QTL Model Selection

- 1. Bayesian strategy
- Markov chain sampling
- sampling genetic architectures
- 4. criteria for model selection

Model Selection Seattle SISG: Yandell © 2012

QTL model selection: key players

observed

missing

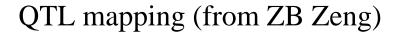
unknown

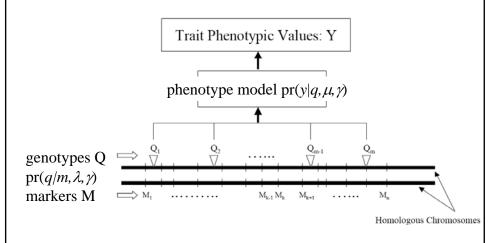
- observed measurements
 - y = phenotypic trait
 - m = markers & linkage map
 - -i = individual index (1,...,n)
- missing data
 - missing marker data
 - q = QT genotypes
 - alleles QQ, Qq, or qq at locus
- unknown quantities
 - $-\lambda = QT locus (or loci)$
 - $-\mu$ = phenotype model parameters
 - γ = QTL model/genetic architecture
- $pr(q/m, \lambda, \gamma)$ genotype model

 - grounded by linkage map, experimental cross
 recombination yields multinomial for q given m
- $pr(y|q, \mu, \gamma)$ phenotype model
 - distribution shape (assumed normal here)
 - unknown parameters μ (could be non-parametric)

Sen Churchill (2001)

Model Selection Seattle SISG: Yandell © 2012





Model Selection

Seattle SISG: Yandell © 2012

-

classical likelihood approach

- genotype model $pr(q/m, \lambda, \gamma)$
 - missing genotypes q depend on observed markers
 m across genome
- phenotype model $pr(y|q, \mu, \gamma)$
 - link phenotypes y to genotypes q

$$LOD(\lambda) = \log_{10} \{ \max_{\mu} pr(y \mid m, \mu, \lambda) \} + c$$

likelihood mixes over missing QTL genotypes:

$$pr(y \mid m, \mu, \lambda) = \sum_{q} pr(y \mid q, \mu) pr(q \mid m, \lambda)$$

Model Selection

Seattle SISG: Yandell © 2012

EM approach

- Iterate E and M steps
 - expectation (E): geno prob's $pr(q/m, \lambda, \gamma)$
 - maximization (M): pheno model parameters
 - mean, effects, variance
 - careful attention when many QTL present
 - Multiple papers by Zhao-Bang Zeng and others
 - Start with simple initial model
 - Add QTL, epistatic effects sequentially

Model Selection Seattle SISG: Yandell © 2012

classic model search

- initial model from single QTL analysis
- search for additional QTL
- search for epistasis between pairs of QTL
 - Both in model? One in model? Neither?
- Refine model
 - Update QTL positions
 - Check if existing QTL can be dropped
- Analogous to stepwise regression

Model Selection Seattle SISG: Yandell © 2012

comparing models (details later)

- balance model fit against model complexity
 - want to fit data well (maximum likelihood)
 - without getting too complicated a model

	smaller model	bigger model
fit model	miss key features	fits better
estimate phenotype	may be biased	no bias
predict new data	may be biased	no bias
interpret model	easier	more complicated
estimate effects	low variance	high variance

SysGen: Overview Seattle SISG: Yandell © 2012

1. Bayesian strategy for QTL study

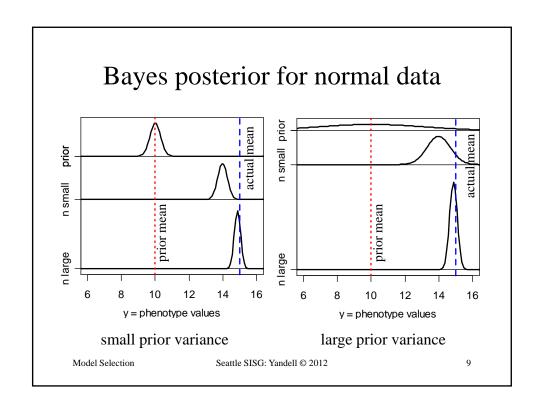
- augment data (y,m) with missing genotypes q
- study unknowns (μ, λ, γ) given augmented data (y, m, q)
 - find better genetic architectures γ
 - find most likely genomic regions = QTL = λ
 - estimate phenotype parameters = genotype means = μ
- sample from posterior in some clever way
 - multiple imputation (Sen Churchill 2002)
 - Markov chain Monte Carlo (MCMC)
 - (Satagopan et al. 1996; Yi et al. 2005, 2007)

