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1 Motivation

Current efforts in systems genetics have focused on the development of statistical approaches that
aim to disentangle causal relationships among molecular phenotypes in segregating populations.
Model selection criterions, such as the AIC and BIC, have been widely used for this purpose,
in spite of being unable to quantify the uncertainty associated with the model selection call. In
this tutorial we illustrate the use of software implementing the causal model selection hypothesis
tests proposed by Chaibub Neto et al. (2012).

2 Overview

This tutorial illustrates the basic functionality of the cmst R package in few simulated toy ex-
amples, and reproduces the analysis of a yeast genetical genomics data-set presented in Chaibub
Neto et al. (2012). The cmst package builds over the R/qtl package (Broman et al. 2003), and
we assume the reader is familiar with it.

3 Basic functionality

Here, we illustrate the basic functionality of the cmst package in a toy simulated example.

library(cmst)

We first use the SimCrossCausal function to simulate a cross object with 3 phenotypes, y1,
y2 and y3, where y1 has a causal effect on both y2 and y3. The simulated cross data set, Cross, is
composed of: 100 individuals (n.ind = 100); 3 chromosomes of length 100cM (len = rep(100,

3)); 101 unequally spaced markers per chromosome (n.mar = 101 and eq.spacing = FALSE);
additive genetic effect set to 1 (add.eff = 1); dominance genetic effect set to 0 (dom.eff =

0); residual variances for y1 (sig2.1) and the other phenotypes (sig2.2) set to 0.4 and 0.1,
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respectively; backcross cross type (cross.type = "bc"); and phenotype data transformed to
normal scores (normalize = TRUE). The argument beta = rep(0.5, 2), represents the causal
effect of y1 on the other phenotypes (i.e., coefficients of the regressions of y2 = 0.5 y1 + ϵ and
y3 = 0.5 y1 + ϵ). The length of beta controls the number of phenotypes to be simulated.

set.seed(987654321)

Cross <- SimCrossCausal(n.ind = 100,

len = rep(100, 3),

n.mar = 101,

beta = rep(0.5, 2),

add.eff = 1,

dom.eff = 0,

sig2.1 = 0.4,

sig2.2 = 0.1,

eq.spacing = FALSE,

cross.type = "bc",

normalize = TRUE)

We compute the genotype conditional probabilities using Haldane’s map function, genotype
error rate of 0.0001, and setting the maximum distance between positions at which genotype
probabilities were calculated to 1cM.

Cross <- calc.genoprob(Cross, step = 1)

We perform QTL mapping using Haley-Knott regression (Haley and Knott 1992), and sum-
marize the results for the 3 phenotypes. Figure 1 presents the LOD score profiles for all 3
phenotypes. The black, blue and red curves represent the LOD profiles of phenotypes y1, y2 and
y3, respectively.

Scan <- scanone(Cross, pheno.col = 1 : 3, method = "hk")

summary(Scan[, c(1, 2, 3)], thr = 3)

chr pos y1

c1.loc55 1 55.0 12.618

summary(Scan[, c(1, 2, 4)], thr = 3)

chr pos y2

c1.loc55 1 55 5.27

summary(Scan[, c(1, 2, 5)], thr = 3)

chr pos y3

D1M50 1 55.5 7.58

plot(Scan, lodcolumn = 1 : 3, ylab = "LOD")
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Figure 1: LOD score profiles for phenotypes y1 (black curve), y2 (blue curve) and y3 (red curve).

Phenotypes y1 and y2 map to exactly same QTL at position 55 cM on chromosome 1.
Phenotype y3 maps to a QTL at position 55.5 cM. Whenever two phenotypes map to close, but
not exactly identical, positions we are faced with the question of which QTL to use as causal
anchor. Instead of making a (sometimes) arbitrary choice, our approach is to compute the joint
LOD profile of both phenotypes and use the QTL detected by this joint mapping approach as the
causal anchor. The function GetCommonQtls performs the joint QTL mapping for phenotypes
whose marginal LOD peak positions are higher than a certain LOD threshold (thr), and are
less than a fixed distance apart (peak.dist). The function can also handle separate additive
and interacting covariates for each phenotype (addcov1, intcov1, addcov2, intcov2). In this
simulated example the QTL detected by the joint analysis agreed with phenotype’s y1 QTL.

