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Abstract

R/qtlbim (www.qtlbim.org) provides a powerful suite of tools for model selection of the genetic
architecture for traits influenced by multiple quantitative trait loci (QTL). The Markov chain Monte Carlo
(MCMC) sampling approach draws samples from the more probable genetic architectures. Subsequent
visualization and summary provides posterior estimates of the number and location of QTL, their main
and epistatic effects, and possibly interacting covariates, or GxE interactions. This document assumes
some familiarity with QTL and with Bayesian methods. Good sources are Broman (2000), Yandell et al.
(2007), and Yi et al. (2005). Additional information on advances in methods can be found in Yi et al.
(2007a,b).

0.1 Using qb.scantwo

This package provides graphical diagnostics that can help investigate ”better” genetic architectures.
Marginal 1-D and 2-D genome scans, analogous to R/qtl (www.rqtl.org), show the profiled contri-
bution of QTL by locus adjusted for effects of any other QTL. Other tools identify the more probable
models based on the pattern of main QTL and epistatic pairs across chromosomes. Additional diagnostic
tools are briefly highlighted. This library R/qtlbim builds on the analytical and graphical tools in R/qtl

1.0.8.
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1 Overview

This vignette describes the MCMC sampling routines and some of the plotting facilities available through
the R/qtlbim package (Yandell et al. 2007). The purpose of these plots is to provide graphical tools for

1. inferring putative multiple QTL for a phenotype,

2. producing graphics and summaries of evidence for putative QTL,

3. visual diagnostics of the MCMC model selection algorithm.

Over the past year, there been numerous incremental improvements, yielding faster computation and
smaller R objects. Most notably, the external directory and files created by qb.mcmc are now removed
immediately (planned later upgrades will eliminate their need). Users with ”old” style MCMC samples
will be warned to upgrade using qb.legacy. [The old qb.remove is retained for compatibility, but is
not needed for new qb objects, nor is qb.load.] Another important improvement is that values (results)
from all routines are now self contained. The qb object contains the pertinent aspects of the cross

object used to create it, and routines such as qb.scanone produce self-contained objects. This makes
intermediate results more transportable. In addition, many objects have been made more compact, and
R code efficiency has improved. Those interested in specific improvements can examine ChangeLog.txt

in the R library area.
This document walks through the R/qtlbim package by demonstrating the following major functions:

creation of Bayesian samples from the posterior using MCMC sampling; use of plot and summary tools
to examine genetic architecture; data management in R/qtlbim. The package is invoked by the library

command

> library(qtlbim)

1.1 Hyper data demo

This document focuses on the hyper dataset from R/qtl (Broman et al. 2003), which was initially studied
in Sugiyama et al. (2001). The hyper dataset is stored in R/qtl as a cross object. The R/qtlbim package
processes this cross object to create a qb object called qbHyper, containing the MCMC samples. The
hyper demo shows how this is done.

> demo(qb.hyper.tour)

It is possible to directly load the already saved qb object with the data command. Following this by a
call to qb.cross extracts a version of the cross object used to create the qb object.

> data(qbHyper)

> hyper <- qb.cross(qbHyper)

Alternatively, a qb object can be created by the following sequence of commands. First load the hyper
data set from R/qtl, and subset on the autosomes, as R/qtlbim does not yet handle the X chromosome
properly.

> data(hyper)

> hyper <- subset(hyper, chr=1:19)
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To run the MCMC sampler on the hyper data we use the command

> hyper <- qb.genoprob(hyper, step=2)

# Now run the MCMC model selection algorithm.

# This can take several minutes.

> qbHyper <- qb.mcmc(hyper, pheno.col = 1, seed = 1616)

The option seed sets the random number seed so that this run can be repeated exactly. The qb object
called qbHyper is used throughout this vignette.

1.2 Creating Bayesian interval mapping MCMC samples

This section describes in more detail how to create Markov chain Monte Carlo (MCMC) samples from
the Bayesian posterior to be used for QTL mapping. The next step to mapping with the R/qtl package
would be to use the function calc.genoprob to create genotype probabilities based on a Hidden Markov
model. However, for Bayesian model selection, we replace calc.genoprob with the R/qtlbim function
qb.genoprob. The function qb.genoprob performs some bookkeeping before calling calc.genoprob with
the variable stepwidth option for pseudomarker positions. The probabilities for genotypes at pseudo-
markers and at markers with missing data are calculated by calc.genoprob from the observed marker
data using the multipoint method (Jiang and Zeng 1997).

The MCMC samples are created by qb.mcmc after running qb.genoprob. In the simplest case, MCMC
samples are created with the following two calls:

> hyper <- qb.genoprob(hyper, step=2)

> qbHyper <- qb.mcmc(hyper, pheno.col = 1)

By default the qb.mcmc function prints out progress messages of the number of iterations com-
pleted. These progress messages can be suppressed by setting verbose=FALSE. Arguments for the routines
qb.data and qb.model, described below, can be passed through qb.mcmc. Otherwise, default values are
used. The detail below for qb.data, qb.model and qb.mcmc routines could be skipped in favor of default
settings.

The function qb.data specifies the traits to be analyzed, their underlying distribution, the random
and/or fixed covariates and whether to standardize or to use a boxcox transformation. Note that, the
cross object can have several phenotypes and some of which could be used as covariates.

> qbData <- qb.data(hyper, pheno.col = 1, trait = "normal",

+ fixcov = 0, rancov = 0)

The R/qtlbim routines handle normal, binary and ordinal data. In addition, the user can specify fixed
(fixcov) and random (rancov) covariate(s). [The pheno.col, fixcov and rancov values can be numeric
indices to the phenotype names, or character strings with exact phenotype names.] Fixed covariates can
be included as interacting covariates with the intcov option to qb.model (see below).

The function qb.model defines the model parameters, using defaults that work well in most settings.
Users are probably most interested in specifying if epistasis is considered, the prior expected number
of main effect QTLs (main.nqtl), and the prior expected total number of QTLs (mean.nqtl), which
includes additional QTLs with only epistatic effects. A user may set main.nqtl and mean.nqtl based
on previous QTL analysis, for example using R/qtl. Setting the maximum number of QTLs overall
(max.nqtl) or per chromosome (chr.nqtl), and setting the minimum interval between linked QTL,
can be used to restrict sampling as needed.

Typically a real data set has several traits which can be considered as covariates. The intcov option
specifies which covariate(s) can interact with QTLs, or equivalently, which environmental factors may
have GxE interactions. The intcov should be a vector of 0s and 1s of the same length as the fixcov

option specified for qb.data (see above).

> qbModel <- qb.model(hyper, epistasis = TRUE, main.nqtl = 3,

+ interval = rep(5,nchr(hyper)), chr.nqtl = rep(2,nchr(hyper)),

+ depen = FALSE, prop = c(0.5, 0.1, 0.05))

The function qb.mcmc creates MCMC samples on the data and model specified. The results are
initially saved in a unique directory under mydir, which is removed at completion of the command.
Options for qb.data and qb.model can be passed directly to qb.mcmc, or as the objects created above.

> qb <- qb.mcmc(hyper, data = qbData, model = qbModel, mydir = ".",

+ n.iter = 3000, n.thin = 20, genoupdate = TRUE)
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The genoupdate option simulates pseudomarker and missing marker genotypes if TRUE, or uses a
Haley-Knott (1992) type approach if FALSE; the latter is faster, but not generally recommended if there
are many missing genotypes or selective genotyping. n.iter samples are saved, thinning to one in n.thin

from the MCMC samples to reduce serial correlation. That is, n.iter * n.thin samples are drawn, after
an initial n.burnin samples (1% of total by default) are discarded to allow the chain to converge closer
to the posterior distribution.

