
Seattle Summer Institute 2012

15: Systems Genetics
f i l Cfor Experimental Crosses

Brian S. Yandell, UW-Madison
Elias Chaibub Neto, Sage Bionetworks

www.stat.wisc.edu/~yandell/statgen/sisg

SysGen: Overview Seattle SISG: Yandell © 2012 1

Real knowledge is to know the extent of one’s ignorance. 
Confucius (on a bench in Seattle)

Daily Schedule
Monday
8:30-10 Introductions; Overview of System Genetics 1-50
10:30-12 QTL Model Selection 51-100
1:30-3 Gene Mapping for Multiple Correlated Traits 101-150
3:30-5 Hands On Lab: R/qtl 151-200
Tuesday 
8:30-10 Permutation Tests for Correlated Traits 201-250
10:30-12 Scanning the Genome for Causal Architecture 251-300
1:30 3 Causal Phenotype Models Driven by QTL 301 3501:30-3 Causal Phenotype Models Driven by QTL 301-350
3:30-5 Hands On Lab: R/qtlhot, R/qtlnet 351-400
Wednesday 
8:30-10 Incorporating Biological Knowledge 401-450
10:30-12 Platforms for eQTL Analysis 451-500

SysGen: Overview Seattle SISG: Yandell © 2012 2



Overview of Systems Genetics

• Big idea: how do genes affect organisms?• Big idea: how do genes affect organisms? 
• Measuring system(s) state(s) of an organism
• QTL mapping as tool toward goal
• Making sense of multiple traits

C ti t it t bi h i l th• Connecting traits to biochemical pathways
• Putting it all together: workflows
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How do genes affect organisms?

• Dogma (with exceptions)• Dogma (with exceptions)
– DNA -> RNA -> protein -> phenotype
– redundancy/overlap of biochemical pathways

• System state of organism
– accumulated effects over time of many genesy g
– environmental influences
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www.accessexcellence.org/RC/VL/GG/central.php
www.nobelprize.org/educational/medicine/dna

Biochemical Pathways chart, Gerhard Michal, Beohringer Mannheim
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http://web.expasy.org/pathways/



http://web.expasy.org/pathways/
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systems genetics approach
• study genetic architecture of quantitative traits 

– in model systems, and ultimately humans
i t t i l l ti f i ti• interrogate single resource population for variation

– DNA sequence, transcript abundance, proteins, metabolites
– multiple organismal phenotypes
– multiple environments

• detailed map of genetic variants associated with
– each organismal phenotype in each environment

• functional context to interpret phenotypes
– genetic underpinnings of multiple phenotypes
– genetic basis of genotype by environment interaction

Sieberts, Schadt (2007 Mamm Genome); Emilsson et al. (2008 Nature) 
Chen et al. 2008 Nature); Ayroles et al. MacKay (2009 Nature Genetics)
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Measuring an organism

• Phenotype measurement is challenging!• Phenotype measurement is challenging!
• Cannot measure exactly what is important
• Instead measure multiple related traits
• Multiple traits at one time

S t it d ti• Same trait measured over time
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QTL as tool toward goal 
• Identifying important genomic region(s)
• But they may contain many genes
• Journey from QTL to gene

– References…
• Corroborative evidence from multiple traits

– Reassurance
– Increased power?
– Evidence at a system level (pathways, etc.)?
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cross two inbred lines 
→ linkage disequilibrium 

→ associations

QTL

→ associations
→ linked segregating QTL

(after Gary Churchill)
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Marker Trait

Making sense of multiple traits

• Aligning QTL mapping results• Aligning QTL mapping results
• Mapping correlated traits
• Inferring hot spots where many traits map
• Organizing traits into correlated sets

Function clustering QTL alignment– Function, clustering, QTL alignment
• Inferring (causal) networks
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Genetic architecture of gene expression in 6 tissues.
A Tissue‐specific panels illustrate the relationship between the genomic location of a gene (y‐axis) to where that gene’s mRNA shows
an eQTL (LOD > 5), as a function of genome position (x‐axis). Circles represent eQTLs that showed either cis‐linkage (black) or trans‐
linkage (colored) according to LOD score. Genomic hot spots, where many eQTLs map in trans, are apparent as vertical bands that
show either tissue selectivity (e.g., Chr 6 in the islet, ) or are present in all tissues (e.g., Chr 17, ). B The total number of eQTLs
identified in 5 cM genomic windows is plotted for each tissue; total eQTLs for all positions is shown in upper right corner for each
panel. The peak number of eQTLs exceeding 1000 per 5 cM is shown for islets (Chrs 2, 6 and 17), liver (Chrs 2 and 17) and kidney (Chr
17).



Figure 4 Tissue‐specific hotspots with eQTL and SNP architecture
for Chrs 1, 2 and 17.
The number of eQTLs for each tissue (left axis) and the number of SNPs between B6 and BTBR (right axis) that were identified within
a 5 cM genomic window is shown for Chr 1 (A), Chr 2 (B) Chr 17 (C). The location of tissue‐specific hotspots are identified by their
number corresponding to that in Table 1. eQTL and SNP architecture is shown for all chromosomes in supplementary material.

BxH ApoE-/- chr 2:  causal architecture

hotspothotspot

12 causal calls12 causal calls
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BxH ApoE-/- causal network
for transcription factor Pscdbp

causal traitcausal trait

work of
Elias Chaibub Neto
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Connecting to biochemical pathways
• Gene ontology (GO)

– Functional groups
– Gene enrichment tests

• KO, PPI, TF, interactome databases
– Networks built from databases
– Hybrid networks using QTL and databases

• Proof of concept experiments
– Do findings apply to your organisms?
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KEGG pathway: pparg in mouse
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phenotypic buffering
of molecular QTL
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Fu et al. Jansen (2009 Nature Genetics)



Putting it all together: workflows
• Ideally have all tools & data connected

– Reduce duplication of copies, effort
– Reduce errors, save time

• Make tools more broadly available
– User-friendly interfaces

D t ti & l– Documentation & examples
• Enable comparison of methods

– Reduce start-up time & translation errors
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eQTL Tools Seattle SISG: Yandell © 2010
Swertz & Jansen (2007) 

22



what is the goal of QTL study?
• uncover underlying biochemistry

– identify how networks function break downidentify how networks function, break down
– find useful candidates for (medical) intervention
– epistasis may play key role
– statistical goal: maximize number of correctly identified QTL

• basic science/evolution
– how is the genome organized?
– identify units of natural selection
– additive effects may be most important (Wright/Fisher debate)
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y p ( g )
– statistical goal: maximize number of correctly identified QTL

• select “elite” individuals
– predict phenotype (breeding value) using suite of characteristics 

(phenotypes) translated into a few QTL
– statistical goal: mimimize prediction error

problems of single QTL approach

• wrong model: biased viewwrong model: biased view
– fool yourself: bad guess at locations, effects
– detect ghost QTL between linked loci
– miss epistasis completely

• low power
• bad science
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– use best tools for the job
– maximize scarce research resources
– leverage already big investment in experiment



advantages of multiple QTL approach
• improve statistical power, precision

– increase number of QTL detected
– better estimates of loci: less bias, smaller intervals

• improve inference of complex genetic architecture
– patterns and individual elements of epistasis
– appropriate estimates of means, variances, covariances

• asymptotically unbiased, efficient
– assess relative contributions of different QTL
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• improve estimates of genotypic values
– less bias (more accurate) and smaller variance (more precise)
– mean squared error = MSE = (bias)2 + variance
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Gene Action and Epistasis
additive, dominant, recessive, general effects

of a single QTL (Gary Churchill)
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additive effects of two QTL
(Gary Churchill)

μ = μ + β + βμq = μ + βq1 + βq2
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Epistasis (Gary Churchill)

The allelic state at one locus can mask or 

uncover the effects of allelic variation at another.

- W. Bateson, 1907.

SysGen: Overview Seattle SISG: Yandell © 2012 29

epistasis in parallel pathways (GAC)
• Z keeps trait value low X E1 

• neither E1 nor E2 is rate 
limiting

• loss of function alleles are

Z

Y E2 
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segregating from parent A at 
E1 and from parent B at E2



epistasis in a serial pathway (GAC)

E E
• Z keeps trait value high

• either E1 or E2 is rate limiting

ZX Y
E1  E2 
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• loss of function alleles are
segregating from parent B at 
E1 or from parent A at E2

3. Bayesian vs. classical QTL study
• classical study

– maximize over unknown effects
– test for detection of QTL at loci
– model selection in stepwise fashion

• Bayesian study
– average over unknown effects
– estimate chance of detecting QTL
– sample all possible models
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• both approaches
– average over missing QTL genotypes
– scan over possible loci



• Reverend Thomas Bayes (1702-1761)
– part-time mathematician

buried in Bunhill Cemetary Moongate London

Bayesian idea

– buried in Bunhill Cemetary, Moongate, London
– famous paper in 1763 Phil Trans Roy Soc London
– was Bayes the first with this idea? (Laplace?)