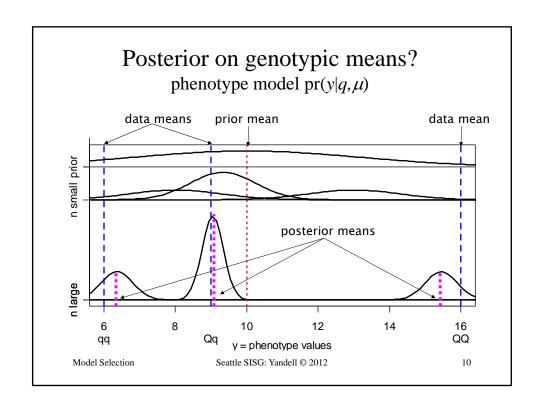
$$posterior = \frac{likelihood*prior}{constant}$$

posterior for
$$q, \mu, \lambda, \gamma = \frac{\text{phenotype likelihood*[prior for } q, \mu, \lambda, \gamma]}{\text{constant}}$$

$$\operatorname{pr}(q,\mu,\lambda,\gamma\mid y,m) = \frac{\operatorname{pr}(y\mid q,\mu,\gamma) * [\operatorname{pr}(q\mid m,\lambda,\gamma)\operatorname{pr}(\mu\mid \gamma)\operatorname{pr}(\lambda\mid m,\gamma)\operatorname{pr}(\gamma)]}{\operatorname{pr}(y\mid m)}$$

Model Selection Seattle SISG: Yandell © 2012





Bayes posterior QTL means

posterior centered on sample genotypic mean but shrunken slightly toward overall mean

phenotype mean:
$$E(y | q) = \mu_q$$
 $V(y | q) = \sigma^2$

genotypic prior:
$$E(\mu_q) = \overline{y}_{\bullet}$$
 $V(\mu_q) = \kappa \sigma^2$

posterior:
$$E(\mu_q \mid y) = b_q \overline{y}_q + (1 - b_q) \overline{y}_{\bullet} \quad V(\mu_q \mid y) = b_q \sigma^2 / n_q$$

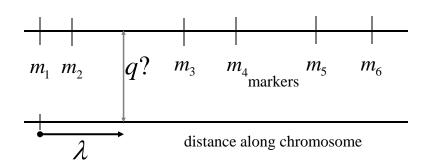
$$n_q = \operatorname{count}\{q_i = q\} \qquad \overline{y}_q = \sup_{\{q_i = q\}} y_i / n_q$$

shrinkage:
$$b_q = \frac{\kappa n_q}{\kappa n_o + 1} \rightarrow 1$$

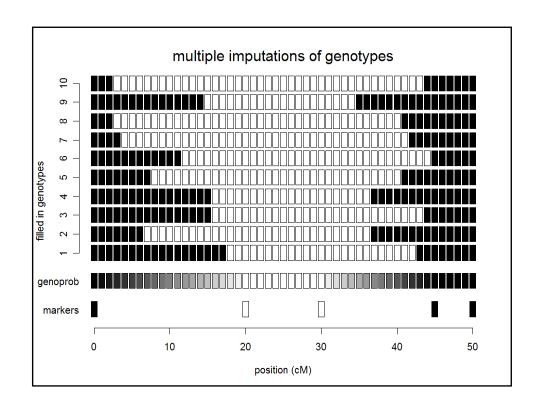
QTL 2: Bayes Seattle SISG: Yandell © 2010 11