commqtls <- GetCommonQtls(Cross,

pheno1 = "y1",

pheno2 = "y3",

thr = 3,

peak.dist = 5,

addcov1 = NULL,

addcov2 = NULL,

intcov1 = NULL,

intcov2 = NULL)

commqtls

Q Q.chr Q.pos

1 c1.loc55 1 55

Now, we fit our causal model selection tests for phenotypes y1 and y2 using the CMSTtests

function. The Q.chr and Q.pos arguments specify the chromosome and position (in cM) of the
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QTL to be used as a causal anchor. The argument method specify which version of the CMST
test should be used. The options "par", "non.par" and "joint" represent, respectively, the
parametric, non-parametric, joint parametric versions of the CMST test. The option "all" fits
all three versions. The penalty argument specifies whether we should test statistics based on
the AIC ("aic"), BIC ("bic"), or both ("both") penalties. In this particular call we computed
all 3 versions using both penalties fitting 6 separate CMST tests.

nms <- names(Cross$pheno)

out1 <- CMSTtests(Cross,

pheno1 = nms[1],

pheno2 = nms[2],

Q.chr = 1,

Q.pos = 55,

addcov1 = NULL,

addcov2 = NULL,

intcov1 = NULL,

intcov2 = NULL,

cross.type = "bc",

method = "all",

penalty = "both")

The output of the CMSTtests function is composed of a list with 17 elements. It returns the
names of the phenotypes and number of individuals (n.ind):

out1[1:3]

$pheno1

[1] "y1"

$pheno2

[1] "y2"

$n.ind

[1] 100

The log-likelihood scores (loglik) of models M1, M2, M3, and M4 (see Chaibub Neto et al.
2012 for details):

out1[4]

$loglik

[1] -123.5318 -140.4604 -141.5803 -123.4834

The dimensions of the models (model.dim):

out1[5]

$model.dim

[1] 6 6 6 7
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The R2 values (R2) relative to the regression of phenotypes 1 and 2 on the causal anchor:

out1[6]

$R2

[1] 0.4407170 0.2153583

The covariance matrix (S.hat) with the variances and covariances of the penalized log-likelihood
ratios of models M1 ×M2, M1 ×M3, M1 ×M4, M2 ×M3, M2 ×M4, and M3 ×M4:

out1[7]

$S.hat

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.26221327 -0.01323094 0.010924311 -0.275444212 -0.251288963 0.02415525

[2,] -0.01323094 0.36275299 0.012080993 0.375983930 0.025311930 -0.35067200

[3,] 0.01092431 0.01208099 0.001115354 0.001156681 -0.009808958 -0.01096564

[4,] -0.27544421 0.37598393 0.001156681 0.651428142 0.276600893 -0.37482725

[5,] -0.25128896 0.02531193 -0.009808958 0.276600893 0.241480006 -0.03512089

[6,] 0.02415525 -0.35067200 -0.010965639 -0.374827248 -0.035120888 0.33970636

The BIC scores (BICs):

out1[8]

$BICs

[1] 274.6946 308.5518 310.7917 279.2030

The BIC-based penalized log-likelihood test statistics (Z.bic):

out1[9]

$Z.bic

[,1] [,2] [,3] [,4]

[1,] NA 3.305926 2.9966507 6.749745

[2,] NA NA 0.1387598 -2.986200

[3,] NA NA NA -2.709873

[4,] NA NA NA NA

The BIC-based model selection p-values for the parametric CMST (pvals.p.BIC), non-parametric
CMST (pvals.np.BIC) and joint parametric CMST (pvals.j.BIC):

out1[10:12]

$pvals.p.BIC

[1] 0.001364817 0.999526684 0.998635183 1.000000000

$pvals.np.BIC

[1] 6.289575e-06 9.999977e-01 9.999999e-01 1.000000e+00

$pvals.j.BIC

[1] 0.003779558 0.999946885 0.999669186 1.000000000
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The analogous AIC-based quantities:

out1[13:17]

$AICs

[1] 259.0636 292.9208 295.1606 260.9668

$Z.aic

[,1] [,2] [,3] [,4]