• basic idea (from Bayes’ original example)
– two billiard balls tossed at random (uniform) on table
– where is first ball if the second is to its left?
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where is first ball if the second is to its left?
• prior: anywhere on the table
• posterior: more likely toward right end of table

QTL model selection: key players
• observed measurements

– y = phenotypic trait
– m = markers & linkage map
– i = individual index (1,…,n)

observed X Yym
• missing data

– missing marker data
– q = QT genotypes

• alleles QQ, Qq, or qq at locus

• unknown quantities
– λ = QT locus (or loci)
– μ = phenotype model parameters
– γ = QTL model/genetic architecture

• pr(q|m λ γ) genotype model

missing Q

unknown λ θλ

q

μ
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pr(q|m,λ,γ) genotype model
– grounded by linkage map, experimental cross
– recombination yields multinomial for q given m

• pr(y|q,μ,γ) phenotype model
– distribution shape (assumed normal here) 
– unknown parameters μ (could be non-parametric)

after
Sen Churchill (2001)

γ



Bayes posterior vs. maximum likelihood
• LOD: classical Log ODds 

– maximize likelihood over effects µ
– R/qtl scanone/scantwo: method = “em”

• LPD: Bayesian Log Posterior Density
– average posterior over effects µ
– R/qtl scanone/scantwo: method = “imp”

+= cmy )}|(pr{maxlog)(LOD λμλ
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LOD & LPD: 1 QTL
n.ind = 100, 1 cM marker spacing
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LOD & LPD: 1 QTL
n.ind = 100, 10 cM marker spacing
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marginal LOD or LPD
• compare two genetic architectures (γ2,γ1) at each locus

– with (γ2) or without (γ1) another QTL at locus λ
d l hi h ( d i t i ith QTL t λ)• preserve model hierarchy (e.g. drop any epistasis with QTL at λ)

– with (γ2) or without (γ1) epistasis with QTL at locus λ
– γ2 contains γ1 as a sub-architecture

• allow for multiple QTL besides locus being scanned
– architectures γ1 and γ2 may have QTL at several other loci
– use marginal LOD, LPD or other diagnostic
– posterior, Bayes factor, heritability
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LPD: 1 QTL vs. multi-QTL
marginal contribution to LPD from QTL at λ

2nd QTL

1st QTL

2nd QTL
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substitution effect: 1 QTL vs. multi-QTL
single QTL effect vs. marginal effect from QTL at λ

1st QTL1 QTL
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2nd QTL 2nd QTL



why use a Bayesian approach?
• first, do both classical and Bayesianst, do both c ass ca a d ayes a

– always nice to have a separate validation
– each approach has its strengths and weaknesses

• classical approach works quite well
– selects large effect QTL easily
– directly builds on regression ideas for model selection

• Bayesian approach is comprehensive
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Bayesian approach is comprehensive
– samples most probable genetic architectures
– formalizes model selection within one framework
– readily (!) extends to more complicated problems

comparing models

• balance model fit against model complexitybalance model fit against model complexity
– want to fit data well (maximum likelihood)
– without getting too complicated a model

smaller model bigger model
fit model miss key features fits better
estimate phenotype may be biased no bias
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p yp y
predict new data may be biased no bias
interpret model easier more complicated
estimate effects low variance high variance



QTL software options
• methods

– approximate QTL by markers
t lti l QTL i t l i– exact multiple QTL interval mapping

• software platforms
– MapMaker/QTL (obsolete)
– QTLCart (statgen.ncsu.edu/qtlcart)
– R/qtl (www.rqtl.org)
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R/qtl (www.rqtl.org)
– R/qtlbim (www.qtlbim.org)
– Yandell, Bradbury (2007) book chapter

QTL software platforms
• QTLCart (statgen.ncsu.edu/qtlcart)

– includes features of original MapMaker/QTL
• not designed for building a linkage map

– easy to use Windows version WinQTLCart
b d d i i lik lih d O– based on Lander-Botstein maximum likelihood LOD

• extended to marker cofactors (CIM) and multiple QTL (MIM)
• epistasis, some covariates (GxE)
• stepwise model selection using information criteria

– some multiple trait options
– OK graphics

• R/qtl (www.rqtl.org)
– includes functionality of classical interval mapping
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y pp g
– many useful tools to check genotype data, build linkage maps
– excellent graphics
– several methods for 1-QTL and 2-QTL mapping

• epistasis, covariates (GxE)
– tools available for multiple QTL model selection



QTL Model Selection

1. Bayesian strategyy gy
2. Markov chain sampling
3. sampling genetic architectures
4. criteria for model selection 

Model Selection Seattle SISG: Yandell © 2012 1

QTL model selection: key players
• observed measurements

– y = phenotypic trait
– m = markers & linkage map
– i = individual index (1,…,n)
i i d

observed X Yym
• missing data

– missing marker data
– q = QT genotypes

• alleles QQ, Qq, or qq at locus
• unknown quantities

– λ = QT locus (or loci)
– μ = phenotype model parameters
– γ = QTL model/genetic architecture

• pr(q|m,λ,γ) genotype model
d d b li k i t l

missing Q

unknown λ θλ

q

μ
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– grounded by linkage map, experimental cross
– recombination yields multinomial for q given m

• pr(y|q,μ,γ) phenotype model
– distribution shape (assumed normal here) 
– unknown parameters μ (could be non-parametric) after

Sen Churchill (2001)

γ



QTL mapping (from ZB Zeng)

genotypes Q 
pr(q|m λ γ)

phenotype model pr(y|q,μ,γ)
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pr(q|m,λ,γ)
markers M

classical likelihood approach
• genotype model pr(q|m,λ,γ)

– missing genotypes q depend on observed markersmissing genotypes q depend on observed markers 
m across genome 

• phenotype model pr(y|q,μ,γ)
– link phenotypes y to genotypes q

+= cmy )},,|(pr{maxlog)(LOD 10 λμλ μ

Model Selection Seattle SISG: Yandell © 2012 4

∑= q
mqqymy

y

),|(pr),|(pr),,|(pr
:genotypes QTL missingover  mixes likelihood

)},,|(p{g)( 10

λμλμ

μμ



EM approach

• Iterate E and M steps• Iterate E and M steps
– expectation (E): geno prob’s pr(q|m,λ,γ)
– maximization (M): pheno model parameters

• mean, effects, variance
– careful attention when many QTL present

• Multiple papers by Zhao-Bang Zeng and others
– Start with simple initial model

• Add QTL, epistatic effects sequentially
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classic model search
• initial model from single QTL analysis
• search for additional QTL
• search for epistasis between pairs of QTL

– Both in model? One in model? Neither?
• Refine model

– Update QTL positions
– Check if existing QTL can be dropped

• Analogous to stepwise regression
Model Selection Seattle SISG: Yandell © 2012 6



comparing models (details later)

• balance model fit against model complexitybalance model fit against model complexity
– want to fit data well (maximum likelihood)
– without getting too complicated a model

smaller model bigger model
fit model miss key features fits better
estimate phenotype may be biased no bias
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p yp y
predict new data may be biased no bias
interpret model easier more complicated
estimate effects low variance high variance

1. Bayesian strategy for QTL study
• augment data (y,m) with missing genotypes q
• study unknowns (μ,λ,γ) given augmented data (y,m,q)

– find better genetic architectures γ
– find most likely genomic regions = QTL = λ
– estimate phenotype parameters = genotype means = μ

• sample from posterior in some clever way
– multiple imputation (Sen Churchill 2002)
– Markov chain Monte Carlo (MCMC) 

• (Satagopan et al. 1996; Yi et al. 2005, 2007)

constant
prior*likelihoodposterior                     =
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Bayes posterior for normal data
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large prior variancesmall prior variance
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y = phenotype values
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Posterior on genotypic means?
phenotype model pr(y|q,μ)

data meandata means prior mean
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posterior centered on sample genotypic mean
but shrunken slightly toward overall mean

Bayes posterior QTL means

phenotype mean:

genotypic prior:

posterior: /)|()1()|(
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pr(q|m,λ) recombination model
pr(q|m,λ) = pr(geno | map, locus) ≈
pr(geno | flanking markers, locus)
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markers
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λ distance along chromosome
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what are likely QTL genotypes q?
how does phenotype y improve guess?

D4Mit41
D4Mit214

100

110

120

bp

what are probabilities
for genotype q
between markers?

recombinants AA:AB

all 1:1 if ignore y
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90

Genotype

AA
AA

AB
AA

AA
AB

AB
AB

all 1:1 if ignore y
and if we use y?



posterior on QTL genotypes q
• full conditional of q given data, parameters

– proportional to prior pr(q | m, λ)proportional to prior pr(q | m, λ)
• weight toward q that agrees with flanking markers

– proportional to likelihood pr(y | q, μ)
• weight toward q with similar phenotype values

– posterior recombination model balances these two
• this is the E-step of EM computations
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Where are the loci λ on the genome?
• prior over genome for QTL positions

– flat prior = no prior idea of loci
– or use prior studies to give more weight to some regions

• posterior depends on QTL genotypes q
pr(λ | m,q) = pr(λ) pr(q | m,λ) / constant
– constant determined by averaging
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• over all possible genotypes q

• over all possible loci λ on entire map

• no easy way to write down posterior



what is the genetic architecture γ?