1.3 Examining a qb object

This package uses the S3 generic method to construct print, summary and plot results for routines. That
is, we create an object with a call to qb.xxx and then plot it using the generic plot command, or show
content summary with the generic summary command. The generic print command for most objects
created with R/qtlbim routines invokes the generic summary. Manual pages show the complete set of
command, print, summary and plot options.

The qbHyper is an object of class qb to which we can apply the generic summary or plot routines. We
defer plots to later sections. Here we show only the summary:

> summary(qbHyper)

Bayesian model selection QTL mapping object qbHyper on cross object hyper

had 3000 iterations recorded at each 40 steps

with 1200 burn-in steps.

MCMC runs saved in qb object.

Trait bp ( 1 ) treated as normal .

Trait was not standardized.

Epistasis was allowed.

Prior number of QTL: 3 main, 6 total, with 13 maximum.

Minimum distance between QTL:

1 2 3 4 5 6 7 8 9 10 11 12 13

5.36 13.00 12.90 3.91 6.31 6.67 9.08 13.80 14.20 18.30 6.05 13.90 13.30

14 15 16 17 18 19

17.00 5.79 10.30 4.47 11.70 18.60

Maximum number of QTL:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

21 7 4 19 13 10 5 5 4 4 13 4 4 4 10 5 10 3 3

QTL by environment not allowed.

Interacting covariates: 0

Diagnostic summaries:

nqtl mean envvar varadd varaa var

Min. 2.000 97.42 28.07 5.112 0.000 5.112

1st Qu. 5.000 101.00 44.33 17.010 1.639 20.180

Median 7.000 101.30 48.57 20.060 4.580 25.160

Mean 6.543 101.30 48.80 20.310 5.321 25.630

3rd Qu. 8.000 101.70 53.11 23.480 7.862 30.370

Max. 13.000 103.90 74.03 51.730 34.940 65.220

Percentages for number of QTL detected:

2 3 4 5 6 7 8 9 10 11 12 13

2 3 9 14 21 19 17 10 4 1 0 0

Percentages for number of epistatic pairs detected:

pairs

1 2 3 4 5 6

29 31 23 11 5 1

Percentages for common epistatic pairs:

6:15 4:15 4:6 1:7 15:15 1:4 1:6 4:9 1:15 1:17 1:5 5:11 7:15

63 18 10 6 6 5 4 4 3 3 3 2 2

1:2 1:1

2 2

4



Thus, for the 3000 MCMC samples in this object, 21% has 6 QTL (the mode), and 29% had exactly 1
epistatic pair. The most common epistatic pair, in 63% of samples with epistasis, was 6:15, or a pair of
QTL on chromosomes 6 and 15.

1.4 The plot demo

The plot demo demo(qb.plot.tour) gives a sample of the plots available in the R/qtlbim package. To
start the plot demo, use the command

> demo(qb.plot.tour)

For a complete set of demos, try

> qb.demo()

The plot demo begins by giving a generic plot for the qb object qbHyper. The R/qtlbim generic
qb plot is analogous to the generic R plot for linear model objects. Where the generic plot for a linear
model object shows a sequence of graphics whose purpose is to aid in the initial results of model fitting,
the generic plot function for qb objects shows a sequence of graphics whose purpose is to give an initial
assessment of the results produced by the MCMC algortihm. The generic plot for the qb object qbHyper
created above is shown with the command

> plot(qbHyper)

The generic plot function shows a sequence of plots that include time series plots of the mcmc chain,
jittered plots of QTL by chromosome and others. The sequence of plots appearing in the plot demo is
listed below. The actual plots are shown later in this document under the section Useful Plots.

The list of plots shown by the generic plot function.

1. A time series plot of the mcmc chain runs. This is shown in Figure 4, where it was created by the
command plot(qb.coda(qbHyper)).

2. A jittered plot of QTL by chromosome. This plot, produced separately by plot(qb.loci(qbHyper)),
can be seen in Figure 5 for two chromosomes.

3. A model selection plot by chromosome. This plot is identical to plot(qb.BayesFactor(qbHyper))

shown in Figure 6.

4. Plot of QTL posterior for loci plus smooth estimates of QTL effects. This plot is the same as the
plot generated by plot(qb.hpdone(qbHyper)). Figure 7 shows the result of this command.

5. A plot of epistatic effects if such effects are allowed. Figure 8 shows the result of the command
plot(qb.epistasis(qbHyper)).

6. Summary diagnostics as histograms and boxplots by number of QTL. This final diagnostic plot can
be generated separately by the command plot(qb.diag(qbHyper)). Figure 9 shows the result of
this command.

2 Marginal 1-D and 2-D Genome Scans

This document describes 1-D and 2-D Bayesian genome scan routines available in the R/qtlbim package.
In the present context, the term “scan” refers to methods based on constructing one or two dimensional
profiles of QTL likelihoods or posterior distributions. These new scan routines in R/qtlbim are analogous
to the routines scanone and scantwo from the R/qtl package. On a practical level, using R/qtlbim scan
routines is very similar to using R/qtl’s scanone and scantwo methods. The key difference between the
scan routines in R/qtlbim and the scan routines in R/qtl lies in the technique used for constructing QTL
summaries. R/qtlbim extends R/qtl by providing the ability to generate Markov chain Monte Carlo
(MCMC) samples from a posterior distribution for the genetic architecture of a trait. Furthermore the
putative genetic architectures sampled can include an arbirary number of QTL.

2.1 Using qb.scanone

The R/qtlbim package’s scan routines are called qb.scanone and qb.scantwo. Because these scans
are motivated by Bayesian MCMC techniques we refer to qb.scanone and qb.scantwo collectively as
“qb.scans” or “qb.scan routines”. The utility of the qb.scan routines lies in their ability to provide
interpretable summaries of the high-dimensional MCMC samples. The scan summaries use ideas of
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Figure 1: Plot of qb.scanone for LPD of hyper data. Notice the posterior concentrated on chromosomes 1,
4, 6 and 15.

Bayesian model averaging to explore the most probable models given the data. For example, in a one
dimensional genome scan, we might consider the contribution of each potential locus averaging over all
sampled models that include that locus. This allows us to adjust for the possible effects of all other
loci by examining the marginal distributions. This has the advantage of reducing variation explained by
other loci and reducing bias due to linked loci. Thus a one dimensional marginal scan can be informative
about higher-order models directly without bias or variance inflation. Although the development of the
qb.scan routines is motivated by Bayesian techniques, the interpretation of qb.scans involve a mix of
frequentist and Bayesian ideas. In what follows we show the resolving power of low-dimensional scans
that condition on the presence of other QTL using simulated data with one QTL and the hyper data set.

This section illustrates the basic uses and interpretation of the qb.scan routines using simulated
data and the hyper data. The object qbHyper created above contains the results of the MCMC run.
Each iteration of the Monte Carlo chain represents a single QTL model. The entire Monte Carlo chain
represents a sample from the posterior distribution of all possible models. One simple summary of the
MCMC sample is the LPD profile, or the Log Posterior Density for a QTL at each locus. The LPD is
analogous to the classical LOD, or Log ODds. A single QTL LPD can be computed with R/qtl’s scanone
using method="im". The marginal LPD from qb.scanone, however, provides the contribution to LPD of
a QTL at a locus adjusting for all other possible QTL. [For a technical interpretation, see the section on
Theoretical Development.] A summary and plot of the LPD is carried out as follows.

