|m λ γ) genotype model

missing Q

unknown λ θλ

q

μ
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pr(q|m,λ,γ) genotype model
– grounded by linkage map, experimental cross
– recombination yields multinomial for q given m

• pr(y|q,μ,γ) phenotype model
– distribution shape (assumed normal here) 
– unknown parameters μ (could be non-parametric)

after
Sen Churchill (2001)

γ



Bayes posterior vs. maximum likelihood
• LOD: classical Log ODds 

– maximize likelihood over effects µ
– R/qtl scanone/scantwo: method = “em”

• LPD: Bayesian Log Posterior Density
– average posterior over effects µ
– R/qtl scanone/scantwo: method = “imp”

+= cmy )}|(pr{maxlog)(LOD λμλ
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LOD & LPD: 1 QTL
n.ind = 100, 1 cM marker spacing
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LOD & LPD: 1 QTL
n.ind = 100, 10 cM marker spacing
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marginal LOD or LPD
• compare two genetic architectures (γ2,γ1) at each locus

– with (γ2) or without (γ1) another QTL at locus λ
d l hi h ( d i t i ith QTL t λ)• preserve model hierarchy (e.g. drop any epistasis with QTL at λ)

– with (γ2) or without (γ1) epistasis with QTL at locus λ
– γ2 contains γ1 as a sub-architecture

• allow for multiple QTL besides locus being scanned
– architectures γ1 and γ2 may have QTL at several other loci
– use marginal LOD, LPD or other diagnostic
– posterior, Bayes factor, heritability
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LPD: 1 QTL vs. multi-QTL
marginal contribution to LPD from QTL at λ

2nd QTL

1st QTL

2nd QTL
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substitution effect: 1 QTL vs. multi-QTL
single QTL effect vs. marginal effect from QTL at λ

1st QTL1 QTL
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2nd QTL 2nd QTL



why use a Bayesian approach?
• first, do both classical and Bayesianst, do both c ass ca a d ayes a

– always nice to have a separate validation
– each approach has its strengths and weaknesses

• classical approach works quite well
– selects large effect QTL easily
– directly builds on regression ideas for model selection

• Bayesian approach is comprehensive
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Bayesian approach is comprehensive
– samples most probable genetic architectures
– formalizes model selection within one framework
– readily (!) extends to more complicated problems

comparing models

• balance model fit against model complexitybalance model fit against model complexity
– want to fit data well (maximum likelihood)
– without getting too complicated a model

smaller model bigger model
fit model miss key features fits better
estimate phenotype may be biased no bias
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p yp y
predict new data may be biased no bias
interpret model easier more complicated
estimate effects low variance high variance



QTL software options
• methods

– approximate QTL by markers
t lti l QTL i t l i– exact multiple QTL interval mapping

• software platforms
– MapMaker/QTL (obsolete)
– QTLCart (statgen.ncsu.edu/qtlcart)
– R/qtl (www.rqtl.org)
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R/qtl (www.rqtl.org)
– R/qtlbim (www.qtlbim.org)
– Yandell, Bradbury (2007) book chapter

QTL software platforms
• QTLCart (statgen.ncsu.edu/qtlcart)

– includes features of original MapMaker/QTL
• not designed for building a linkage map

– easy to use Windows version WinQTLCart
b d d i i lik lih d O– based on Lander-Botstein maximum likelihood LOD

• extended to marker cofactors (CIM) and multiple QTL (MIM)
• epistasis, some covariates (GxE)
• stepwise model selection using information criteria

– some multiple trait options
– OK graphics

• R/qtl (www.rqtl.org)
– includes functionality of classical interval mapping
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y pp g
– many useful tools to check genotype data, build linkage maps
– excellent graphics
– several methods for 1-QTL and 2-QTL mapping

• epistasis, covariates (GxE)
– tools available for multiple QTL model selection