[1,] NA 3.305926 2.9966507 2.849429

[2,] NA NA 0.1387598 -3.251273

[3,] NA NA NA -2.933361

[4,] NA NA NA NA

$pvals.p.AIC

[1] 0.002189889 0.999526684 0.998635183 0.997810111

$pvals.np.AIC

[1] 6.289575e-06 9.999977e-01 1.000000e+00 9.999977e-01

$pvals.j.AIC

[1] 0.005993868 0.999946885 0.999669186 1.000000000

The cmst package also provides the function CMSTtestsList that computes CMST tests
of a single phenotype against a list of phenotypes. Its output is less detailed though. In this
particular call we test y1 against y2 and y3.

out2 <- CMSTtestsList(Cross,

pheno1 = nms[1],

phenos = nms[-1],

Q.chr = 1,

Q.pos = 55.5,

addcov1 = NULL,

addcov2 = NULL,

intcov1 = NULL,

intcov2 = NULL,

cross.type = "bc",

method = "all",

penalty = "both")

out2

$R2s

R2.Y1 ~ Q R2.Y2 ~ Q

y1_y2 0.4286585 0.2112760

y1_y3 0.4286585 0.2945801

$AIC.stats
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AIC.1 AIC.2 AIC.3 AIC.4 z.12 z.13 z.14 z.23

y1_y2 261.1967 293.4397 297.8127 263.0819 3.136952 3.034372 2.6436961 0.2659898

y1_y3 256.9466 278.0272 311.4368 258.2783 2.177343 3.876750 0.8229369 2.0030490

z.24 z.34

y1_y2 -3.084095 -2.975873

y1_y3 -2.329987 -4.023391

$BIC.stats

BIC.1 BIC.2 BIC.3 BIC.4 z.12 z.13 z.14 z.23

y1_y2 276.8278 309.0707 313.4437 281.3181 3.136952 3.034372 6.297065 0.2659898

y1_y3 272.5777 293.6583 327.0678 276.5145 2.177343 3.876750 2.432884 2.0030490

z.24 z.34

y1_y2 -2.819431 -2.752652

y1_y3 -2.022629 -3.826214

$pvals.j.BIC

pval.1 pval.2 pval.3 pval.4

y1_y2 0.003366003 0.9998807 0.9997011 1

y1_y3 0.035842249 0.9974598 0.9999899 1

$pvals.p.BIC

pval.1 pval.2 pval.3 pval.4

y1_y2 0.001205187 0.9991464 0.9987948 1.0000000

y1_y3 0.014727493 0.9852725 0.9999471 0.9925105

$pvals.np.BIC

pval.1 pval.2 pval.3 pval.4

y1_y2 2.346206e-06 0.9999992 1 1.0000000

y1_y3 1.758821e-03 0.9991050 1 0.9999607

$pvals.j.AIC

pval.1 pval.2 pval.3 pval.4

y1_y2 0.01109575 0.9998807 0.9997011 1

y1_y3 0.38662989 0.9985143 0.9999950 1

$pvals.p.AIC

pval.1 pval.2 pval.3 pval.4

y1_y2 0.004100312 0.9991464 0.9987948 0.9958997

y1_y3 0.205271925 0.9900966 0.9999713 0.7947281

$pvals.np.AIC

pval.1 pval.2 pval.3 pval.4

y1_y2 1.608001e-05 0.9999992 1 0.9999937

y1_y3 4.431304e-02 0.9991050 1 0.9715560
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4 Yeast knock-out data analysis

Here we reproduce the analysis of the budding yeast genetical genomics data-set presented in
Chaibub Neto et al. (2012). The data represents a cross of a standard yeast laboratory strain,
and a wild isolate from a California vineyard (Brem and Kruglyak 2005). It consists of expression
measurements on 5,740 transcripts measured on 112 segregant strains with dense genotype data
on 2,956 markers. Processing of the expression measurements raw data was done as described in
Brem and Kruglyak (2005), with an additional step of converting the processed measurements
to normal quantiles by the transformation Φ−1[(ri − 0.5)/112], where Φ is the standard normal
cumulative density function, and the ri are the ranks.

In order to evaluate the precision of the causal predictions made by the methods we used
validated causal relationships extracted from a data-base of 247 knock-out experiments in yeast
(Hughes et al. 2000, Zhu et al. 2008). In each of these experiments, one gene was knocked-
out, and the expression levels of the remainder genes in control and knocked-out strains were
interrogated for differential expression. The set of differentially expressed genes form the knock-
out signature (ko-signature) of the knocked-out gene (ko-gene), and show direct evidence of a
causal effect of the ko-gene on the ko-signature genes.