> temp <- qb.scanone(qbHyper,type="LPD")

> plot(temp)

> summary(temp)

LPD of bp for main,epistasis,sum

n.qtl pos m.pos e.pos main epistasis sum

1 1.3310 67.80 67.80 67.80 5.972 0.459 6.172

2 0.3477 51.90 51.90 42.63 2.011 0.492 2.396

3 0.1453 30.63 30.63 8.76 1.145 3.068 1.678

4 1.3770 29.50 29.50 29.50 11.329 0.377 11.453

5 0.2447 68.87 68.87 82.00 2.029 1.095 2.525

6 0.8383 59.00 59.00 59.00 3.745 5.959 9.069

7 0.1553 15.28 55.60 15.28 0.418 3.029 3.042

8 0.1320 56.93 59.00 17.52 0.946 1.626 1.488
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Figure 2: The qb.scanone results for the hyper data restricted to chomosomes 1,4,6 and 15.

9 0.1173 12.00 64.87 12.00 0.662 2.561 2.548

10 0.0947 37.95 75.40 37.95 0.581 0.840 0.984

11 0.1717 17.50 39.57 13.10 0.916 1.831 1.644

12 0.0947 1.10 46.55 1.10 0.452 2.197 2.368

13 0.0767 24.40 28.40 14.23 0.648 1.346 1.432

14 0.0840 0.00 46.35 0.00 0.621 2.059 2.310

15 0.9607 17.50 17.50 17.50 1.309 6.019 6.977

16 0.0813 8.37 8.37 10.46 0.396 1.710 1.744

17 0.1123 50.30 1.10 50.30 0.383 1.943 2.090

18 0.0663 2.20 14.20 2.20 0.599 2.070 2.245

19 0.1117 55.70 53.62 55.70 1.211 0.985 1.869

Figure 1 shows the LPD concentrated on chromosomes 1, 4, 6 and 15, which is consistent with other
findings for these data (Sugiyama et al. 2001). The blue lines in the plot indicate main effects, the purple
indicate epistatic effects and black curves (where visible) represent the sum of main and epistatic effects.

Figure 2 shows 2log(BF), or twice the log of the Bayes factor, measuring the strength of evidence (>
2.1 is high) for a QTL. In order to examine the effects on 1, 4, 6 and 15 more closely, we can plot subsets
of chromosomes by using the plot command plot(temp, chr=c(1,4,6,15).

> temp <- qb.scanone(qbHyper,type="2logBF")

> plot(temp,chr=c(1,4,6,15))

2.2 Using qb.scantwo

The function qb.scantwo gives a two dimensional scan that allows us to look for possible epistatic effects
between putative QTL. To run qb.scantwo on the hyper data set, we again use the MCMC samples.
The summary and the plot in Figure 3 shows strong evidence for the 6:15 epistasis, and good evidence
for a 4:15 epistatic interaction that was missed in earlier analyses.

> temp <- qb.scantwo(qbHyper, chr = c(4,6,15))

> summary(temp, digits = 2)

upper: heritability of bp for epistasis

lower: heritability of bp for full

n.qtl l.pos1 l.pos2 lower u.pos1 u.pos2 upper
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Figure 3: A plot of a qb.scantwo scan of the hyper data showing results for chromosomes 1, 4,6, and 15.
Note the main effect from the QTL on chromosome 4 and the epistatic effect between the pairs of QTLs on
chromosomes 4 and 15 and 6 and 15.

c4 :c4 0.417 16.4 18.6 23.6 54.35 65.6 6.22

c4 :c6 1.185 29.5 59.0 23.8 72.11 21.9 8.08

c4 :c15 1.452 28.4 31.5 21.7 14.20 41.6 10.67

c6 :c6 0.111 59.0 59.0 14.6 7.35 49.2 1.55

c6 :c15 1.004 59.0 19.5 16.9 59.00 19.5 9.77

c15:c15 0.261 19.5 19.5 11.5 23.50 27.5 5.04

> plot(temp)

Using the results from the two-dimensional qb.scans of the simple simulated data as a guide, the plot
of qb.scantwo shows a main effect from a QTL on chromosome 4 and epistatic effects between the pairs
of QTLs on chromosomes 4 and 15 and 6 and 15.

2.3 Types of Scan Summaries

We have created several types of scan summaries, illustrated below. These include the following LPD,
heritability, variance components, parameter estimates, cell means, posterior probabilities and Bayes
factors. Below we detail what these are and how they are calculated.

For each type, we can provide a summary scan, and in addition provide detail broken down by main
effects, epistatic effects, and/or GxE (genotype by environment, or genotype by covariate) interactions.
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These breakdowns can be further divided into Cockerham (1954; see Kao and Zeng 2002) type effects
(additive and dominance for main effects, or the four epistatic interactions of aa, ad, da, dd) if desired.

� count gives the count of the number of MCMC samples including this locus. Currently this can be
viewed on a log scale using type log10.

� posterior is the Bayesian posterior probability, basically the count divided by the total number of
MCMC samples.

� BF provides the Bayes factor comparing the model with and without this locus. It is more easily
viewed as 2logBF.

� estimate gives model parameter estimates for main effects, epistasis, and GxE interactions.

� cellmean provides marginal means at a locus, adjusted for all other model effects from other QTL
and covariates.

� variance yields the variance components for QTL effects associated with a particular locus.

� heritability is actually at this point explained variation. In a future release we may distinguish
Rsquared and idealized heritability.

� LPD is the log posterior density, adapted from Morton’s (1995) log odds ratio (LOD) used in human
genetics to LOD maps by Lander and Botstein (1989). The LPD for QTLs was introduced by Sen
and Churchill (2001). It tests presence or absence of a QTL at a locus, adjusting for all other
possible model effects (other QTL, epistasis and GxE). The LPD, the LR or likelihood ratio, and the
deviance are detailed in the next section.

� detection is the posterior probability of detection of a QTL at a locus.

3 Model Selection for Genetic Architecture

The R/qtlbim model selection tools do the following:

1. evaluate Bayes factor for number or chromosome pattern of QTL (qb.bf);

2. examine proximity of sampled architectures (qb.best);

3. measure closeness of sampled architectures to target (qb.close).

4. one-dimensional (qb.scanone) or two-dimensional (qb.scantwo) genome scan;

5. characterize genetic architecture (qb.arch);

6. stepwise regression on genetic architecture (step.fitqtl);

In addition, several new routines begin to examine linked QTL:

1. examine multiple loci (qb.multloci);

2. find main and epistatic modes (qb.mainmodes, qb.epimodes);

3. split chromosomes for linked QTL (qb.split.chr);

3.1 What is the Best Model?

It is well and good to be able to explore possible genetic architectures, but what is the best? Here we start
by defining the best genetic architecture as the most probable combinations of QTLs across chromosomes
and any epistatic pairs given the data. Formally, this is the pattern of QTL with the highest posterior
probability. In fact, this document focuses on assessing the chromosome pattern of QTLs. The approach
has been found to be comparable in power to stepwise regression approaches (Manichaikul et al. 2008).

The routine qb.bf (or qb.BayesFactor) can compute the posterior and Bayes factor for the more
probable patterns.