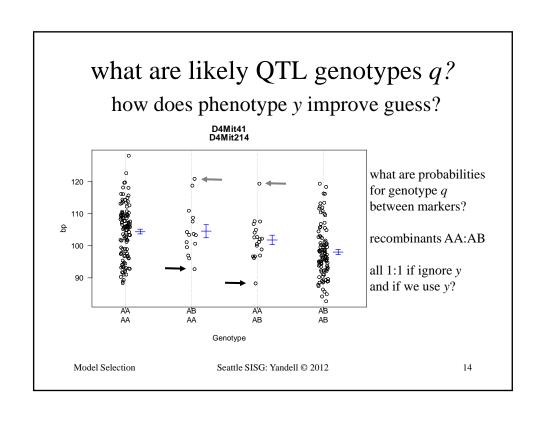
$pr(q/m, \lambda)$ recombination model

 $pr(q/m, \lambda) = pr(geno \mid map, locus) \approx pr(geno \mid flanking markers, locus)$



Model Selection Seattle SISG: Yandell © 2012





posterior on QTL genotypes q

- full conditional of q given data, parameters
 - proportional to prior $pr(q | m, \lambda)$
 - weight toward q that agrees with flanking markers
 - proportional to likelihood pr(y / q, μ)
 - weight toward q with similar phenotype values
 - posterior recombination model balances these two
- this is the E-step of EM computations

$$\operatorname{pr}(q \mid y, m, \mu, \lambda) = \frac{\operatorname{pr}(y \mid q, \mu) * \operatorname{pr}(q \mid m, \lambda)}{\operatorname{pr}(y \mid m, \mu, \lambda)}$$

Model Selection

Seattle SISG: Yandell © 2012

15

16

Where are the loci λ on the genome?

- prior over genome for QTL positions
 - flat prior = no prior idea of loci
 - or use prior studies to give more weight to some regions
- posterior depends on QTL genotypes q

$$\operatorname{pr}(\lambda \mid m,q) = \operatorname{pr}(\lambda) \operatorname{pr}(q \mid m,\lambda) / \operatorname{constant}$$

- constant determined by averaging
 - ullet over all possible genotypes q
 - over all possible loci λ on entire map
- no easy way to write down posterior

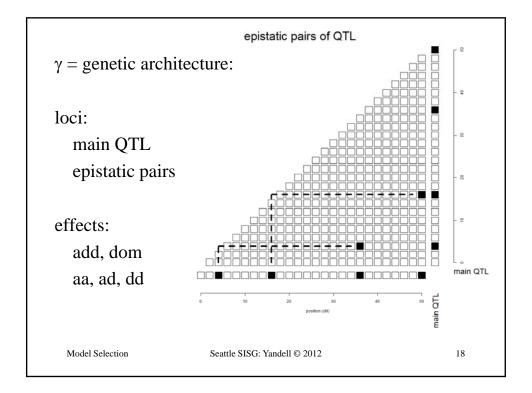
Model Selection Seattle SISG: Yandell © 2012

what is the genetic architecture γ ?

- which positions correspond to QTLs?
 - priors on loci (previous slide)
- which QTL have main effects?
 - priors for presence/absence of main effects
 - same prior for all QTL
 - can put prior on each d.f. (1 for BC, 2 for F2)
- which pairs of QTL have epistatic interactions?
 - prior for presence/absence of epistatic pairs
 - depends on whether 0,1,2 QTL have main effects
 - epistatic effects less probable than main effects

17

Model Selection Seattle SISG: Yandell © 2012



Bayesian priors & posteriors

- augmenting with missing genotypes q
 - prior is recombination model
 - posterior is (formally) E step of EM algorithm
- sampling phenotype model parameters μ
 - prior is "flat" normal at grand mean (no information)
 - posterior shrinks genotypic means toward grand mean
 - (details for unexplained variance omitted here)
- sampling QTL loci λ
 - prior is flat across genome (all loci equally likely)
- sampling QTL genetic architecture model γ
 - number of OTL
 - prior is Poisson with mean from previous IM study
 - genetic architecture of main effects and epistatic interactions
 - priors on epistasis depend on presence/absence of main effects

Model Selection Seattle SISG: Yandell © 2012

2. Markov chain sampling

- construct Markov chain around posterior
 - want posterior as stable distribution of Markov chain
 - in practice, the chain tends toward stable distribution
 - · initial values may have low posterior probability
 - burn-in period to get chain mixing well
- sample QTL model components from full conditionals
 - sample locus λ given q, γ (using Metropolis-Hastings step)
 - sample genotypes q given λ, μ, y, γ (using Gibbs sampler)
 - sample effects μ given q, y, γ (using Gibbs sampler)
 - sample QTL model γ given λ, μ, y, q (using Gibbs or M-H)

$$(\lambda, q, \mu, \gamma) \sim \operatorname{pr}(\lambda, q, \mu, \gamma \mid y, m)$$

$$(\lambda, q, \mu, \gamma)_1 \rightarrow (\lambda, q, \mu, \gamma)_2 \rightarrow \cdots \rightarrow (\lambda, q, \mu, \gamma)_N$$