• which positions correspond to QTLs?
i l i ( i lid )– priors on loci (previous slide)

• which QTL have main effects?
– priors for presence/absence of main effects

• same prior for all QTL
• can put prior on each d.f. (1 for BC, 2 for F2)

• which pairs of QTL have epistatic interactions?
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which pairs of QTL have epistatic interactions?
– prior for presence/absence of epistatic pairs

• depends on whether 0,1,2 QTL have main effects
• epistatic effects less probable than main effects

γ = genetic architecture:

loci:
main QTL
epistatic pairs

effects:
add, dom

Model Selection Seattle SISG: Yandell © 2012 18

add, dom
aa, ad, dd



Bayesian priors & posteriors
• augmenting with missing genotypes q

– prior is recombination model
– posterior is (formally) E step of EM algorithm

• sampling phenotype model parameters μ
– prior is “flat” normal at grand mean (no information)
– posterior shrinks genotypic means toward grand mean
– (details for unexplained variance omitted here)

• sampling QTL loci λ
– prior is flat across genome (all loci equally likely)

• sampling QTL genetic architecture model γ
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– number of QTL 
• prior is Poisson with mean from previous IM study

– genetic architecture of main effects and epistatic interactions
• priors on epistasis depend on presence/absence of main effects

2. Markov chain sampling
• construct Markov chain around posterior

– want posterior as stable distribution of Markov chain
– in practice the chain tends toward stable distributionin practice, the chain tends toward stable distribution

• initial values may have low posterior probability
• burn-in period to get chain mixing well

• sample QTL model components from full conditionals
– sample locus λ given q,γ (using Metropolis-Hastings step)
– sample genotypes q given λ,μ,y,γ (using Gibbs sampler)
– sample effects μ given q,y,γ (using Gibbs sampler)
– sample QTL model γ given λ,μ,y,q (using Gibbs or M-H)
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MCMC sampling of unknowns (q,µ,λ)
for given genetic architecture γ

• Gibbs sampler
t

),,,|(pr~ myqq ii λμ
– genotypes q
– effects µ
– not loci λ

• Metropolis Hastings sampler
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• Metropolis-Hastings sampler
– extension of Gibbs sampler
– does not require normalization

• pr( q | m ) = sumλ pr( q | m, λ ) pr(λ )

Gibbs sampler 
for two genotypic means

• want to study two correlated effects
– could sample directly from their bivariate distribution
– assume correlation ρ is known

• instead use Gibbs sampler:
– sample each effect from its full conditional given the other
– pick order of sampling at random
– repeat many times
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Gibbs sampler samples: ρ = 0.6
2 3
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N = 50 samples N = 200 samples
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full conditional for locus
• cannot easily sample from locus full conditional

pr(λ |y m µ q) = pr( λ | m q)pr(λ |y,m,µ,q) = pr( λ | m,q)
= pr( q | m, λ ) pr(λ ) / constant

• constant is very difficult to compute explicitly
– must average over all possible loci λ over genome
– must do this for every possible genotype q

• Gibbs sampler will not work in general
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– but can use method based on ratios of probabilities
– Metropolis-Hastings is extension of Gibbs sampler



Metropolis-Hastings idea
• want to study distribution f(λ)

– take Monte Carlo samples

0.
4 f(λ)

• unless too complicated
– take samples using ratios of f

• Metropolis-Hastings samples:
– propose new value λ*

• near (?) current value λ
• from some distribution g

– accept new value with prob a
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• Gibbs sampler: a = 1 always
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Metropolis-Hastings samples
N = 200 samples N = 1000 samples
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3. sampling genetic architectures 
• search across genetic architectures γ of various sizes

– allow change in number of QTL
– allow change in types of epistatic interactions

• methods for search
– reversible jump MCMC
– Gibbs sampler with loci indicators

• complexity of epistasis
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p y p
– Fisher-Cockerham effects model
– general multi-QTL interaction & limits of inference



reversible jump MCMC

• consider known genotypes q at 2 known loci λg yp q
– models with 1 or 2 QTL

• M-H step between 1-QTL and 2-QTL models
– model changes dimension (via careful bookkeeping)
– consider mixture over QTL models H
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a short sequence

4

first 1000 with m<3

geometry allowing q and λ to change
.0

5
0.

10
0.

15
b2

0.
1

0.
2

0.
3

0.
4

b2

Model Selection Seattle SISG: Yandell © 2012 31

0.05 0.10 0.15

0.
0

0

b1
-0.3 -0.1 0.1

0.
0

b1
-0.2 0.0 0.2

β1 β1

collinear QTL = correlated effects

0.
0

cor = -0.81

4-week

0.
0

cor = -0.7

8-week

-0.6 -0.4 -0.2 0.0 0.2

-0
.6

-0
.4

-0
.2

ad
di

tiv
e 

2

-0.2 -0.1 0.0 0.1 0.2

-0
.3

-0
.2

-0
.1

ad
di

tiv
e 

2

cor  0.7

Model Selection Seattle SISG: Yandell © 2012 32

additive 1 additive 1effect 1            effect 1            

• linked QTL = collinear genotypes
correlated estimates of effects (negative if in coupling phase)
sum of linked effects usually fairly constant



sampling across QTL models γ

action steps: draw one of three choices

0 Lλ1 λm+1 λmλ2 …

• update QTL model γ with probability 1-b(γ)-d(γ)
– update current model using full conditionals
– sample QTL loci, effects, and genotypes

• add a locus with probability b(γ)
– propose a new locus along genome
– innovate new genotypes at locus and phenotype effect

d id h th t t th “bi th” f l
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– decide whether to accept the “birth” of new locus
• drop a locus with probability d(γ)

– propose dropping one of existing loci
– decide whether to accept the “death” of locus

Gibbs sampler with loci indicators  
• consider only QTL at pseudomarkers

– every 1-2 cMy
– modest approximation with little bias

• use loci indicators in each pseudomarker
– γ = 1 if QTL present
– γ = 0 if no QTL present

• Gibbs sampler on loci indicators γ
– relatively easy to incorporate epistasis

Yi Y d ll Ch hill Alli Ei P (2005 G i )
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– Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 Genetics)
• (see earlier work of Nengjun Yi and Ina Hoeschele)

1,0   ,)()( 222111 =++= kq qq γβγβγμμ



Bayesian shrinkage estimation  

ft l i i di t• soft loci indicators
– strength of evidence for λj depends on γ
– 0 ≤ γ ≤ 1  (grey scale)
– shrink most γs to zero

• Wang et al. (2005 Genetics)
– Shizhong Xu group at U CA Riverside
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10   ),()( 1221110 ≤≤++= kq qq γβγβγβμ

other model selection approaches

• include all potential loci in model• include all potential loci in model
• assume “true” model is “sparse” in some sense
• Sparse partial least squares

– Chun, Keles (2009 Genetics; 2010 JRSSB)
• LASSO model selection

– Foster (2006); Foster Verbyla Pitchford (2007 JABES)
– Xu (2007 Biometrics); Yi Xu (2007  Genetics)
– Shi Wahba Wright Klein Klein (2008 Stat & Infer)
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4. criteria for model selection
balance fit against complexity

• classical information criteria• classical information criteria
– penalize likelihood L by model size |γ|
– IC = – 2 log L(γ | y) + penalty(γ)
– maximize over unknowns

• Bayes factors
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Bayes factors
– marginal posteriors pr(y | γ)
– average over unknowns

classical information criteria
• start with likelihood L(γ | y, m) 

measures fit of architecture (γ) to phenotype (y)– measures fit of architecture (γ) to phenotype (y)
• given marker data (m)

– genetic architecture (γ) depends on parameters
• have to estimate loci (µ) and effects (λ)

• complexity related to number of parameters
|γ | = size of genetic architecture

Model Selection Seattle SISG: Yandell © 2012 38

– |γ | = size of genetic architecture
• BC: |γ | = 1 + n.qtl + n.qtl(n.qtl - 1) = 1 + 4 + 12 = 17

• F2: |γ | = 1 + 2n.qtl +4n.qtl(n.qtl - 1) = 1 + 8 + 48 = 57



classical information criteria
• construct information criteria

– balance fit to complexity
– Akaike AIC = –2 log(L) + 2 |γ|
– Bayes/Schwartz BIC = –2 log(L) + |γ| log(n)
– Broman BICδ = –2 log(L) + δ |γ| log(n)
– general form: IC = –2 log(L) + |γ| D(n)

• compare models
hypothesis testing: designed for one comparison
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– hypothesis testing: designed for one comparison
• 2 log[LR(γ1, γ2)] = L(y|m, γ2) – L(y|m, γ1)

– model selection: penalize complexity
• IC(γ1, γ2) = 2 log[LR(γ1, γ2)] + (|γ2| – |γ1|) D(n)
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• WinQTL 2.0
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Bayes factors
• ratio of model likelihoods

– ratio of posterior to prior odds for architectures
– averaged over unknowns

• roughly equivalent to BIC
– BIC maximizes over unknowns
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BIC maximizes over unknowns
– BF averages over unknowns

)log(|)||(|)log(2)log(2 1212 nLRB γγ −−−=−

scan of marginal Bayes factor & effect
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issues in computing Bayes factors
• BF insensitive to shape of prior on γ

– geometric, Poisson, uniform
– precision improves when prior mimics posteriorprecision improves when prior mimics posterior

• BF sensitivity to prior variance on effects θ
– prior variance should reflect data variability
– resolved by using hyper-priors

• automatic algorithm; no need for user tuning

• easy to compute Bayes factors from samples
sample posterior using MCMC
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– sample posterior using MCMC
– posterior pr(γ | y, m) is marginal histogram

Bayes factors & genetic architecture γ
• |γ | = number of QTL

– prior pr(γ) chosen by user
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• pattern of QTL across genome
• gene action and epistasis

22



BF sensitivity to fixed prior for effects
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Multiple Correlated Traits

• Pleiotropy vs close linkagePleiotropy vs. close linkage
• Analysis of covariance

– Regress one trait on another before QTL search
• Classic GxE analysis
• Formal joint mapping (MTM)
• Seemingly unrelated regression (SUR)
• Reducing many traits to one

– Principle components for similar traits
Correlated Traits SISG (c) Yandell 2012 1

co-mapping multiple traits
• avoid reductionist approach to biology

– address physiological/biochemical mechanismsadd ess p ys o og ca /b oc e ca ec a s s
– Schmalhausen (1942); Falconer (1952)

• separate close linkage from pleiotropy
– 1 locus or 2 linked loci?