> bf <- qb.bf(qbHyper, item = "pattern")

> summary(bf)

$pattern

nqtl posterior prior bf bfse

1,4,4,6,15,6:15 6 0.00300 3.15e-07 75.30 25.100

1,1,4,5,6,15,6:15 7 0.00267 2.97e-07 71.00 25.100

1,1,4,6,15,6:15 6 0.00600 8.68e-07 54.70 12.800
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1,2,4,6,15,6:15 6 0.00767 1.20e-06 50.30 10.500

1,4,6,15,6:15 5 0.03400 5.86e-06 45.80 4.460

1,4,6,6,15,6:15 6 0.00467 8.52e-07 43.30 11.500

1,2,4,5,6,15,6:15 7 0.00267 5.18e-07 40.70 14.400

1,4,5,6,15,6:15 6 0.00500 1.73e-06 22.80 5.880

1,4,6,15,15,6:15 6 0.00300 1.05e-06 22.50 7.490

1,1,2,4 4 0.00300 3.43e-06 6.92 2.300

1,2,4 3 0.00733 2.57e-05 2.26 0.479

1,1,4 3 0.00400 1.51e-05 2.09 0.603

1,4,19 3 0.00300 1.45e-05 1.63 0.543

1,4 2 0.01430 1.13e-04 1.00 0.151

The pattern with the highest posterior probability is 1,4,6,15,6:15, whereas the pattern with highest
Bayes factor is 1,4,4,6,15,6:15. Patterns are represented a chromosome identifiers separated by commas;
epistatic pairs of chromosomes are joined by a colon. The qb.bf summary model-averages over all possible
loci on each chromosome. That is, with MCMC sampling, we find the frequency of the chromosome
pattern while ignoring the actual loci values.

This might be enough. However, we can now ask for the most probable chromosome pattern, what
are the best estimates of loci? These are the averages of loci positions for those models that include
exactly these chromosome patterns. The routine qb.best (or qb.BestPattern) can perform this task,
and a few more.

> best <- qb.best(qbHyper)

> summary(best)

Best pattern(s) by sq.atten score

n.qtl chrom locus locus.LCL locus.UCL variance variance.LCL variance.UCL

247 0.803 1 69.9 24.449 95.799 4.33 0.0345 9.87

245 0.880 4 29.5 14.200 74.300 9.10 0.0885 17.20

248 0.710 6 59.0 13.833 66.700 4.73 0.1300 10.50

246 0.845 15 19.5 13.100 55.700 2.64 0.0823 7.31

Summary by better patterns

terms percent score cluster

1,4,6,15,6:15 4 3.4000000 4.000000 1

1,2,4,5,6,15,6:15 6 0.2666667 3.956954 1

1,4,4,6,15,6:15 5 0.3000000 3.956954 1

1,1,4,6,15,6:15 5 0.6000000 3.923116 1

1,4,5,6,15,6:15 5 0.5000000 3.919431 1

1,2,4,6,15,6:15 5 0.7666667 3.876550 1

1,1,4,5,6,15,6:15 6 0.2666667 3.842548 1

1,4,6,6,15,6:15 5 0.4666667 3.822012 1

1,4,6,15,15,6:15 5 0.3000000 3.809098 1

1,4 2 1.4333333 2.000000 2

1,2,4 3 0.7333333 2.000000 2

1,4,19 3 0.3000000 2.000000 2

1,1,4 3 0.4000000 1.919431 3

1,1,2,4 4 0.3000000 1.919431 3

Maximum number of QTL in architecture: 11

The best pattern is by design the most probable, but we now have estimates of the locus and variance

contribution for each QTL. We can view more pattern details, say the top 3 patterns, with the option
n.best = 3. We can see how this pattern compares to other patterns in a few plots.

> plot(best)
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The font size of a pattern is determined by its posterior probability. The 2-D multidimensional
scaling (MDS) projection is based on the score.type (see below). Notice that models that overlap with
1,4,6,15,6:15 are plotted near that pattern. Other patterns with little overlay are some distance away.

The default score.type is sq.atten, the square of the attenuation. When comparing two models,
consider a QTL locus estimated by each to be on the same chromosome. The attenuation is (1 − 2r),
with r the genetic distance (in Morgans) between the estimates. If the loci agree exactly, there is no
attenuation (r = 0). Loci on different chromosomes for different models have a score contribution of 0.
The scores are added up, trying in the process to match of QTL as best as possible between any two
genetic architectures. Other score.types are attenuation (signed or not), recombination, distance,
and explained variance. The latter provides a one-dimensional ordering of models based on overall fit.

It is possible to examine the patterns in another way, by plotting a dendrogram based on hierarchical
clustering.

> plot(best, type = "hclust")
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The default for method of model averaging of the locus and variance for qb.best is to average over
loci from all MCMC samples that include a particular pattern–that is, average over all patterns that have
the target nested within them. Instead, we can model average over all MCMC samples, or only those
with an exact match to the best pattern. The all average uses the most MCMC samples per locus, while
the exact typically involves very few samples, those that exactly match a particular pattern. There is
a tradeoff of bias and variance in the choice of these methods, although bias appears empirically to be
small due to the way MCMC samples cluster around more probable loci. Below are the three choices for
inclusion in model averaging. It is also possible to change the way the center is determined (default is
"median", but "mean" is an alternative). The plots and summaries (not shown) change slightly as well,
as all better patterns are altered similarly.

> qb.best(qbHyper, include = "all")$model[[1]]

n.qtl chrom locus locus.LCL locus.UCL variance variance.LCL

247 1.3310000 1 69.9 24.06667 96.18000 4.291848 0.03516970

245 1.3770000 4 29.5 14.20000 74.30000 9.206616 0.08047250

248 0.8383333 6 59.0 9.80000 66.70000 4.065665 0.04463393

246 0.9606667 15 19.5 13.10000 58.26667 2.442734 0.04279294

variance.UCL

247 10.027673

245 17.222186

248 10.274912

246 7.205367

> qb.best(qbHyper, include = "nested")$model[[1]]

n.qtl chrom locus locus.LCL locus.UCL variance variance.LCL

247 0.8026667 1 69.9 24.44875 95.7985 4.331837 0.03452814

245 0.8800000 4 29.5 14.20000 74.3000 9.098802 0.08845976

248 0.7096667 6 59.0 13.83333 66.7000 4.725800 0.12963260

246 0.8450000 15 19.5 13.10000 55.7000 2.638343 0.08227567

variance.UCL

247 9.871876

245 17.239369

248 10.517350

246 7.310082

> qb.best(qbHyper, include = "exact")$model[[1]]
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n.qtl chrom locus locus.LCL locus.UCL variance variance.LCL variance.UCL

247 0.034 1 69.9 43.7 77.60 4.768429 1.897535 10.746897

245 0.034 4 29.5 29.5 30.60 11.538096 5.841942 17.412872

248 0.034 6 61.2 54.1 66.70 5.173255 1.391078 10.752676

246 0.034 15 17.5 13.1 26.45 3.183654 1.162633 7.181975

3.2 How Close are Other Models to a Target?

A target model might arise from another study, or from another analysis of the same dataset. Right here,
we will use the most probably model as target, but the target object is simply a data frame with columns
for chrom, locus and variance. [If variance is omitted, it is filled in with 0s.] Here is the target we are
using:

> target <- best$model[[1]]

The routine qb.close gives a score comparison for each MCMC realization. These are summarized
over chromosome pattern, or over number of QTL using boxplots.

> close <- qb.close(qbHyper, target)

> summary(close)

target for score sq.atten

chrom locus variance

247 1 69.9 4.331837

245 4 29.5 9.098802

248 6 59.0 4.725800

246 15 19.5 2.638343

score by sample number of qtl

Min. 1st Qu. Median Mean 3rd Qu. Max.