We first load the yeast cross object (yeast.orf), and compute the conditional genotype
probabilities using Haldane’s map function, genotype error rate of 0.0001, and setting the max-
imum distance between positions at which genotype probabilities were calculated to 2cM.

load("yeast_orf_ns_cross.RData")

yeast.orf <- calc.genoprob(yeast.orf, step = 2)

Next we count the number of missing phenotype observations for each one of the 5,740 tran-
scripts (na.counts), and record the indexes of the phenotype with no missing values (no.na.pos),
and phenotypes with missing values (na.pos).

na.counts <- apply(apply(yeast.orf$pheno, 2, is.na), 2, sum)

no.na.pos <- which(na.counts == 0)

na.pos <- which(na.counts > 0)

We perform QTL-mapping using Haley-Knott regression (Haley and Knott 1992) in two
steps. First, we handle the phenotypes without missing values as a single block (no.na.scan).
Next, we run separate analysis for each of the phenotypes with missing data. Finally, we join
and save the results of both analyzes in a single scanone object called scan. This step takes
a few minutes to run. Hence, for the sake of time we prefer to skip it, and we simply load the
pre-computed results.

########## don’t run

no.na.scan <- scanone(yeast.orf, pheno.col = no.na.pos, method = "hk")

na.scan <- matrix(0, nrow(no.na.scan), length(na.pos))

dimnames(na.scan) <- list(row.names(no.na.scan), names(na.pos))

for (i in 1 : length(na.pos)) {

na.scan[, i] <- scanone(yeast.orf, pheno.col = na.pos[i], method = "hk")[, 3]
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cat("trait ", i, "\n")

}

na.scan <- data.frame(na.scan)

names(na.scan) <- names(na.pos)

scan <- data.frame(no.na.scan, na.scan)

class(scan) <- c("scanone", "data.frame")

save(scan, file = "scan_orf_ns.RData", compress = TRUE)

##########

load("scan_orf_ns.RData")

Next, we load a yeast annotation data.frame, yeast.annot, that provides the orf, gene
symbol, and chromosome location (in both Mb and cM) of each one of the 5,740 transcripts.
(This information will be needed to determine which ko-genes show significant QTLs.)

load("yeast_annot_Mb_cM.RData")

head(yeast.annot)

orf gene chr Mb.pos cM.pos

3952 YAL001C TFC3 1 0.151168 102.4066

3951 YAL002W VPS8 1 0.143709 101.3745

3950 YAL003W EFB1 1 0.142176 101.1623

1330 YAL005C SSA1 1 0.141433 101.0595

3934 YAL007C ERP2 1 0.138347 100.1245

3933 YAL008W FUN14 1 0.136916 100.1245

Next, we load the list of ko-signatures derived from the knock-out experiments in Hughes et
al. (2000) and Zhu et al. (2008). We show below the first knock-out signature.

load("ko_list_all_orf.RData")

length(ko.list.all)

[1] 247

ko.list.all[1]

$YOR128C

[1] "YAR073W" "YBL013W" "YBL032W" "YBL042C" "YBL054W" "YBL064C"

[7] "YBR013C" "YBR054W" "YBR072W" "YBR126C" "YBR155W" "YBR186W"

[13] "YCL030C" "YDL038C" "YDL234C" "YDL244W" "YDR001C" "YDR018C"

[19] "YDR055W" "YDR077W" "YDR085C" "YDR399W" "YDR518W" "YDR533C"

[25] "YDR534C" "YER055C" "YER062C" "YFL014W" "YFL030W" "YFL058W"

[31] "YGL156W" "YGL162W" "YGL187C" "YGL234W" "YGR032W" "YGR043C"

[37] "YGR138C" "YGR161C" "YGR171C" "YGR213C" "YGR250C" "YHL040C"

[43] "YHR087W" "YHR096C" "YHR104W" "YHR216W" "YIL125W" "YJL034W"

[49] "YJL054W" "YJL116C" "YJR151C" "YKL029C" "YKL090W" "YKL097W.A"

[55] "YKL163W" "YKL165C" "YKR061W" "YLL019C" "YLL060C" "YLR120C"

[61] "YLR121C" "YLR142W" "YLR178C" "YLR194C" "YLR350W" "YLR359W"