Model Selection Seattle SISG: Yandell © 2012

MCMC sampling of unknowns (q,μ,λ)

for given genetic architecture γ

- Gibbs sampler
 - genotypes q
 - effects μ
 - $not loci \lambda$

$$q \sim \operatorname{pr}(q \mid y_{i}, m_{i}, \mu, \lambda)$$

$$\mu \sim \frac{\operatorname{pr}(y \mid q, \mu)\operatorname{pr}(\mu)}{\operatorname{pr}(y \mid q)}$$

$$\lambda \sim \frac{\operatorname{pr}(q \mid m, \lambda)\operatorname{pr}(\lambda \mid m)}{\operatorname{pr}(q \mid m)}$$

- Metropolis-Hastings sampler
 - extension of Gibbs sampler
 - does not require normalization
 - $\operatorname{pr}(q \mid m) = \operatorname{sum}_{\lambda} \operatorname{pr}(q \mid m, \lambda) \operatorname{pr}(\lambda)$

Model Selection Seattle SISG: Yandell © 2012

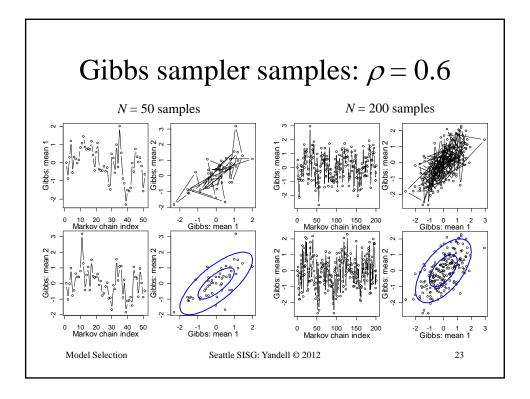
Gibbs sampler for two genotypic means

- want to study two correlated effects
 - could sample directly from their bivariate distribution
 - assume correlation ρ is known
- instead use Gibbs sampler:
 - sample each effect from its full conditional given the other
 - pick order of sampling at random
 - repeat many times

$$\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix}$$
$$\mu_1 \sim N \left(\rho \mu_2, 1 - \rho^2 \right)$$
$$\mu_2 \sim N \left(\rho \mu_1, 1 - \rho^2 \right)$$

Model Selection

Seattle SISG: Yandell © 2012



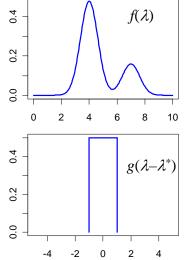
full conditional for locus

- cannot easily sample from locus full conditional $pr(\lambda | y, m, \mu, q) = pr(\lambda | m, q)$ = $pr(q | m, \lambda) pr(\lambda) / constant$
- · constant is very difficult to compute explicitly
 - must average over all possible loci λ over genome
 - must do this for every possible genotype q
- Gibbs sampler will not work in general
 - but can use method based on ratios of probabilities
 - Metropolis-Hastings is extension of Gibbs sampler

Metropolis-Hastings idea

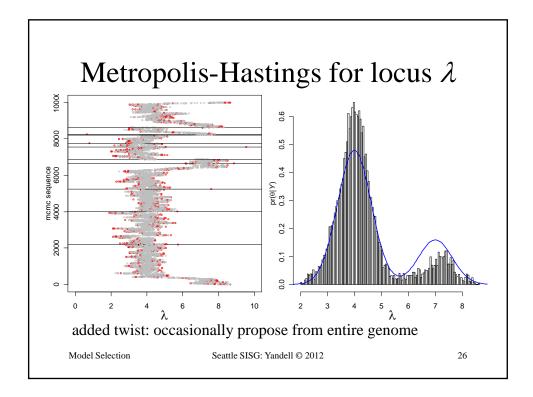
- want to study distribution $f(\lambda)$
 - take Monte Carlo samples
 - unless too complicated
 - take samples using ratios of f
- Metropolis-Hastings samples:
 - propose new value λ^*
 - near (?) current value λ
 - from some distribution g
 - accept new value with prob a
 - Gibbs sampler: a = 1 always