2 1.437 1.735 1.919 1.834 1.919 2.000

3 1.351 1.735 1.916 1.900 1.919 2.916

4 1.270 1.916 2.437 2.648 3.574 4.000

5 1.295 1.919 2.835 2.798 3.611 4.000

6 1.257 2.254 3.451 3.029 3.648 4.000

7 1.351 2.836 3.492 3.212 3.677 3.923

8 1.329 3.237 3.574 3.340 3.744 4.000

9 1.295 3.272 3.576 3.334 3.727 4.000

10 2.000 3.432 3.614 3.475 3.762 4.000

11 1.899 3.382 3.525 3.428 3.697 3.923

12 1.391 2.702 3.574 3.174 3.661 3.759

13 3.694 3.694 3.694 3.694 3.694 3.694

score by sample chromosome pattern

Percent Min. 1st Qu. Median Mean 3rd Qu. Max.

4@1,4,6,15,6:15 3.400 2.946 3.500 3.630 3.613 3.758 4.000

2@1,4 1.430 1.437 1.735 1.919 1.832 1.919 2.000

5@1,2,4,6,15,6:15 0.767 3.137 3.536 3.622 3.611 3.777 3.923

3@1,2,4 0.733 1.351 1.700 1.821 1.808 1.919 2.000

5@1,1,4,6,15,6:15 0.600 3.257 3.484 3.563 3.575 3.698 3.916

5@1,4,5,6,15,6:15 0.500 3.237 3.515 3.595 3.622 3.777 3.923

5@1,4,6,6,15,6:15 0.467 3.203 3.541 3.646 3.631 3.757 3.835

3@1,1,4 0.400 1.616 1.735 1.803 1.790 1.858 1.919

5@1,4,6,15,15,6:15 0.300 3.154 3.461 3.687 3.642 3.839 3.919

5@1,4,4,6,15,6:15 0.300 3.497 3.500 3.681 3.630 3.719 3.735

4@1,1,2,4 0.300 1.616 1.616 1.803 1.775 1.876 1.919

3@1,4,19 0.300 1.351 1.839 1.916 1.837 1.919 1.919

6@1,2,4,5,6,15,6:15 0.267 3.009 3.513 3.542 3.493 3.584 3.658

6@1,1,4,5,6,15,6:15 0.267 3.054 3.540 3.574 3.557 3.638 3.919

It is more intuitive to look at the boxplots. Notice how patterns that miss the 6:15 interaction have
much lower attenuation scores.
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> plot(close)
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Now examine close-ness summarized by number of QTL in the sample. Notice that the samples with
6 or more QTL essentially pick up the four target QTL. It is common for Bayesian interval mapping to
”overfit”. This is not necessarily a bad thing. Some of the QTL will have small effects. Other tools such
as qb.scanone can be used to investigate which QTL fit have weak evidence.

> plot(close, category = "nqtl")
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3.3 ANOVA confirmation

The routines qb.arch and step.fitqtl can be helpful to refine model selection for genetic architecture.
They are illustrated in the document on a prototype QTL study of the hyper dataset (see Summary).
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Here we start with the best model and use step.fitqtl to step-by-step reduce the model to key main
effects and interactions, preserving hierarchy. The following uses R/qtl tools calc.genoprob, sim.geno
and makeqtl, plus R/qtlbim’s step.fitqtl, which calls fitqtl multiple times.

> hyper.arch <- qb.arch(best)

> hyper.arch

main QTL loci:

[,1] [,2] [,3] [,4]

chr "1" "4" "6" "15"

pos "69.9" "29.5" "59.0" "19.5"

Epistatic pairs by qtl, chr, pos:

qtla qtlb chra chrb posa posb

pair 1 3 4 6 15 59 19.5

Epistatic chromosomes by connected sets:

15,6

> hyper.sub <- subset(hyper, chr = hyper.arch$qtl$chr)

> n.draws <- 8

> hyper.sub <- sim.geno(hyper.sub, n.draws=n.draws, step=2, error=0.01)

> qtl <- makeqtl(hyper.sub, as.character(hyper.arch$qtl$chr), hyper.arch$qtl$pos)

Now we run stepwise backward elimination, preserving hierarchy. The step.fitqtl routine is simply
a wrapper for R/qtl’s fitqtl using an analogy to R’s step function.

> hyper.step <- step.fitqtl(hyper.sub, qtl, pheno.col = 1, hyper.arch)

> summary(hyper.step$fit)

Full model result

----------------------------------

df SS MS LOD %var Pvalue(Chi2) Pvalue(F)

Model 5 5723.666 1144.73313 21.2518 32.39395 0 0

Error 244 11945.271 48.95603

Total 249 17668.936

Drop one QTL at a time ANOVA table:

----------------------------------

df Type III SS LOD %var F value Pvalue(F)

1@69.9 1 1060 4.617 6.001 21.66 5.35e-06 ***

4@29.5 1 2880 11.725 16.299 58.83 4.10e-13 ***

6@58.0 2 1604 6.839 9.077 16.38 2.11e-07 ***

15@19.5 2 1567 6.691 8.868 16.00 2.95e-07 ***

6@58.0:15@19.5 1 1242 5.371 7.031 25.38 9.19e-07 ***

In this case, there was no reduction in the selected model, meaning the four main QTL and the 6:15
epistatic pair are confirmed. There are other exciting new model selection approaches in recent releases
of R/qtl. See also Manichaikul et al. (2008) for empirical comparison of methods.

3.4 Multiple Linked Loci

Sometimes there appear to be evidence for linked loci. While 2-dimensional scans with scantwo or
qb.scantwo can disambiguate such situations, it can be helpful to have tools to look finer, and even to
break chromosomes apart.

The routine qb.multloci allows a look at evidence for two or more linked QTL. The upper right
panel shows the posterior for number of linked QTL. The lower right panel shows the density broken up
by a reasonable guess at the number of QTL (the highest value with at least 20% of the samples). The
suggested break is based on the valley between peaks, using discriminant analysis. The upper left panel
shows the epistatic pairs, and the lower left panel shows a two way plot of singletons (diagonal), pairs,
triplets (as three pairs), etc.
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> mult <- qb.multloci(qbHyper, chr = 1)

> plot(mult)
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> summary(mult)

Posterior Percent by Number of QTL

1 2 3 4

70.2 26.7 2.9 0.2

Estimated Number of QTL: 2

Peaks

1 2

43.76686 68.11157

Valleys

1

55.41529

QTL Summaries

Min. 1st Qu. Median Mean 3rd Qu. Max. Pct. Ties

QTL 1 3.30 37.2 43.7 39.63 46.45 54.6 30.77 1.53

QTL 2 57.08 67.8 72.1 73.73 77.60 115.8 102.33 8.63

It is helpful sometimes to separate out samples with different number of QTL. This can be done with
the merge option.