[67] "YML130C" "YML131W" "YMR040W" "YMR090W" "YMR173W" "YMR181C"
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[73] "YMR300C" "YNL112W" "YNL134C" "YNL160W" "YNL220W" "YOL151W"

[79] "YOL031C" "YOR173W" "YOR289W" "YOR338W" "YOR382W" "YPL088W"

[85] "YPL277C" "YPR156C" "YAR075W" "YDR243C" "YFR024C.A" "YOL053C.A"

Next, we determine which of the 247 ko-genes also showed a significant QTL in our data
set, according to a permutation test (Churchill and Doerge 1994) aiming to control GWER
< 0.05. For each one of the ko-genes with a significant QTL, that is, with LOD score above
lod.thr = 3.47, the function GetCandReg returns the ko-gene’s chromosome (phys.chr) and
physical position in cM (phys.pos), as well as, the LOD score (peak.lod) at the peak position
(peak.pos), and the chromosome where the peak is located (peak.chr). In total, we observed
135 ko-genes with significant QTLs. These ko-genes are our candidate regulators. We show
below the information on the first 10 candidate regulators. Note that some ko-genes map to the
same chromosome where they are physically located, while other map to different chromosomes.

cand.reg <- GetCandReg(scan = scan,

annot = yeast.annot,

traits = names(ko.list.all),

lod.thr = 3.47,

drop = 1.5)

dim(cand.reg)

[1] 135 6

cand.reg[1:10,]

gene phys.chr phys.pos peak.chr peak.pos peak.lod

2 YMR282C 13 473.2316 14 236.0138450 3.692560

3 YER017C 5 152.3216 14 238.0138450 6.597231

7 YER069W 5 211.7280 3 54.0140660 3.975861

9 YOR058C 15 188.5460 8 0.9067482 3.569372

10 YGL017W 7 227.0394 7 221.6439074 5.894020

14 YMR055C 13 235.2625 13 246.0276440 5.578000

16 YMR275C 13 467.3183 13 460.0276440 5.508846

18 YER061C 5 203.6281 13 23.4283870 3.713512

19 YOR028C 15 176.6140 15 61.1420708 5.408553

24 YGR109C 7 339.0973 2 236.1133803 5.299293

Genes that map to positions close to their physical locations are said to map in cis (local-
linkages). Genes that map to positions away from their physical locations are said to map in
trans (distal-linkages). There is no unambiguous way the determine how close a gene needs to
map to its physical location in order to be classified as cis. Our choice is to classify a gene as
cis if the 1.5-LOD support interval (Manichaikul et al. 2006) around the LOD peak contains
the gene’s physical location, and if the LOD score at its physical location is higher the the LOD
threshold. The function GetCisCandReg determines which of the candidate regulators map in
cis. We see that only 27, out of the 135 candidate regulators, show cis-linkages. (The additional
columns peak.pos.lower and peak.pos.upper show, respectively, the lower and upper bounds
of the 1.5-LOD support interval around peak.pos.)
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cis.cand.reg <- GetCisCandReg(cand.reg, scan, drop = 1.5, lod.thr = 3.47)

dim(cis.cand.reg[[1]])

[1] 27 8

cis.cand.reg[[1]][1:10,]

gene phys.chr phys.pos peak.chr peak.pos peak.lod peak.pos.lower

10 YGL017W 7 227.0394 7 221.6439 5.894020 210.0037

14 YMR055C 13 235.2625 13 246.0276 5.578000 144.0276

16 YMR275C 13 467.3183 13 460.0276 5.508846 420.0276

48 YLR342W 12 402.5087 12 402.5087 8.666742 400.0196

61 YNL021W 14 278.5199 14 242.0138 4.359721 216.0138

63 YOR038C 15 179.1709 15 174.0012 5.060326 154.0012

77 YGR040W 7 251.4701 7 246.2146 8.558638 234.0037

79 YJL030W 10 157.0201 10 157.0890 8.976738 154.8556

97 YKL043W 11 151.0933 11 152.0006 9.323551 144.0006

101 YDR004W 4 237.5420 4 238.0177 4.574174 222.0177

peak.pos.upper

10 230.7461

14 260.0276

16 472.0276

48 410.0196

61 284.0138

63 184.9256

77 254.0037

79 162.0222

97 158.0006

101 248.0177

For each one of the 135 candidate ko-genes, we determined which other genes also co-mapped
to the same QTL of the ko-gene. The co-mapping genes represent the putative targets of a ko-
gene. The function GetCoMappingTraits returns a list with the putative targets of each ko-gene.
A gene is included in the putative target list of a ko-gene when its LOD peak is greater than
lod.thr and the 1-5 LOD support interval around the peak contains the location of the ko-
gene’s QTL. The number of targets vary from ko-gene to ko-gene (from 1 to 570), and we show
below the putative targets of one ko-gene (YMR275C) with 4 putative targets. In total, the 135
candidate regulators have 31,936 targets.