• identify epistatic interaction or canalization
– influence of genetic background

Correlated Traits SISG (c) Yandell 2012 2

• establish QTL x environment interactions
• decompose genetic correlation among traits
• increase power to detect QTL



Two types of data
• Design I: multiple traits on same individual

– Related measurements say of shape or sizeRelated measurements, say of shape or size
– Same measurement taken over time
– Correlation within an individual

• Design II:  multiple traits on different individuals
– Same measurement in two crosses
– Male vs. female differences
– Different individuals in different locations
– No correlation between individuals

Correlated Traits 3SISG (c) Yandell 2012

interplay of pleiotropy & correlation

Correlated Traits SISG (c) Yandell 2012 4

pleiotropy only bothcorrelation only

Korol et al. (2001)



Brassica napus: 2 correlated traits
• 4-week & 8-week vernalization effect

– log(days to flower)g( y )

• genetic cross of
– Stellar (annual canola)
– Major (biennial rapeseed)

• 105 F1-derived double haploid (DH) lines
– homozygous at every locus (QQ or qq)

• 10 molecular markers (RFLPs) on LG9

Correlated Traits SISG (c) Yandell 2012 5

• 10 molecular markers (RFLPs) on LG9
– two QTLs inferred on LG9 (now chromosome N2)
– corroborated by Butruille (1998)
– exploiting synteny with Arabidopsis thaliana

QTL with GxE or Covariates

• adjust phenotype by covariate
– covariate(s) = environment(s) or other trait(s)cova ate(s) e v o e t(s) o ot e t a t(s)

• additive covariate
– covariate adjustment same across genotypes
– “usual” analysis of covariance (ANCOVA)

• interacting covariate
– address GxE

Correlated Traits SISG (c) Yandell 2012 6

– capture genotype-specific relationship among traits
• another way to think of multiple trait analysis

– examine single phenotype adjusted for others



R/qtl & covariates
• additive and/or interacting covariates
• test for QTL after adjusting for covariates

## Get Brassica data.
library(qtlbim)
data(Bnapus)
Bnapus <- calc.genoprob(Bnapus, step = 2, error = 0.01)

## Scatterplot of two phenotypes: 4wk & 8wk flower time.
plot(Bnapus$pheno$log10flower4,Bnapus$pheno$log10flower8)

## Unadjusted IM scans of each phenotype.
fl8 ( fi d h ( "l 10fl 8"))

Correlated Traits SISG (c) Yandell 2012 7

fl8 <- scanone(Bnapus,, find.pheno(Bnapus, "log10flower8"))
fl4 <- scanone(Bnapus,, find.pheno(Bnapus, "log10flower4"))
plot(fl4, fl8, chr = "N2", col = rep(1,2), lty = 1:2,

main = "solid = 4wk, dashed = 8wk", lwd = 4)

Correlated Traits SISG (c) Yandell 2012 8



R/qtl & covariates
• additive and/or interacting covariates
• test for QTL after adjusting for covariates

## IM scan of 8wk adjusted for 4wk.
## Adjustment independent of genotype
fl8.4 <- scanone(Bnapus,, find.pheno(Bnapus, "log10flower8"),

addcov = Bnapus$pheno$log10flower4)

## IM scan of 8wk adjusted for 4wk.
## Adjustment changes with genotype.
fl8.4 <- scanone(Bnapus,, find.pheno(Bnapus, "log10flower8"),

intcov = Bnapus$pheno$log10flower4)

Correlated Traits SISG (c) Yandell 2012 9

plot(fl8, fl8.4a, fl8.4, chr = "N2",
main = "solid = 8wk, dashed = addcov, dotted = intcov")

Correlated Traits SISG (c) Yandell 2012 10
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scatterplot adjusted for covariate
## Set up data frame with peak markers, traits.
markers < c("E38M50 133" "ec2e5a" " g7f3a")markers <- c("E38M50.133","ec2e5a","wg7f3a")
tmpdata <- data.frame(pull.geno(Bnapus)[,markers])
tmpdata$fl4 <- Bnapus$pheno$log10flower4
tmpdata$fl8 <- Bnapus$pheno$log10flower8

## Scatterplots grouped by marker.
library(lattice)
xyplot(fl8 ~ fl4, tmpdata, group = wg7f3a,
col = "black", pch = 3:4, cex = 2, type = c("p","r"),
xlab = "log10(4wk flower time)",
ylab = "log10(8wk flower time)",

Correlated Traits SISG (c) Yandell 2012 12

main = "marker at 47cM")
xyplot(fl8 ~ fl4, tmpdata, group = E38M50.133,
col = "black", pch = 3:4, cex = 2, type = c("p","r"),
xlab = "log10(4wk flower time)",
ylab = "log10(8wk flower time)",
main = "marker at 80cM")



Multiple trait mapping

• Joint mapping of QTL• Joint mapping of QTL
– testing and estimating QTL affecting multiple 

traits
• Testing pleiotropy vs. close linkage

– One QTL or two closely linked QTLs
• Testing QTL x environment interaction
• Comprehensive model of multiple traits

– Separate genetic & environmental correlation
Correlated Traits 13SISG (c) Yandell 2012

Formal Tests: 2 traits
y1 ~ N(μq1, σ2) for group 1 with QTL at location λ1y1 (μq1, ) g p Q 1
y2 ~ N(μq2, σ2) for group 2 with QTL at location λ2

• Pleiotropy vs. close linkage
• test QTL at same location: λ1 = λ2
• likelihood ratio test (LOD): null forces same location

• if pleiotropic (λ1 = λ2)
• test for same mean: μq1 = μq2
• Likelihood ratio test (LOD)

• null forces same mean, location
• alternative forces same location

• only make sense if traits are on same scale
• test sex or location effectCorrelated Traits 14SISG (c) Yandell 2012



3 correlated traits
(Jiang Zeng 1995)
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note signs of
genetic and
environmental
correlation
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2 traits, 2 qtl/trait
pleiotropy @ 54cM
linkage @ 114,128cM
Jiang Zeng (1995)
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More detail for 2 traits

y ~ N(μ σ2) for group 1y1 ~ N(μq1, σ2) for group 1
y2 ~ N(μq2, σ2) for group 2

• two possible QTLs at locations λ1 and λ2

• effect βkj in group k for QTL at location λj

+ β ( ) + β ( )μq1 = μ1 + β11(q1) + β12(q2)
μq2 = μ2 + β21(q1) + β22(q2)

• classical: test βkj = 0 for various 
combinationsCorrelated Traits SISG (c) Yandell 2012 17

seemingly unrelated regression 
(SUR)

μ = μ + γ β + γ βμq1 = μ1 + γ11βq11 + γ12 βq12

μq2 = μ2 + γ21 βq21 + γ22 βq22

indicators γkj are 0 (no QTL) or 1 (QTL)

i l d i f l d l l ti• include γs in formal model selection

Correlated Traits SISG (c) Yandell 2012 18



SUR for multiple loci across genome 
• consider only QTL at pseudomarkers (lecture 2)
• use loci indicators γj (=0 or 1) for eachuse loci indicators γj ( 0 or 1) for each 

pseudomarker
• use SUR indicators γkj (=0 or 1) for each trait
• Gibbs sampler on both indicators

– Banerjee, Yandell, Yi (2008 Genetics)
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R/qtlbim and GxE
• similar idea to R/qtl

– fixed and random additive covariates
– GxE with fixed covariate

• multiple trait analysis tools coming soon
– theory & code mostly in place

properties under study

Correlated Traits SISG (c) Yandell 2012 24

– properties under study
– expect in R/qtlbim later this year
– Samprit Banerjee (N Yi, advisor)



reducing many phenotypes to 1

• Drosophila mauritiana x D simulans• Drosophila mauritiana x D. simulans
– reciprocal backcrosses, ~500 per bc

• response is “shape” of reproductive piece
– trace edge, convert to Fourier series
– reduce dimension: first principal component

Correlated Traits SISG (c) Yandell 2012 25

p p p
• many linked loci

– brief comparison of CIM, MIM, BIM

PC for two correlated phenotypes
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shape phenotype via PC

Correlated Traits SISG (c) Yandell 2012 27

Liu et al. (1996) Genetics

shape phenotype in BC study
indexed by PC1

Correlated Traits SISG (c) Yandell 2012 28

Liu et al. (1996) Genetics



Zeng et al. (2000)
CIM vs. MIM

composite interval mappingcomposite interval mapping
(Liu et al. 1996)
narrow peaks
miss some QTL

multiple interval mapping
(Zeng et al. 2000)
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( g )
triangular peaks

both conditional 1‐D scans
fixing all other "QTL"

CIM, MIM and IM pairscan

cim
2‐D im

mim
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multiple QTL: CIM, MIM and BIM
cim

bim
mim
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Quantile-based Permutation 
Thresholds for QTL Hotspots

Brian S Yandell and Elias Chaibub Neto
17 M h 201217 March 2012

12012 © YandellMSRC5

Fisher on inference

We may at once admit that any inference fromWe may at once admit that any inference from 
the particular to the general must be 
attended with some degree of uncertainty, 
but this is not the same as to admit that such 
inference cannot be absolutely rigorous, for 
the nature and degree of the uncertainty 
may itself be capable of rigorous 
expression. 