> summary(mult, merge = FALSE)
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Posterior Percent by Number of QTL

1 2 3 4

70.2 26.7 2.9 0.2

Estimated Number of QTL: 2

Peaks

1 2

43.76686 68.11157

Valleys

1

55.41529

QTL Summaries

$`nqtl = 1`

Min. 1st Qu. Median Mean 3rd Qu. Max. Pct. Ties

QTL 1 17.65 43.7 46.45 45.31 49.2 54.60 6.33 0

QTL 2 57.08 67.8 72.10 71.54 74.3 84.15 63.87 0

$`nqtl = 2`

Min. 1st Qu. Median Mean 3rd Qu. Max. Pct. Ties

QTL 1 3.30 37.2 41.5 38.55 46.45 54.6 20.37 0.33

QTL 2 57.08 72.1 75.4 76.78 79.80 115.8 33.03 6.67

$`nqtl >= 3`

Min. 1st Qu. Median Mean 3rd Qu. Max. Pct. Ties

QTL 1 3.30 28.43 40.43 36.12 46.45 54.6 3.67 1.07

QTL 2 57.08 69.90 77.60 80.87 86.30 115.8 5.03 1.83

$`nqtl >= 4`

Min. 1st Qu. Median Mean 3rd Qu. Max. Pct. Ties

QTL 1 3.30 31.29 41.53 36.88 49.88 54.6 0.4 0.13

QTL 2 59.55 71.55 80.90 83.37 90.95 113.6 0.4 0.13

> plot(mult, merge = FALSE)
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The peaks and valleys are computed with qb.mainmodes. While this routine is visible to the user, it
is seldom actually needed. qb.epimodes serves a similar function for epistatic pairs only.

Once a logical split for a chromosome has been established, we can use qb.split.chr to formalize
the split. By default, it uses the results from qb.mainmodes.

> qbHyper <- qb.split.chr(qbHyper)

> qb.get(qbHyper, "split.chr")

$`1`

1

55.41529

$`4`

1

46.21198

The split can be negated by the argument split = NULL. A few routines now use this split, and more
are planned. For now, qb.scanone, qb.scantwo and qb.bf take advantage of this. Chromosomes are
recoded as chr.1, chr.2, etc.

> qb.bf(qbHyper, item = "pattern")

$pattern

nqtl posterior prior bf bfse

1.1,1.2,4.1,6,15,6:15 6 0.00533 8.49e-07 52.10 13.000

1.2,4.1,6,15,6:15 5 0.03170 5.54e-06 47.30 4.780

1.2,2,4.1,6,15,6:15 6 0.00700 1.26e-06 45.90 9.980
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1.2,4.1,6,6,15,6:15 6 0.00433 9.03e-07 39.80 11.000

1.2,4.1,5,6,15,6:15 6 0.00467 1.82e-06 21.20 5.670

1.2,4.1,6,15,15,6:15 6 0.00267 1.16e-06 19.00 6.720

1.2,2,4.1 3 0.00700 2.57e-05 2.26 0.491

1.1,1.2,4.1 3 0.00333 1.51e-05 1.83 0.577

1.2,4.1,19 3 0.00267 1.45e-05 1.52 0.537

1.2,4.1 2 0.01370 1.13e-04 1.00 0.155

> qb.best(qbHyper)

Best pattern(s) by sq.atten score

n.qtl chrom locus locus.LCL locus.UCL variance variance.LCL variance.UCL

247 0.625 1.2 72.1 62.025 98.36 4.86 0.0701 10.20

245 0.630 4.1 29.5 12.171 37.00 10.50 0.1610 17.80

248 0.662 6 59.0 13.833 66.70 4.72 0.1410 10.40

246 0.786 15 19.5 13.100 55.70 2.67 0.0894 7.27

Summary by better patterns

terms percent score cluster

1.2,4.1,6,15,6:15 4 3.1666667 4.000000 1

1.2,4.1,5,6,15,6:15 5 0.4666667 4.000000 1

1.2,4.1,6,15,15,6:15 5 0.2666667 3.852144 1

1.2,2,4.1,6,15,6:15 5 0.7000000 3.838877 1

1.2,4.1,6,6,15,6:15 5 0.4333333 3.822012 1

1.1,1.2,4.1,6,15,6:15 5 0.5333333 3.799457 1

1.2,4.1 2 1.3666667 2.000000 2

1.2,2,4.1 3 0.7000000 2.000000 2

1.2,4.1,19 3 0.2666667 2.000000 2

1.1,1.2,4.1 3 0.3333333 1.876341 3

Maximum number of QTL in architecture: 10

> one <- qb.scanone(qbHyper, type = "LPD")

> summary(one)

LPD of bp for main,epistasis,sum

n.qtl pos m.pos e.pos main epistasis sum

1.1 0.3077 43.70 43.70 41.50 3.244 1.327 3.943

1.2 1.0233 67.80 67.80 67.80 5.972 0.459 6.172

2 0.3477 51.90 51.90 42.63 2.011 0.492 2.396

3 0.1453 30.63 30.63 8.76 1.145 3.068 1.678

4.1 1.1040 29.50 29.50 29.50 11.329 0.377 11.453

4.2 0.2730 74.30 74.30 74.30 0.717 4.884 5.336

5 0.2447 68.87 68.87 82.00 2.029 1.095 2.525

6 0.8383 59.00 59.00 59.00 3.745 5.959 9.069

7 0.1553 15.28 55.60 15.28 0.418 3.029 3.042

8 0.1320 56.93 59.00 17.52 0.946 1.626 1.488

9 0.1173 12.00 64.87 12.00 0.662 2.561 2.548

10 0.0947 37.95 75.40 37.95 0.581 0.840 0.984

11 0.1717 17.50 39.57 13.10 0.916 1.831 1.644

12 0.0947 1.10 46.55 1.10 0.452 2.197 2.368

13 0.0767 24.40 28.40 14.23 0.648 1.346 1.432

14 0.0840 0.00 46.35 0.00 0.621 2.059 2.310

15 0.9607 17.50 17.50 17.50 1.309 6.019 6.977

16 0.0813 8.37 8.37 10.46 0.396 1.710 1.744

17 0.1123 50.30 1.10 50.30 0.383 1.943 2.090

18 0.0663 2.20 14.20 2.20 0.599 2.070 2.245

19 0.1117 55.70 53.62 55.70 1.211 0.985 1.869

> plot(one, chr = 1)
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4 Useful Plots and Summaries

A number of diagnostic routines are provided to assist with analysis. Some of these are bundled together
in the generic plot routine for qb objects. For instance, qb.scanone and qb.scantwo can be used to
identify the strength of main and epistatic QTL. All these routines have some connection to R/qtl
(www.rqtl.org) routines, such as scanone, scantwo and fitqtl.

4.1 Plotting MCMC History

The R/qtlbim samples come from a Monte Carlo simulation. Are the MCMC samples well mixed? We
can visually inspecting the history of the MCMC run. The command

> plot(qb.coda(qbHyper))

shows the MCMC chain as a time series. Each step, or iteration, of the MCMC chain represents a single
model; therefore, we can explore the history of the MCMC chain by plotting time series for relevant
model features. The time series plotted by qb.coda show the sampling histories for

1. number of QTL in each model model (nqtl),

2. mean phenotype according to each model (mean),

3. environmental variability under each model (envvar),

4. variance explained under each model (var) and

It is possible to plot a different subset of the model characteristics above, by using the optional
argument variables in the qb.coda function. For example, in order to view just the number of QTL
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Figure 4: Diagnostic Plot for a MCMC run.

(nqtl) and the model means, use the following command. The results of the following command are
shown in Figure 4.

> plot(qb.coda(qbHyper, variables = c("nqtl","envvar")))

4.2 A plot of sampled loci by chromosome

From a biological perspective it may be interesting to view the location of possible QTL along the
chromosome. The function qb.loci shows a plot of quantitative trait loci for each chromosome. The
QTL are from single QTL models appearing as samples in the MCMC chain. In the plot, the actual
locations of possible QTL are jittered slightly in order to give a sense of the density of putative QTL in
the vicinity of each marker. The code

> plot(qb.loci(qbHyper))

will produce a plot with all chromosomes. In order to view a subset of the chromosomes, the parameter
chr to the generic subset routine can be used to limit the plot to a selected set of chromosomes. The
horizontal (blue) lines in the plot show the locations of markers. The markers themselves can be labelled
by using the parameters markers in the function.