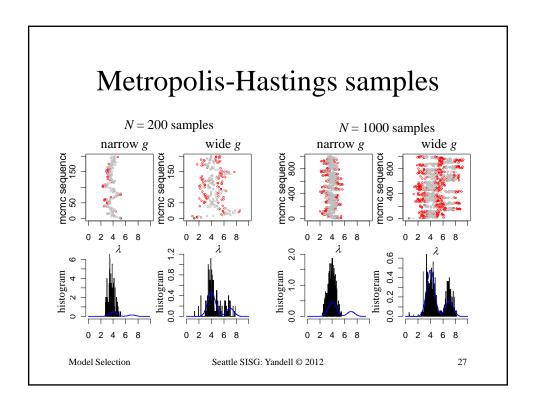
$$a = \min\left(1, \frac{f(\lambda^*)g(\lambda^* - \lambda)}{f(\lambda)g(\lambda - \lambda^*)}\right)$$



Model Selection

Seattle SISG: Yandell © 2012





3. sampling genetic architectures

- search across genetic architectures γ of various sizes
 - allow change in number of QTL
 - allow change in types of epistatic interactions
- methods for search
 - reversible jump MCMC
 - Gibbs sampler with loci indicators
- · complexity of epistasis
 - Fisher-Cockerham effects model
 - general multi-QTL interaction & limits of inference

reversible jump MCMC

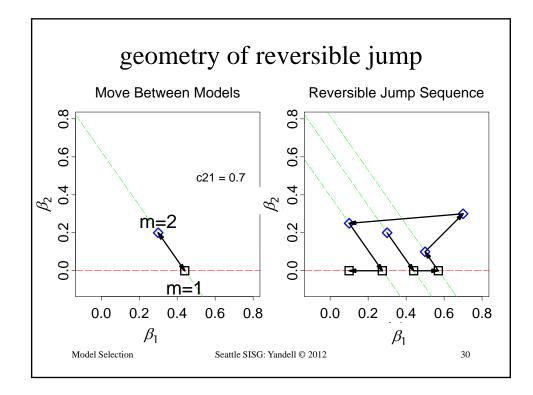
- consider known genotypes q at 2 known loci λ
 - models with 1 or 2 QTL
- M-H step between 1-QTL and 2-QTL models
 - model changes dimension (via careful bookkeeping)
 - consider mixture over QTL models H

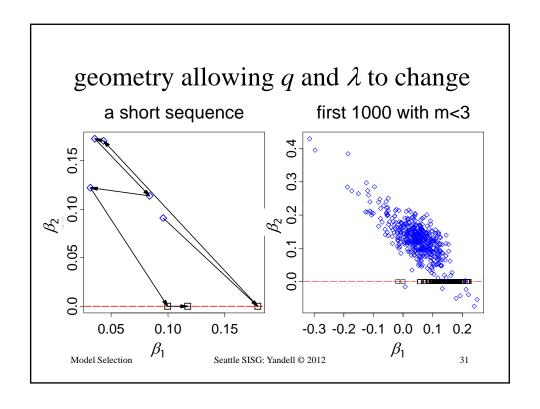
$$\gamma = 1 \text{QTL} : Y = \beta_0^- + \beta(q_1^-) + e$$

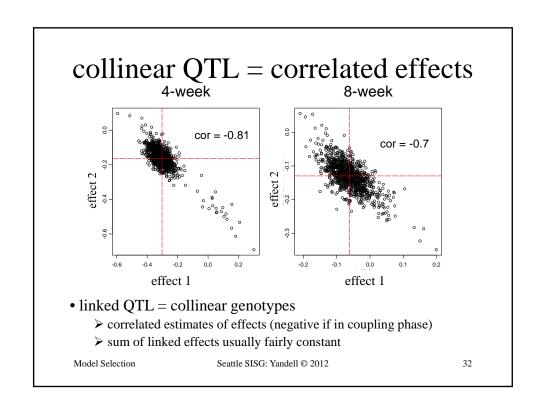
$$\gamma = 2 \text{QTL} : Y = \beta_0^- + \beta_1^-(q_1^-) + \beta_2^-(q_2^-) + e$$