Sir Ronald A Fisher(1935)
The Design of Experiments

2012 © Yandell 2MSRC5



Why study hotspots?

How do genotypes affect phenotypes?How do genotypes affect phenotypes?
genotypes  = DNA markers for an individual
phenotypes  = traits measured on an individual
(clinical traits, thousands of mRNA expression levels)

QTL hotspots = genomic locations affecting many traits
common feature in genetical genomics studiesg g
biologically interesting--may harbor critical regulators

But are these hotspots real? Or are they spurious or random?
non-genetic correlation from other environmental factors

2012 © Yandell 3MSRC5
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Genetic architecture of gene expression in 6 tissues.
A Tissue‐specific panels illustrate the relationship between the genomic location of a gene (y‐axis) to where that gene’s mRNA shows
an eQTL (LOD > 5), as a function of genome position (x‐axis). Circles represent eQTLs that showed either cis‐linkage (black) or trans‐
linkage (colored) according to LOD score. Genomic hot spots, where many eQTLs map in trans, are apparent as vertical bands that
show either tissue selectivity (e.g., Chr 6 in the islet, ) or are present in all tissues (e.g., Chr 17, ). B The total number of eQTLs
identified in 5 cM genomic windows is plotted for each tissue; total eQTLs for all positions is shown in upper right corner for each
panel. The peak number of eQTLs exceeding 1000 per 5 cM is shown for islets (Chrs 2, 6 and 17), liver (Chrs 2 and 17) and kidney (Chr
17).

Figure 4 Tissue‐specific hotspots with eQTL and SNP architecture
for Chrs 1, 2 and 17.
The number of eQTLs for each tissue (left axis) and the number of SNPs between B6 and BTBR (right axis) that were identified within
a 5 cM genomic window is shown for Chr 1 (A), Chr 2 (B) Chr 17 (C). The location of tissue‐specific hotspots are identified by their
number corresponding to that in Table 1. eQTL and SNP architecture is shown for all chromosomes in supplementary material.



How large a hotspot is large?

recently proposed empirical testrecently proposed empirical test
Brietling et al. Jansen (2008)
hotspot = count traits above LOD threshold
LOD = rescaled likelihood ratio ~ F statistic

assess null distribution with permutation test
extension of Churchill and Doerge (1994)
extension of Fisher's permutation t-test

2012 © Yandell 9MSRC5

Single trait permutation threshold T
Churchill Doerge (1994)

• Null distribution of max LOD• Null distribution of max LOD
– Permute single trait separate from genotype
– Find max LOD over genome
– Repeat 1000 times

• Find 95% permutation threshold Tp
• Identify interested peaks above T in data
• Controls genome-wide error rate (GWER)

– Chance of detecting at least on peak above T
102012 © YandellMSRC5



Single trait permutation schema

ph
en

ot
yp

e

ge
no

ty
pe

s

max LODLOD over genome

1 h ffl h b k1. shuffle phenotypes to break 
QTL
2. repeat 1000 times and 
summarize

112012 © YandellMSRC5

Hotspot count threshold N(T)
Breitling et al. Jansen (2008)

• Null distribution of max count above T• Null distribution of max count above T
– Find single-trait 95% LOD threshold T
– Find max count of traits with LODs above T
– Repeat 1000 times

• Find 95% count permutation threshold Np
• Identify counts of LODs above T in data

– Locus-specific counts identify hotspots
• Controls GWER in some way

122012 © YandellMSRC5



Hotspot permutation schema
LOD at each locus
for each phenotype

ph
en

ot
yp

es

ge
no

ty
pe

s

count LODs at locus
over threshold T

f p yp
over genome

N

1. shuffle phenotypes by row to break QTL, keep 
correlation
2. repeat 1000 times and summarize

max count N over genome

132012 © YandellMSRC5

spurious hotspot permutation histogram
for hotspot size above 1-trait threshold

95% threshold at N > 82
using single trait thresholdT = 3.41

142012 © YandellMSRC5



Hotspot sizes based on count of 
LODs above single-trait 

threshold
5 peaks above count threshold N = 82
all traits counted are nominally significant
but no adjustment for multiple testing across traits

152012 © YandellMSRC5

hotspot permutation test
(Breitling et al. Jansen 2008 PLoS Genetics)

• for original dataset and each permuted set:
– Set single trait LOD threshold T

• Could use Churchill-Doerge (1994) permutations

– Count number of traits (N) with LOD above T
• Do this at every marker (or pseudomarker)
• Probably want to smooth counts somewhat

• find count with at most 5% of permuted sets above 
(critical value) as count threshold

• conclude original counts above threshold are real
MSRC5 2012 © Yandell 16



permutation across traits
(Breitling et al. Jansen 2008 PLoS Genetics)
right way wrong way

st
ra

in

MSRC5 2012 © Yandell 17

gene expressionmarker

break correlation
between markers
and traits

but
preserve correlation
among traits

quality vs. quantity in hotspots
(Chaibub Neto et al. in review)

• detecting single trait with very large LOD• detecting single trait with very large LOD
– control FWER across genome 
– control FWER across all traits

• finding small “hotspots” with significant 
traits
– all with large LODs
– could indicate a strongly disrupted signal 

pathway
• sliding LOD threshold across hotspot sizesMSRC5 2012 © Yandell 18



Rethinking the approach

• Breitling et al. depends highly on TBreitling et al. depends highly on T
• Threshold T based on single trait

– but interested in multiple correlated traits
• want to control hotspot GWER (hGWERN)

– chance of detecting at least one spurious hotspot of 
size N or larger

N 1• N = 1
– chance of detecting at least 1 peak above threshold 

across all traits and whole genome
– Use permutation null distribution of maximum 

LOD scores across all transcripts and all genomic 
locations 192012 © YandellMSRC5

Hotspot architecture using multiple 
trait GWER threshold (T1=7.12)

count of all traits with LOD above T1 = 7.12
all traits counted are significant
conservative adjustment for multiple traits

202012 © YandellMSRC5



locus-specific LOD quantiles in data
for 10(black), 20(blue), 50(red) traits

212012 © YandellMSRC5

locus-specific LOD quantiles

• Quantile: what is LOD value for which at• Quantile: what is LOD value for which at 
least 10 (or 20 or 50) traits are at above it?

• Breitling hotspots (chr 2,3,12,14,15)
– have many traits with high LODs 

• Chromosome max LOD quantile by traitChromosome max LOD quantile by trait 
count

color count chr 3 chr 8 chr 12 chr 14
black 10 24 10 18 12
blue 20 11 8 15 11
red 50 6 4 9 9

222012 © YandellMSRC5



Hotspot permutation revisited
LOD at each locus
over genome

ph
en

ot
yp

es

ge
no

ty
pe

s

Find quantile
= N-th largest 
LOD at each locus

g
per phenotype

LOD il

1. shuffle phenotypes by row to break QTL, keep 
correlation
2. repeat 1000 times and summarize

max LOD quantile over genom

232012 © YandellMSRC5

Tail distribution of LOD quantiles
and size-specific thresholds• What is locus-specific (spurious) hotspot?

– all traits in hotspot have LOD above null threshold

• Small spurious hotspots have higher minimum LODs
– min of 10 values > min of 20 values

• Large spurious hotspots have many small LODs
– most are below single-trait threshold

• Null thresholds depending on hotspot size
– Decrease with spurious hotspot size (starting at N = 1)Decrease with spurious hotspot size (starting at N  1)
– Be truncated at single-trait threshold for large sizes

• Chen Storey (2007) studied LOD quantiles
– For multiple peaks on a single trait

242012 © YandellMSRC5



genome-wide LOD permutation 
threshold

vs. spurious hotspot size

smaller spurious 
hotspots have higher 
LOD thresholds

larger spurious 
hotspots allow manyhotspots allow many 
traits with small 
LODS (below T=3.41)

252012 © YandellMSRC5

Hotspot architecture using multiple 
trait GWER threshold (T1=7.12)

262012 © YandellMSRC5



hotspot architectures using LOD 
thresholds

for 10(black), 20(blue), 50(red) traits

272012 © YandellMSRC5

Sliding threshold between multiple trait 
(T1=7.12) and single trait (T0=3.41) 

GWER

T1=7.12 controls 
GWER across all 
traits

T0=3.41 controls 
GWER for singleGWER for single 
trait

282012 © YandellMSRC5



Hotspot size significance profile
• Construction

– Fix significance level (say 5%)
– At each locus, find largest hotspot that is significant using 

sliding threshold
– Plot as profile across genome

• Interpretation
– Large hotspots were already significant
– Traits with LOD > 7.12 could be hubs
– Smaller hotspots identified by fewer large LODs (chr 8)
– Subjective choice on what to investigate (chr 13, 5?)