> plot(qb.loci(subset(qbHyper, chr=c(3,4))), labels=TRUE)

Figure 5 shows the result of this command.
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Figure 5: A jittered plot of quantitative trait loci, showing only only chromosomes 3 and 4, with locations
and marker labels.
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4.3 Bayes factor ratios

The function qb.BayesFactor produces a composite (4-by-2) summary plot of the models sampled by
the MCMC chain. These plots are useful as an initial tool for examining the evidence in favor of multiple
QTL models and in determining the locations of QTL. Figure 6 shows the plot produced by the command
qb.BayesFactor(qbHyper). The function of each of these plots is described below.

1. The plot appearing in the upper-left of the figure represents a plot of the prior distribution for
the number of QTL involved in models (shown as a broken blue line) against the corresponding
posterior probabilities (shown as a histogram).

2. The plot in the upper-right shows Bayes factor ratios. These are the ratios of posterior probabilities
to prior probabilities. For pairs of values along the horizontal axis of this plot, the member of the
pair with a larger Bayes factor ratio should be interpreted as more likely. The vertical arrows give
an indication of the strength of evidence: weak (BF = 3), moderate (BF = 10) or strong (BF =
30).

3. The second row conveys information in terms of the pattern of chromosomes involved in the models.

4. The third row adresses the frequency of sampling each chromosome.

5. The fourth row show relative importance of epistatic pairs. Here the ”6.15”, or chr 6 by chr 15,
epistatic pair is by far the strongest.

As with other plot functions in the R/qtlbim package, it is possible to limit attention of a subset of
chromosomes using the generic subset routine. The subset argument pattern can be used to limit
the models plotted to those involving a specified list of chromosomes. For example the command
qb.BayesFactor(subset(qbHyper,pattern=c(2,3,17))) considers only those models involving chromo-
somes 2,3 and 17. Repeats in the pattern sequence indicate multiple QTL on the same chromosome.

4.4 Other plots of interest

An experimental plot uses highest posterior density (HPD) regions. The profile of the posterior is
interpreted as a density, and the smallest region containing 50% (by default) of the density is the HPD
region. The command plot(qb.hpdone(qbHyper)) yields Figure 7.

Coefficients for epistatic effects for the most probable epistatic pairs are shown in Figure 8. plot(qb.epistasis(qbHyper)).
produces jittered plots of sampled Cockerham effects, overlaid with boxplots. Summaries are provided
as well but not shown here.

Summary diagnostics as histograms and boxplots by number of QTL. This diagnostic plot can be
generated by the command plot(qb.diag(qbHyper)), as shown in Figure 9.

5 Data Management

5.1 Data Simulation

R/qtlbim has an inbuilt function qb.sim.cross to simulated a backcross or F2 data set of class cross (see
R/qtl help pages for details). The following chunk of code generates a data set of 100 individuals of F2
mating design. These individuals are genotyped for 11 not equally spaced markers on 20 chromosomes.
There are 7 QTLs, two on chromosome 1 and one each on chromosomes 3,5,7,10 and 19. QTL numbers
1,3 and 4 have additive main effects of 0.5, -0.5 and 0.5 and numbers 2 and 4 have dominant main effects
of 0.5 and -0.5. QTL numbers 4 and 5 have an additive-additive interaction of -0.7 and numbers 6 and
7 have an additive-dominant interaction of 1.2. Two covariates, a binary fixed covariate and an ordinal
random are generated with their corresponding coefficients as 0.5 and 0.07. G x E (gene x environemt)
interaction is also considered with the fixed covariate. A normal phenotype and an ordinal phenotype
with 3 categories are measured. 7% of the genotypes are randomly missing.

> cross <- qb.sim.cross(len=rep(100,20), n.mar=11, eq.spacing=F, n.ind=100, type="f2",

+ ordinal=c(0.3,0.3,0.2,0.2), missing.geno=0.03, missing.pheno=0.07,

+ qtl.pos=rbind(c(1,15),c(1,45),c(3,12),c(5,15),c(7,15),c(10,15),c(12,35),c(19,15)),

+ qtl.main=rbind(c(1,0.5,0),c(2,0,0.7),c(3,-0.5,0),c(4,0.5,-0.5)),

+ qtl.epis=rbind(c(4,5,-0.7,0,0,0),c(6,8,0,1.2,0,0)),

+ covariate=c(0.5,0.07), gbye=rbind(c(7,0.8,0)))

>
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Figure 6: Paired plots of posteriors as bars overlaid by priors as blue lines (left panels) with Bayes factor
ratios to the least likely model (right panels). Models in right panel can be compared by vertical separation
as scale is geometric. Blue arrows on right panels indicate weak, moderate or strong Bayes factors for ratios
of 3, 10 or 30, respectively. Rows convey information about (1) number of QTL, (2) chromosome pattern of
QTL, (3) chromosomes, (4) epistatic pairs.
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24



0

2

4

6

8

10

2logBF of bp for sum+epistasis+main

Chromosome

2l
og

B
F

1 4 6 15
sum=black, epistasis=purple, main=blue

98

99

100

101

102

103

104

cellmean of bp for H+A

Chromosome

ce
llm

ea
n

1 4 6 15
H=purple, A=blue
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Figure 8: A plot of epistatic effect by pair using Cockerham effects. Only stronger epistatic pairs are shown.
Blue line at median; box contains 50% of samples for epistatic pair. Percent below pair indicates percent of
MCMC samples with this epistatic pair.
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Figure 9: A set of diagnostic plots. Default has mean, unexplained variance ("envvar"), explained variance
("var"), and heritability ("herit"). Left panels show density plot and horizontal box plot for all samples.
Right panels show box plots by number of QTL.
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By using the function qb.sim.cross a list is attached to cross object named ”qtl”. This list is typically
not a part of the cross object as described in read.cross of the R/qtl library and is generated only with
the qb.sim.cross() function.

> names(cross)

[1] "geno" "pheno" "qtl" "gvalue"

>

The cross$gvalue is a vector of predicted values of the same length as the phenotype cross$pheno$pheno.normal.
The cross$qtl contains information about the true values which can be compared to after the analysis.

> summary(cross$qtl)

$pos

chr pos

qtl.1 1 15

qtl.2 1 45

qtl.3 3 12

qtl.4 5 15

qtl.5 7 15

qtl.6 10 15

qtl.7 12 35

qtl.8 19 15

$herit.main

qtl add dom

main.1 1 0.04485874 0.00000000

main.2 2 0.00000000 0.04396156

main.3 3 0.04485874 0.00000000

main.4 4 0.04485874 0.02242937

$herit.epis

qtl.a qtl.b aa ad da dd

epis.1 4 5 0.04396156 0.00000000 0 0

epis.2 6 8 0.00000000 0.06459658 0 0

$herit.cov

fix.cov ran.cov

[1,] 0.02242937 0.02512089

$herit.gbye

qtl add dom

GxE.1 7 0.02870959 0

>

The summary of the cross object summary is shown below.