comap.targets <- GetCoMappingTraits(traits = cand.reg,

scan = scan,

lod.thr = 3.47,

drop = 1.5)

summary(unlist(lapply(comap.targets, length)))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.0 63.5 188.0 236.6 480.0 570.0

comap.targets[7]
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$YMR275C

[1] "YGL254W" "YML069W" "YMR247C" "YDL013W"

length(unlist(comap.targets))

[1] 31936

Next, we use the function FitAllTests to fit the causality tests of each candidate regula-
tor ko-gene (pheno1) to its putative targets (phenos). We use the candidate regulator’s QTL
(Q.chr and Q.pos) as a causal anchor. This function fits: the AIC and BIC model selection
criterions (Schadt et al. 2005); the AIC- and BIC-based versions of the joint, parametric and
non-parametric CMST tests (Chaibub Neto et al. 2012); and the CIT test (Millstein et al.
2009). We do not run it here because this step can take a few hours, as we perform a total
of 31,936 tests for each of the 9 approaches. The function JoinKoOutputs joins together the
outputs of the 135 separate fits of the FitAllTests function.

###### don’t run

set.seed(123456789) # we fix a seed because cit uses bootstrap

for (k in 1 : 135) {

cat("trait=", k, "\n")

out <- FitAllTests(cross = yeast.orf,

pheno1 = cand.reg[k, 1],

phenos = comap.targets[[k]],

Q.chr = cand.reg[k, 4],

Q.pos = cand.reg[k, 5])

save(out, file=paste("output_ko_validation", cand.reg[k, 1], "RData",

sep = "."), compress = TRUE)

}

######

JoinKoOutputs(x = comap.targets)

After loading the joined results we use the function PrecTpFpMatrix to summarize the
performance of the different methods in terms of “biologically validated” true positives, false
positives and precision, of the inferred causal relations. Since we already have the results of
the knock-out experiments (recall that ko.list.all holds the ko-signatures of the ko-genes),
we define a true positive as a statistically significant causal relation between a ko-gene and a
putative target gene, when the putative target gene belongs to the ko-signature of the ko-gene.
Similarly, we define a false positive as a statistically significant causal relation between a ko-gene
and a putative target gene when the target gene doesn’t belong to the ko-signature. (For the
AIC and BIC methods, that do not provide a p-value measuring the significance of the causal
call, we simply use the detected causal relations in the computation of true and false positives).
The “validated precision”, is computed as the ratio of true positives by the sum of true and
false positives. The PrecTpFpMatrix computes these measures to both all ko-genes, and to
cis ko-genes only. The argument alpha sets the significant levels at each the summaries are
computed.

load("joined_ko_output.RData")
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aux <- PrecTpFpMatrix(alpha = seq(0.01, 0.10, by = 0.01),

nms = cand.reg[, 1],

val.targets = ko.list.all,

all.orfs = names(yeast.orf$pheno),

to.load = "joined_ko_output.RData",

cis.index = cis.cand.reg[[2]])

Prec1 <- aux[[1]]

Prec2 <- aux[[2]]

Tp1 <- aux[[3]]

Tp2 <- aux[[4]]

Fp1 <- aux[[5]]

Fp2 <- aux[[6]]

Below we reproduce Figure 5 of Chaibub Neto et al. (2012). This figure presents the number
of inferred true positives, number of inferred false positives and the prediction precision across
varying significance levels for each one of the methods. The results were computed using all 135
ko-gene/putative target lists.