292012 © YandellMSRC5

Hotspot size signifcance profile

302012 © YandellMSRC5



Yeast study

• 120 individuals• 120 individuals
• 6000 traits
• 250 markers
• 1000 permutations

1 8 * 10^10 li d l• 1.8 * 10^10 linear models

2012 © Yandell 31MSRC5

Mouse study

• 500 individuals• 500 individuals
• 30,000 traits * 6 tissues
• 2000 markers
• 1000 permutations

1 8 * 10^13 li d l• 1.8 * 10^13 linear models
• 1000 x more than yeast study

2012 © Yandell 32MSRC5



Scaling up permutations
• tremendous computing resource needs

– Multiple analyses, periodically redone
• Algorithms improve• Algorithms improve
• Gene annotation and sequence data evolve

– Verification of properties of methods
• Theory gives easy cutoff values (LOD > 3) that may not be relevant
• Need to carefully develop re-sampling methods (permutations, etc.)

– Storage of raw, processed and summary data (and metadata)
• Terabyte(s) of backed-up storage (soon petabytes and more)
• Web access tools

• high throughput computing platforms (Condor) 
– Reduce months or years to hours or daysReduce months or years to hours or days
– Free up your mind to think about science rather than mechanics
– Free up your desktop/laptop for more immediate tasks
– Need local (regional) infrastructure

• Who maintains the machines, algorithms?
• Who can talk to you in plain language?

MSRC5 332012 © Yandell

CHTC use: one “small” project

Open Science Grid Glidein Usage (4 feb 2012)
group hours percentgroup hours percent

1 BMRB 10710.3 73.49% 
2 Biochem_Attie 3660.2 25.11% 
3 Statistics_Wahba 178.5 1.22%

MSRC5 2012 © Yandell 34



Brietling et g
al (2008) 

hotspot size 
thresholds

from 
permutations

2012 © Yandell 35MSRC5

Breitling Method

2012 © Yandell 36MSRC5



Chaibub 
Neto

sliding 
LOD 

h h ldthresholds

2012 © Yandell 37MSRC5

Sliding LOD method

2012 © Yandell 38MSRC5



What’s next?
• Further assess properties (power of test)
• Drill into identified hotspotsDrill into identified hotspots

– Find correlated subsets of traits
– Look for local causal agents (cis traits)
– Build causal networks (another talk …)

• Validate findings for narrow hotspot
• Incorporate as tool in pipeline

– Increase access for discipline researchers
– Increase visibility of method

2012 © Yandell 39MSRC5
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true graph

initial network

true graph
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keep edgeand
so on

move to next edge

After all zero order conditional 
independence tests

18

The algorithm then moves to first 
order conditional independence tests.



true graphg p
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Move to 
next edge

drop edge

true graphg p

k d

20

keep edge

change cond setkeep edge



After all first order 
conditional independence tests.

21

The algorithm then moves to second 
order conditional independence tests.

true graph

22drop edge

move to 
next edge



After all second order
conditional independence tests
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Then the algorithm moves
to third order, fourth order …
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true graph
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k

k + 1

save

save
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k + 2

37

select edgeselect edge
drop edge
identify parents 

orphan nodes

38

orphan nodes
reverse edge
find new parents

from Grzegorczyk and Husmier (2008)



Trace plots of the logarithmic scores of the DAGs after the burn‐in phase.

39from Grzegorczyk and Husmier (2008)
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R/qtlnet available at CRAN
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Expression Modules

Brian S. Yandell (with slides from 
St H th UCLA dSteve Horvath, UCLA, and
Mark Keller, UW-Madison)

Modules/Pathways 1SISG (c) 2012 Brian S Yandell

Weighted models for insulin
Detected by scanone

# transcripts that match
weighted insulin model

tissue # transcripts

Islet 1984

Adipose 605

Liver 485

weighted insulin model
in each of 4 tissues:

Detected by Ping’s multiQTL model

Gastroc 404

Modules/Pathways 2SISG (c) 2012 Brian S Yandell



insulin main effects

Ping Wang

Chr 9 Chr 12 Chr 14Chr 2

H i l t

Chr 16 Chr 17 Chr 19

How many islet
transcripts show
this same genetic
dependence at 
these loci?

Modules/Pathways 3SISG (c) 2012 Brian S Yandell

Expression Networks
Zhang & Horvath (2005)

www.genetics.ucla/edu/labs/horvath/CoexpressionNetwork

• organize expression traits using correlation

• adjacency

• connectivity )(sum
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• topological
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Using the topological overlap matrix 
(TOM) to cluster genes 

– modules correspond to branches of the dendrogram

TOM plotG d TOM plot

TOM matrix

Genes correspond to 
rows and columns

Hierarchical 
clustering 
dendrogram

TOM matrix

Module:
Correspond 
to branches

Modules/Pathways 5SISG (c) 2012 Brian S Yandell

module traits highly correlated

• adjacency attenuates correlation• adjacency attenuates correlation
• can separate positive, negative correlation
• summarize module

– eigengene
– weighted average of traits

www.genetics.ucla/edu/la

weighted average of traits
• relate module

– to clinical traits
– map eigengene

Modules/Pathways 6SISG (c) 2012 Brian S Yandell



advantages of Horvath modules
• emphasize modules (pathways) instead of individual p (p y )

genes
– Greatly alleviates the problem of multiple comparisons
– ~20 module comparisons versus 1000s of gene comparisons

• intramodular connectivity ki finds key drivers (hub genes)
– quantifies module membership (centrality)
– highly connected genes have an increased chance of validation

• module definition is based on gene expression data
– no prior pathway information is used for module definition
– two modules (eigengenes) can be highly correlated

• unified approach for relating variables
– compare data sets on same mathematical footing 

• scale-free: zoom in and see similar structure
Modules/Pathways 7SISG (c) 2012 Brian S Yandell

modules for 1984 transcripts with similar genetic architecture as insulin
Ping Wang

contains the insulin trait
Modules/Pathways 8SISG (c) 2012 Brian S Yandell



Islet – modules

17

2

16

14

19

12

Insulin trait

chromosomes

9

Modules/Pathways 9SISG (c) 2012 Brian S Yandell

Islet – enrichment for modules

Module Pvalue Qvalue Count Size Term

BLUE 0.0005 0.0463 30 1068 biosynthetic process

0.0006 0.0470 18 511 cellular lipid metabolic process

0.0009 0.0507 11 241 lipid biosynthetic process

0.0012 0.0593 19 590 lipid metabolic process

GREEN 0.0008 0.0457 4 76 phosphate transport

0 0055 0 0970 2 20 intermediate filament‐based process0.0055 0.0970 2 20 intermediate filament‐based process

0.0056 0.0970 10 707 ion transport

PURPLE 0.0011 0.0165 7 2769
nucleobase, nucleoside, nucleotide and nucleic acid 
metabolic process

BLACK 0.0078 0.0138 2 68 sensory perception of sound

MAGENTA 2.54E‐05 0.0011 7 313 cell cycle process

0.0001 0.0040 5 179 microtubule‐based process

0.0004 0.0040 5 225 mitotic cell cycle

0.0005 0.0040 5 228 M phase

0.0006 0.0040 5 239 cell division

0.0009 0.0041 5 266 cell cycle phase

0.0011 0.0041 4 162 mitosis

0.0012 0.0041 4 163 M phase of mitotic cell cycle

YELLOW 0.0026 0.0675 7 281 cell projection organization and biogenesis

0.0026 0.0675 7 281 cell part morphogenesis

0.0026 0.0675 7 281 cell projection morphogenesis

RED 0.0017 0.0619 2 13 steroid hormone receptor signaling pathway

0.0026 0.0619 5 200 reproductive process

Insulin

chromosomes

BROWN 0.0057 0.1442 4 96 response to pheromone

TURQUOISE 0.0002 0.0830 17 279 enzyme linked receptor protein signaling pathway

0.0003 0.0830 10 115 morphogenesis of an epithelium

0.0003 0.0830 7 57 morphogenesis of embryonic epithelium

0.0004 0.0830 40 1021 anatomical structure morphogenesis

PINK 0.0004 0.0608 2 14 vesicle organization and biogenesis

0.0092 0.0612 4 384 regulation of apoptosis

Modules/Pathways 10SISG (c) 2012 Brian S Yandell



www.geneontology.org

• ontologies• ontologies
– Cellular component (GOCC)
– Biological process (GOBP)
– Molecular function (GOMF)

• hierarchy of classificationy
– general to specific
– based on extensive literature search, predictions

• prone to errors, historical inaccuracies
Modules/Pathways 11SISG (c) 2012 Brian S Yandell

Bayesian causal phenotype network 
incorporating genetic variation and 

bi l i l k l dbiological knowledge 

Brian S Yandell, Jee Young Moon
University of Wisconsin-Madison

Elias Chaibub Neto, Sage Bionetworks
Xinwei Deng, VA Tech

Modules/Pathways 12SISG (c) 2012 Brian S Yandell



BTBR mouse is
insulin resistant

B6 is not

make both obese
Alan Attie
Biochemistr

glucose insulin

make both obese…

SISG (c) 2012 Brian S Yandell 13(courtesy AD Attie) Modules/Pathways

bigger picture

• how do DNA, RNA, proteins, metabolites regulatehow do DNA, RNA, proteins, metabolites regulate 
each other?

• regulatory networks from microarray expression 
data
– time series measurements or transcriptional 

perturbations
segregating population: genotype as driving– segregating population: genotype as driving 
perturbations

• goal: discover causal regulatory relationships among 
phenotypes

• use knowledge of regulatory relationships from 
databases

h thi i l t k t ti ?