Model Selection

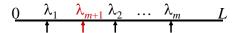
Seattle SISG: Yandell © 2012







sampling across QTL models γ



action steps: draw one of three choices

- update QTL model γ with probability 1- $b(\gamma)$ - $d(\gamma)$
 - update current model using full conditionals
 - sample QTL loci, effects, and genotypes
- add a locus with probability $b(\gamma)$
 - propose a new locus along genome
 - innovate new genotypes at locus and phenotype effect
 - decide whether to accept the "birth" of new locus
- drop a locus with probability $d(\gamma)$
 - propose dropping one of existing loci
 - decide whether to accept the "death" of locus

Model Selection Seattle SISG: Yandell © 2012

Gibbs sampler with loci indicators

- · consider only QTL at pseudomarkers
 - every 1-2 cM
 - modest approximation with little bias
- use loci indicators in each pseudomarker
 - $\gamma = 1$ if QTL present
 - $\gamma = 0$ if no QTL present
- Gibbs sampler on loci indicators γ
 - relatively easy to incorporate epistasis
 - Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 Genetics)

34

• (see earlier work of Nengjun Yi and Ina Hoeschele)

$$\mu_q = \mu + \gamma_1 \beta_1(q_1) + \gamma_2 \beta_2(q_2), \ \gamma_k = 0.1$$

Model Selection Seattle SISG: Yandell © 2012

Bayesian shrinkage estimation

- soft loci indicators
 - strength of evidence for λ_i depends on γ
 - 0 ≤ γ ≤ 1 (grey scale)
- Wang et al. (2005 Genetics)
 - Shizhong Xu group at U CA Riverside

$$\mu_{q} = \beta_{0} + \gamma_{1}\beta_{1}(q_{1}) + \gamma_{2}\beta_{2}(q_{1}), \ 0 \le \gamma_{k} \le 1$$

Model Selection Seattle SISG: Yandell © 2012

other model selection approaches

- include all potential loci in model
- assume "true" model is "sparse" in some sense
- Sparse partial least squares
 - Chun, Keles (2009 Genetics; 2010 JRSSB)
- LASSO model selection
 - Foster (2006); Foster Verbyla Pitchford (2007 *JABES*)
 - Xu (2007 Biometrics); Yi Xu (2007 Genetics)
 - Shi Wahba Wright Klein Klein (2008 Stat & Infer)

Model Selection Seattle SISG: Yandell © 2012 36

4. criteria for model selection balance fit against complexity

- classical information criteria
 - penalize likelihood L by model size $|\gamma|$
 - $-IC = -2 \log L(\gamma | y) + \text{penalty}(\gamma)$
 - maximize over unknowns
- Bayes factors
 - marginal posteriors $pr(y \mid \gamma)$
 - average over unknowns

Model Selection

Seattle SISG: Yandell © 2012

37

classical information criteria

- start with likelihood $L(\gamma | y, m)$
 - measures fit of architecture (γ) to phenotype (y)
 - given marker data (m)
 - genetic architecture (γ) depends on parameters
 - have to estimate loci (μ) and effects (λ)
- complexity related to number of parameters
 - $-|\gamma|$ = size of genetic architecture
 - BC: $|\gamma| = 1 + n.qtl + n.qtl(n.qtl 1) = 1 + 4 + 12 = 17$
 - F2: $|\gamma| = 1 + 2n.qtl + 4n.qtl(n.qtl 1) = 1 + 8 + 48 = 57$

Model Selection

Seattle SISG: Yandell © 2012

classical information criteria

- construct information criteria
 - balance fit to complexity

- Akaike AIC =
$$-2 \log(L) + 2 |\gamma|$$

- Bayes/Schwartz BIC =
$$-2 \log(L) + |\gamma| \log(n)$$

- Broman
$$\operatorname{BIC}_{\delta} = -2 \log(L) + \delta |\gamma| \log(n)$$

- general form: IC = $-2 \log(L) + |\gamma| D(n)$
- compare models
 - hypothesis testing: designed for one comparison