lwd <- 2

xaxis <- seq(0.01, 0.10, by=0.01)

my.lty <- c(rep(1, 4), rep(2, 4), 1)

my.lty <- rep(1, 9)

my.pch <- c(1, 21, 24, 23, 25, 2, 5, 6, 8)

par(mfrow=c(1, 3))

par(mar=c(5, 4.1, 4, 2) + 0.1)

ymax <- max(Tp1)

yaxis <- seq(0, ymax,length.out = length(xaxis))

plot(xaxis, yaxis, type = "n", ylab = "Number of true positives", cex = 1.5,

xlab = "Target significance level", cex.axis = 1.5,

cex.lab = 1.7, main = "(a)", cex.main = 2)

for (k in 1 : 9) {

lines(xaxis, Tp1[k,], type="b", lwd=lwd, pch=my.pch[k], cex=1.5,

col = "black", bg = "black")

}

ymax <- max(Fp1)

yaxis <- seq(0, ymax, length.out = length(xaxis))

plot(xaxis, yaxis, type = "n", ylab = "Number of false positives", cex = 1.5,

xlab = "Target significance level", cex.axis = 1.5,

cex.lab = 1.7, main = "(b)", cex.main = 2)

for (k in 1 : 9) {

lines(xaxis, Fp1[k,], type = "b", lwd = lwd, pch = my.pch[k], cex = 1.5,

col = "black", bg = "black")

}

ymax <- max(Prec1)
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yaxis <- seq(0, ymax, length.out = length(xaxis))

plot(xaxis, yaxis, type = "n", ylab = "Precision", cex = 1.5,

xlab = "Target significance level", cex.axis = 1.5,

cex.lab = 1.7, main = "(c)", cex.main = 2)

for (k in 1 : 9) {

lines(xaxis, Prec1[k,], type = "b", lwd = lwd, pch = my.pch[k], cex = 1.5,

col = "black", bg = "black")

}
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Figure 2: Reproduction of Figure 5 on Chaibub Neto et al. 2012. Overall number of true
positives, number of false positives and precision across all 135 ko-gene/putative target lists.
Asterisk represents the CIT. Empty and filled symbols represent, respectively, AIC- and BIC-
based methods. Diamonds: parametric CMST. Point-down triangles: non-parametric CMST.
Point-up triangles: joint-parametric CMST. Circles: AIC and BIC.

Next, we reproduce Figure 6 of Chaibub Neto et al. (2012). This figure was generated using
the results of the 27 cis ko-gene/putative targets lists.

ymax <- max(Tp2)

yaxis <- seq(0, ymax, length.out = length(xaxis))

plot(xaxis, yaxis, type = "n", ylab = "Number of true positives", cex = 1.5,

xlab = "Target significance level", cex.axis = 1.5,

cex.lab = 1.7, main = "(a)", cex.main = 2)

for (k in 1 : 9) {

lines(xaxis, Tp2[k,], type = "b", lwd = lwd, pch = my.pch[k], cex = 1.5,

col = "black", bg = "black")

}

ymax <- max(Fp2)
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yaxis <- seq(0, ymax, length.out = length(xaxis))

plot(xaxis, yaxis, type = "n", ylab = "Number of false positives", cex = 1.5,

xlab = "Target significance level", cex.axis = 1.5,

cex.lab = 1.7, main = "(b)", cex.main = 2)

for (k in 1 : 9) {

lines(xaxis, Fp2[k,], type = "b", lwd = lwd, pch = my.pch[k], cex = 1.5,

col = "black", bg = "black")

}

ymax <- max(Prec2)

yaxis <- seq(0, ymax, length.out = length(xaxis))

plot(xaxis, yaxis, type = "n", ylab = "Precision", cex = 1.5,

ylim = c(0.18, 0.6), xlab = "Target significance level", cex.axis = 1.5,

cex.lab = 1.7, main = "(c)", cex.main = 2)

for (k in 1 : 9) {

lines(xaxis, Prec2[k,], type = "b", lwd = lwd, pch = my.pch[k], cex = 1.5,

col = "black", bg = "black")

}
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Figure 3: Reproduction of Figure 6 on Chaibub Neto et al. 2012. Overall number of true
positives, number of false positives and precision restricted to 27 cis ko-gene/putative target lists.
Asterisk represents the CIT. Empty and filled symbols represent, respectively, AIC- and BIC-
based methods. Diamonds: parametric CMST. Point-down triangles: non-parametric CMST.
Point-up triangles: joint-parametric CMST. Circles: AIC and BIC.
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