Modules/Pathways 14SISG (c) 2012 Brian S Yandell



BxH ApoE‐/‐ chr 2:  hotspot

x% threshold
on number of traits

DNA→local gene→distant genes

15Modules/Pathways SISG (c) 2012 Brian S YandellData: Ghazalpour et al.(2006) PLoS

DNA→local gene→distant genes

causal model selection choices
in context of larger, unknown network

focal 
trait

targe
t causal

trait trait

focal 
trait

targe
t 

trait

focal targe

reactive

correlatedfocal 
trait t 

trait

focal 
trait

targe
t 

trait

correlated

uncorrelated
16Modules/Pathways SISG (c) 2012 Brian S Yandell



causal architecture references
• BIC: Schadt et al. (2005) Nature Genet
• CIT: Millstein et al (2009) BMC Genet• CIT: Millstein et al. (2009) BMC Genet
• Aten et al. Horvath (2008) BMC Sys Bio
• CMST: Chaibub Neto et al. (2010) PhD thesis

– Chaibub Neto et al. (2012) Genetics (in review)

Modules/Pathways SISG (c) 2012 Brian S Yandell 17

BxH ApoE‐/‐ study
Ghazalpour et al. (2008)
PLoS Genetics

Modules/Pathways SISG (c) 2012 Brian S Yandell 18
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QTL-driven directed graphs
• given genetic architecture (QTLs), what causal 

network structure is supported by data? 
• R/qdg available at www.github.org/byandell
• references 

– Chaibub Neto, Ferrara, Attie, Yandell (2008) Inferring 
causal phenotype networks from segregating populations. 
Genetics 179: 1089-1100. [doi:genetics.107.085167]
F t l Atti (2008) G ti t k f li– Ferrara et al. Attie (2008) Genetic networks of liver 
metabolism revealed by integration of metabolic and 
transcriptomic profiling. PLoS Genet 4: e1000034. 
[doi:10.1371/journal.pgen.1000034]

SISG (c) 2012 Brian S Yandell 20Modules/Pathways



partial correlation (PC) skeleton
true graph

correlations

1st order partial correlations drop edge

Modules/Pathways SISG (c) 2012 Brian S Yandell 21

p drop edge

partial correlation (PC) skeleton
true graph 1st order partial correlations

2nd order partial correlations
drop edge

Modules/Pathways SISG (c) 2012 Brian S Yandell 22



edge direction: which is causal?

Modules/Pathways SISG (c) 2012 Brian S Yandell 23

due to QTL

test edge direction using LOD score

Modules/Pathways SISG (c) 2012 Brian S Yandell 24



reverse edges
using QTLs

true graph

Modules/Pathways SISG (c) 2012 Brian S Yandell 25

causal graphical models in systems genetics

• What if genetic architecture and causal network are 
unknown? jointly infer both using iteration

• Chaibub Neto, Keller, Attie, Yandell (2010) Causal Graphical Models in 
Systems Genetics: a unified framework for joint inference of causal 
network and genetic architecture for correlated phenotypes. Ann Appl 
Statist 4: 320-339. [doi:10.1214/09-AOAS288]

• R/qtlnet available from www.github.org/byandell

• Related references
– Schadt et al. Lusis (2005 Nat Genet); Li et al. Churchill (2006Schadt et al. Lusis (2005 Nat Genet); Li et al. Churchill (2006 

Genetics); Chen Emmert-Streib Storey(2007 Genome Bio); Liu de la 
Fuente Hoeschele (2008 Genetics);  Winrow et al. Turek (2009 PLoS 
ONE); Hageman et al. Churchill (2011 Genetics) 

SISG (c) 2012 Brian S Yandell 26Modules/Pathways



Basic idea of QTLnet

• iterate between finding QTL and network• iterate between finding QTL and network
• genetic architecture given causal network

– trait y depends on parents pa(y) in network
– QTL for y found conditional on pa(y)

• Parents pa(y) are interacting covariates for QTL 
scan

• causal network given genetic architecture
– build (adjust) causal network given QTL
– each direction change may alter neighbor edgesSISG (c) 2012 Brian S Yandell 27Modules/Pathways

missing data method: MCMC

• known phenotypes Y genotypes Q• known phenotypes Y, genotypes Q
• unknown graph G
• want to study Pr(Y | G, Q)
• break down in terms of individual edges

– Pr(Y|G,Q)  = sum of Pr(Yi | pa(Yi), Q)
• sample new values for individual edges

– given current value of all other edges
• repeat many times and average results
Modules/Pathways SISG (c) 2012 Brian S Yandell 28



MCMC steps for QTLnet• propose new causal network G
– with simple changes to current network:
– change edge direction
– add or drop edge

• find any new genetic architectures Q
– update phenotypes when parents pa(y) change in new G

• compute likelihood for new network and QTL
– Pr(Y | G, Q)

• accept or reject new network and QTL
– usual Metropolis-Hastings idea

Modules/Pathways SISG (c) 2012 Brian S Yandell 29

BxH ApoE-/- causal network
for transcription factor Pscdbp

causal trait

30

work of
Elias Chaibub Neto

Modules/Pathways SISG (c) 2012 Brian S YandellData: Ghazalpour et al.(2006) PLoS Gene



scaling up to larger networks

• reduce complexity of graphs• reduce complexity of graphs
– use prior knowledge to constrain valid edges
– restrict number of causal edges into each node

• make task parallel: run on many machines
– pre-compute conditional probabilitiesp p p
– run multiple parallel Markov chains

• rethink approach
– LASSO, sparse PLS, other optimization 

methods SISG (c) 2012 Brian S Yandell 31Modules/Pathways

graph complexity with node parents

pa2pa1

node

pa1

node

pa3

SISG (c) 2012 Brian S Yandell 32

of2 of3of1of2of1 of3
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parallel phases for larger projects

1Phase 1: identify parents

2.2 2.b2.1 …

3

Phase 2: compute BICs

BIC = LOD – penalty

all possible parents to all 
nodes

SISG (c) 2012 Brian S Yandell 33

4.2 4.m4.1 …

5

Phase 3: store BICs

Phase 4: run Markov chains
Modules/Pathways

parallel implementation
• R/qtlnet available at www.github.org/byandell
• Condor cluster: chtc.cs.wisc.edu

– System Of Automated Runs (SOAR)
• ~2000 cores in pool shared by many scientists
• automated run of new jobs placed in project
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Phase 4Phase 2
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single edge  updates

burnin
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100,000 runs

Modules/Pathways

neighborhood edge reversal

select edge
d d

orphan nodes

drop edge
identify parents
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Grzegorczyk M. and Husmeier D. (2008) Machine Learning 71 (2‐3), 2

orphan nodes
reverse edge
find new parents

Modules/Pathways



neighborhood for reversals only

burnin
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100,000 runs

Modules/Pathways

how to use functional information?
• functional grouping from prior studies

– may or may not indicate direction
– gene ontology (GO), KEGG
– knockout (KO) panels 
– protein-protein interaction (PPI) database
– transcription factor (TF) database

• methods using only this information• methods using only this information
• priors for QTL-driven causal networks

– more weight to local (cis) QTLs?

SISG (c) 2012 Brian S Yandell 38Modules/Pathways



modeling biological knowledge
• infer graph GY from biological knowledge B

– Pr(GY | B, W) = exp( – W * |B–GY|) / constant
– B = prob of edge given TF, PPI, KO database

• derived using previous experiments, papers, etc.
– GY = 0-1 matrix for graph with directed edges

• W = inferred weight of biological knowledge
W 0 i fl W l d t– W=0: no influence; W large: assumed correct

– P(W|B) = φ exp(- φ W) exponential
• Werhli and Husmeier (2007) J Bioinfo Comput Biol

SISG (c) 2012 Brian S Yandell 39Modules/Pathways

combining eQTL and bio knowledge
• probability for graph G and bio-weights W

– given phenotypes Y, genotypes Q, bio info B

• Pr(G, W | Y, Q, B) = c 
Pr(Y|G,Q)Pr(G|B,W,Q)Pr(W|B)
– Pr(Y|G,Q) is genetic architecture (QTLs)

• using parent nodes of each trait as covariates

– Pr(G|B,W,Q) = Pr(GY|B,W) Pr(GQ→Y|Q)
P (G |B W) l t h t bi l i l i f• Pr(GY|B,W) relates graph to biological info

• Pr(GQ→Y|Q) relates genotype to phenotype

Moon JY, Chaibub Neto E, Deng X, Yandell BS (2011) Growing graphical models 
to infer causal phenotype networks. In Probabilistic Graphical Models Dedicated to 
Applications in Genetics. Sinoquet C, Mourad R, eds. (in review)
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encoding biological knowledge B
transcription factors, DNA binding (causation)

λp

• p = p-value for TF binding of  i→j
• truncated exponential (λ) when TF i→j

)1( λλ

λ

λ
λ

−−

−

−+
=

ee
eB p

p

ij

• truncated exponential (λ) when TF i→j
• uniform if no detection relationship
• Bernard, Hartemink (2005) Pac Symp Biocomp
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encoding biological knowledge B
protein-protein interaction (association)

ddi

• post odds = prior odds * LR
i i d i ld d d

oddsposterior 1
oddsposterior 

+
== jiij BB

• use positive and negative gold standards
• Jansen et al. (2003) Science
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encoding biological knowledge B
gene ontology(association)