•
$$2 \log[LR(\gamma_1, \gamma_2)] = L(y/m, \gamma_2) - L(y/m, \gamma_1)$$

- model selection: penalize complexity
 - $IC(\gamma_1, \gamma_2) = 2 \log[LR(\gamma_1, \gamma_2)] + (|\gamma_2| |\gamma_1|) D(n)$

Model Selection Seattle SISG: Yandell © 2012

information criteria vs. model size

- WinQTL 2.0
- SCD data on F2
- A=AIC
- 1=BIC(1)
- 2=BIC(2)
- $d=BIC(\delta)$
- models
 - 1,2,3,4 QTL
 - 2+5+9+2
 - epistasis
 - 2:2 AD

Model Selection

Bayes factors

- ratio of model likelihoods
 - ratio of posterior to prior odds for architectures
 - averaged over unknowns

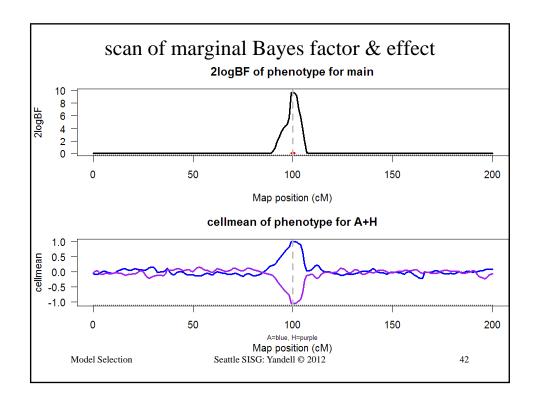
$$B_{12} = \frac{\text{pr}(\gamma_1 \mid y, m) / \text{pr}(\gamma_2 \mid y, m)}{\text{pr}(\gamma_1) / \text{pr}(\gamma_2)} = \frac{\text{pr}(y \mid m, \gamma_1)}{\text{pr}(y \mid m, \gamma_2)}$$

- roughly equivalent to BIC
 - BIC maximizes over unknowns
 - BF averages over unknowns

$$-2\log(B_{12}) = -2\log(LR) - (|\gamma_2| - |\gamma_1|)\log(n)$$

Model Selection

Seattle SISG: Yandell © 2012



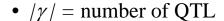
issues in computing Bayes factors

- BF insensitive to shape of prior on γ
 - geometric, Poisson, uniform
 - precision improves when prior mimics posterior
- BF sensitivity to prior variance on effects θ
 - prior variance should reflect data variability
 - resolved by using hyper-priors
 - · automatic algorithm; no need for user tuning
- easy to compute Bayes factors from samples
 - sample posterior using MCMC
 - posterior $pr(\gamma / y, m)$ is marginal histogram

Model Selection Seattle SISG: Yandell © 2012

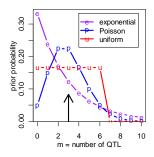
Bayes factors & genetic architecture γ

Seattle SISG: Yandell © 2012



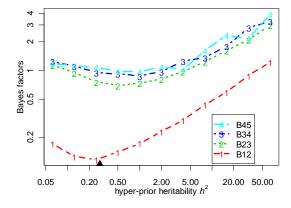
- prior $pr(\gamma)$ chosen by user
- posterior $pr(\gamma/y,m)$
 - sampled marginal histogram
 - shape affected by prior pr(*A*)

$$BF_{\gamma_1,\gamma_2} = \frac{\operatorname{pr}(\gamma_1/y,m)/\operatorname{pr}(\gamma_1)}{\operatorname{pr}(\gamma_2/y,m)/\operatorname{pr}(\gamma_2)}$$



- pattern of QTL across genome
- gene action and epistasis

Model Selection



$$\beta_{qj} \sim N(0, \sigma_G^2/m), \sigma_G^2 = h^2 \sigma_{total}^2, h^2 \text{ fixed}$$

Model Selection Seattle SISG: Yandell © 2012

45

BF insensitivity to random effects prior

hyper-prior density 2*Beta(a,b)

1.0

hyper-parameter heritability h^2

1.5

$$\beta_{qj} \sim N(0, \sigma_G^2/m), \sigma_G^2 = h^2 \sigma_{\text{total}}^2, \frac{1}{2} h^2 \sim \text{Beta}(a, b)$$

Model Selection

0.0

density 1.0 2.0

Seattle SISG: Yandell © 2012