• GO = molecular function, processes of gene
i i i f i

)),(( jijiij GOGOsimmeancBB •= =

• sim = maximum information content across 
common parents of pair of genes

• Lord et al. (2003) Bioinformatics
Modules/Pathways SISG (c) 2012 Brian S Yandell 43

MCMC with pathway 
information• sample new network G from proposal R(G*|G)

add or drop edges; switch causal direction– add or drop edges; switch causal direction
• sample QTLs Q from proposal R(Q*|Q,Y)

– e.g. Bayesian QTL mapping given pa(Y)
• accept new network (G*,Q*) with probability
• A = min(1, f(G,Q|G*,Q*)/ f(G*,Q*|G,Q))

f(G Q|G* Q*) P (Y|G* Q*)P (G*|B W Q*)/R(G*|G)R(Q*|Q Y)– f(G,Q|G*,Q*) = Pr(Y|G*,Q*)Pr(G*|B,W,Q*)/R(G*|G)R(Q*|Q,Y)

• sample W from proposal R(W*|W)
• accept new weight W* with probability …
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ROC curve
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weight on biological knowledge
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yeast data—partial success
FKH2NDD1 CLN126 genes

ACE2 MBP1MCM1

STB1

SWI4 SWI5

SWI6

ALG7

CDC5

CLB2

EGT2

FAR1HTA1

PCL2

***

36 inferred edges
dashed: indirect (2)
starred: direct (3)
missed (39)
reversed (0)
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ASH1 FKH1

CDC20

CDC21

CDC6 CLB5CLN2CTS1 SIC1

Data: Brem, Kruglyak (2005) PNAS



phenotypic buffering
of molecular QTL
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Fu et al. Jansen (2009 Nature Genetics)

limits of causal inference
• Computing costs already discussedp g y
• Noisy data leads to false positive causal calls

– Unfaithfulness assumption violated
– Depends on sample size and omic technology
– And on graph complexity (d = maximal path length i→j)
– Profound limits

• Uhler C, Raskutti G, Buhlmann P, Yu B (2012 in prep) 
Geometry of faithfulness assumption in causalGeometry of faithfulness assumption in causal 
inference.

• Yang Li, Bruno M. Tesson, Gary A. Churchill, Ritsert
C. Jansen (2010) Critical reasoning on causal inference 
in genome-wide linkage and association studies. Trends 
in Genetics 26: 493-498.
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sizes for reliable causal inference
genome wide linkage & association

Modules/Pathways SISG (c) 2012 Brian S Yandell 51
Li, Tesson, Churchill, Jansen (2010) Trends in Genetics

limits of causal 
inference

f ithf l f lunfaithful: false 
positive edges

λ =min|cor(Yi,Yj)|
λ=c•sqrt(dp/n)
d=max degree
p=# nodes
n=sample size

Modules/Pathways SISG (c) 2012 Brian S Yandell 52Uhler, Raskutti, Buhlmann, Yu (2012 in p



Thanks!

• Grant support• Grant support
– NIH/NIDDK 58037, 66369
– NIH/NIGMS 74244, 69430
– NCI/ICBP U54-CA149237
– NIH/R01MH090948

• Collaborators on papers and ideas
– Alan Attie & Mark Keller, Biochemistry
– Karl Broman, Aimee Broman, Christina 
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Computational Infrastructure 
for Systems Genetics Analysisfor Systems Genetics Analysis

Brian Yandell, UW-Madison

high-throughput analysis of systems data
enable biologists & analysts to share tools

eQTL Tools Seattle SISG: Yandell © 2012 1

www.stat.wisc.edu/~yandell/statgen
byandell@wisc.edu

• UW-Madison
– Alan Attie

• Jackson Labs (HTDAS)
– Gary Churchill
– Ricardo Verdugo

– Christina Kendziorski
– Karl Broman
– Mark Keller
– Andrew Broman
– Aimee Broman
– YounJeong Choi
– Elias Chaibub Neto
– Jee Young Moon

g
– Keith Sheppard

• UC-Denver (PhenoGen)
– Boris Tabakoff
– Cheryl Hornbaker
– Laura Saba
– Paula Hoffman

• Labkey Software
– Mark Igra

• U Groningen (XGA)
Rit t J– John Dawson

– Ping Wang
– NIH Grants DK58037, DK66369, 

GM74244, GM69430 , EY18869 

– Ritsert Jansen
– Morris Swertz
– Pjotr Pins
– Danny Arends

• Broad Institute
– Jill Mesirov
– Michael Reich
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experimental context
• B6 x BTBR obese mouse cross

– model for diabetes and obesity
– 500+ mice from intercross (F2)
– collaboration with Rosetta/Merck

• genotypes
– 5K SNP Affymetrix mouse chip
– care in curating genotypes! (map version, errors, …)

• phenotypes

eQTL Tools Seattle SISG: Yandell © 2012

• phenotypes
– clinical phenotypes (>100 / mouse)
– gene expression traits (>40,000 / mouse / tissue)
– other molecular phenotypes

3

how does one filter traits?
• want to reduce to “manageable” set

– 10/100/1000: depends on needs/tools0/ 00/ 000 depe ds o eeds/too s
– How many can the biologist handle?

• how can we create such sets?
– data-driven procedures

• correlation-based modules
– Zhang & Horvath 2005 SAGMB, Keller et al. 2008 Genome Res
– Li et al. 2006 Hum Mol Gen

• mapping-based focus on genome region

eQTL Tools Seattle SISG: Yandell © 2012

mapping based focus on genome region
– function-driven selection with database tools

• GO, KEGG, etc
• Incomplete knowledge leads to bias

– random sample

4



why build Web eQTL tools?

• common storage/maintainence of data
– one well-curated copy 
– central repository
– reduce errors, ensure analysis on same data

• automate commonly used methods
biologist gets immediate feedback

eQTL Tools Seattle SISG: Yandell © 2012

– biologist gets immediate feedback
– statistician can focus on new methods
– codify standard choices

5

how does one build tools?
• no one solution for all situations
• use existing tools wherever possible

– new tools take time and care to build!
– downloaded databases must be updated regularly

• human component is key
– need informatics expertise
– need continual dialog with biologists

• build bridges (interfaces) between tools

eQTL Tools Seattle SISG: Yandell © 2012

• build bridges (interfaces) between tools
– Web interface uses PHP
– commands are created dynamically for R

• continually rethink & redesign organization
6



perspectives for building a community
where disease data and models are shared

Benefits of wider access to datasets and models:
1‐ catalyze new insights on disease & methods
2‐ enable deeper comparison of methods & results

Lessons Learned:
1‐ need quick feedback between biologists & analysts
2‐ involve biologists early in development
3‐ repeated use of pipelines leads to
d t d l i f idocumented learning from experience
increased rigor in methods

Challenges Ahead:
1‐ stitching together components as coherent system
2‐ ramping up to ever larger molecular datasets

eQTL Tools Seattle SISG: Yandell © 2012 7
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Swertz & Jansen (2007) 
8



systems 
genetics portal

(PhenoGen)

collaborative
portal

(LabKey)

view results
(R graphics,

GenomeSpace

iterate many 
times

get data 
(GEO, 
Sage)

GenomeSpace
tools)

run pipeline
(CLIO,XGAP,HTD

AS)
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analysis pipeline acts on objects
(extends concept of GenePattern)

pipelineinpu
t

outpu
t

setting

check
s

setting
s
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pipeline is composed of many 
steps

AI
BB

C
compare methods

I’
combine datasets

A’

D
E’O

’
D’

EO

alternative patheQTL Tools Seattle SISG: Yandell © 2012 11

causal model selection choices
in context of larger, unknown network

focal 
trait

target 
trait causaltrait trait

focal 
trait

target 
trait

focal target 

reactive

correlatedtrait
g

trait

focal 
trait

target 
trait

correlated

uncorrelated
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BxH ApoE-/- chr 2:  causal architecture

hotspothotspot

12 causal calls
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BxH ApoE-/- causal network
for transcription factor Pscdbp

causal traitcausal trait

work of
Elias Chaibub Neto
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systems 
genetics portal

(PhenoGen)

collaborative
portal

(LabKey)

view results
(R graphics,

GenomeSpace
tools)

iterate many 
times

get data
(GEO, 
Sage)update

periodically
tools)

develop analysis 
methods & 
algorithms

run pipeline
(CLIO,XGAP,HTD

AS)

byandell@wisc.edueQTL Tools Seattle SISG: Yandell © 2012 15

pipelineinpu
t

outpu
t

check
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setting
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preserv
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history

raw
code

history

R&Dpackage
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Model/View/Controller (MVC) 
software architecture

• isolate domain logic from input and presentation
• permit independent development, testing, pe t depe de t de e op e t, test g,

maintenance

Controller
Input/response

View
render for 
interaction

Model
domain-specific 

logic
user changes

system actions
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automated R script
library('B6BTBR07')

out <- multtrait(cross.name='B6BTBR07',
filename = 'scanone_1214952578.csv',
category = 'islet', chr = c(17),
threshold.level = 0.05, sex = 'both',)

sink('scanone_1214952578.txt')
print(summary(out))
sink()

eQTL Tools Seattle SISG: Yandell © 2012

bitmap('scanone_1214952578%03d.bmp',
height = 12, width = 16, res = 72, pointsize = 20)

plot(out, use.cM = TRUE)
dev.off() 
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