> summary(cross)

F2 intercross

No. individuals: 100

No. phenotypes: 4

Percent phenotyped: 94 92 91 91

No. chromosomes: 20

Autosomes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Total markers: 220

No. markers: 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
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Percent genotyped: 97.1

Genotypes (%): AA:25.1 AB:50.4 BB:24.5 not BB:0 not AA:0

6 Theoretical Development

This section could be skipped. It is aimed at those quantitative folks who have read Yi et al. (2005) for the
math and want to know more. Here we leave out details concerning covariates to simplify presentation.

Given complete data on genotypes for all individuals across the genome, we could consider a model
relating phenotype y to genotype g through a design matrix X,

y = µ + XΓβ + e .

The unknown effect parameters are the grand mean, µ, the effect parameters, β, and the unexplained
variance, σ2 = V (e), which for convenience, we bring together as θ = (µ, β, σ2) . The genetic architecture
is specified by Γ = diag(γ), which has values of 1 or 0 to indicate presence or absence, respectively, of
the corresponding model effect. The QTL model could thus be written as p(y|γ, X, θ) . [For practical
purposes, the maximum number of QTL is rarely over l0 + 3

√
l0 where l0 is the prior mean for the

total number of QTL. Hence, the size of X stored at any time can be greatly reduced through careful
bookkeeping. See Yi et al. (2005) for details.]

Here are some details on the Cockerham epistatic model for experimental crosses with K+1 genotypes
per loci (K = 1 for backcross, K = 2 for intercross). There are K main effects and K2 epistatic effects.
For a backcross population with two segregating genotypes, bb and Bb, at locus, the main effect has
predictor x1 = z − 0.5, where z denotes the number of b alleles. The epistatic effect predictors are
products of main effect predictors. An intercross has three segregating genotypes bb, Bb and BB at any
locus. The two main effect predictors for additive and dominance in the Cockerham model are x1 = z−1
and x2 = (1− abs(x1))− 0.5, respectively. The four epistatic effect predictors for a pair of loci are cross
products of the main effect predictors.

This genetic architecture, specified by a 0-1 vector γ, allows us to consider models of different di-
mensions, e.g. one vs. two QTL, without resorting to a more complicated (reversible jump) sampling
scheme. The unknown values γ are the key device in sampling over many different possible genetic
architectures, in terms of what loci λ are included and what gene action is important. There is some
redundancy between γ and λ: a locus is in the model only if at least one γ associated with that locus is 1.
Technically, we consider probabilities p(λ|γ) that can only be 0 or 1 to indicate whether the loci, λ , are
compatible with the genetic architecture, γ . While the loci are determined by the genetic architecture,
γ is not completely determined by λ. We exploit this to make more efficient code and to build diagnostic
summaries.

6.1 Likelihood and posterior

In a classical setting, the full likelihood augmented by genotypes, g, over the genome is

p(y, g|m, γ, θ) = p(y|γ, X, θ)p(X|g)p(g|m, λ)p(λ|γ) ,

with m the marker genotypes across the genome and p(g|m, λ) the map function. The whole-genome
genotype information, g, and the design matrix, X, are 1-1 mappings: p(X|g) is either 1 or 0, depending
on whether or not the design is compatible with the genotypes. At most loci, we do not fully know
genotypes g, hence the likelihood given observable data is averaged over g,

L(γ, θ|y, m) =
∑

g

p(y, g|m, γ, θ) .

With no QTL, we write L(µ|y) for the null likelihood.
In a Bayesian perspective, a prior p(γ, θ) is placed on the unknowns, and we study the posterior,

p(g, γ, θ|y, m) ∝ p(y, g|m, γ, θ)p(γ, θ) .

To study the unknown parameters of interest, (γ, θ) , we average the posterior over the genotypes, or
equivalently, form a weighted average of the augmented likelihood with weights proportional to the prior
on (γ, θ) ,

p(γ, θ|y, m) =
∑

g

p(g, γ, θ|y, m) ∝
∑

g

p(y, g|m, γ, θ)p(γ, θ) .
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6.2 Parameter estimation

Classically, the parameters of interest, (λ, θ) , are estimated by maximizing the likelihood. This is usually
done in a QTL setting by profiling the likelihood, or LOD (see below), with respect to one locus or two
loci over the genome. We think of that here as profiling with respect to a given genetic architecture, γ ,
to find the maximum likelihood estimate (MLE) for β ,

β̂ = V ΓXT y ,

with V = (ΓXT XΓ)−1 and σ2V the variance-covariance matrix for β̂ . Here we assume the columns of
X are centered on zero, so the MLE for the reference is µ̂ = ȳ .

Bayesian parameter estimates are typically found as the posterior means, which shrink µ̂ toward its
prior mean µ0 and β̂ toward the prior mean of 0, leading to posteriors

µ ∼ N
(
(1− b)µ0 + bȳ, bσ2/n.ind

)
,

and
β ∼ N

(
Bβ̂, Bσ2V

)
,

with b and B being Bayesian shrinkage factors. As we gather more data, the Bayesian priors focus on
the MLEs, i.e. b and B tend to 1. The likelihood and the posterior are both fairly symmetric around the
maximum, for any given γ. Thus, the posterior mean and the MLE for β are very close in practice. This
is less apparent from the summaries in the previous section, as the Bayesian estimates are attenuated by
the putative effects of other QTL along the genome. This is a technical post-processing issue of properly
sorting out the effects of multiple linked loci.

6.3 Variance components

Variance components can also be estimated in both approaches. The classical unbiased estimate for
environmental variance is σ̂2 = RSS(θ̂)/df , with RSS(θ) =

∑
(y−µ−XΓβ)2 and df = n.ind−1−

∑
γ.

A Bayesian posterior estimate of σ2 is its posterior mean, which is a weighted average of RSS(θ)/n.ind
and its prior mean. Its empirical estimate can be found by averaging the posterior samples,

> summary(qb.scanone(qbHyper,type="variance",scan="env"))

variance of bp for env

n.qtl pos m.pos env

1.1 0.3077 43.70 43.70 48.7

1.2 1.0233 67.80 67.80 49.1

2 0.3477 51.90 51.90 49.3

3 0.1453 30.63 30.63 48.2

4.1 1.1040 29.50 29.50 48.7

4.2 0.2730 74.30 74.30 44.0

5 0.2447 68.87 68.87 47.2

6 0.8383 59.00 59.00 46.0

7 0.1553 15.28 55.60 48.2

8 0.1320 56.93 59.00 49.6

9 0.1173 12.00 64.87 48.4

10 0.0947 37.95 75.40 49.7

11 0.1717 17.50 39.57 47.6

12 0.0947 1.10 46.55 47.0

13 0.0767 24.40 28.40 48.0

14 0.0840 0.00 46.35 48.2

15 0.9607 17.50 17.50 46.4

16 0.0813 8.37 8.37 49.9

17 0.1123 50.30 1.10 46.9

18 0.0663 2.20 14.20 48.0

19 0.1117 55.70 53.62 47.3

Heritability is computed as the percent of explained variation, h2 = 100(TSS −RSS(θ))/TSS , with
TSS =

∑
(y− ȳ)2 the total sum of squares. [The idealized variation would substitute expected fractions

for the X2 terms based on the type of cross.] We can find the posterior estimate of variability as the
main entry below:
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> summary(qb.scanone(qbHyper,type="heritability"))

heritability of bp for main,epistasis,sum

n.qtl pos m.pos e.pos main epistasis sum

1.1 0.3077 43.70 43.70 41.50 5.210 1.867 6.45

1.2 1.0233 67.80 67.80 67.80 9.777 0.385 10.14

2 0.3477 51.90 51.90 42.63 3.133 0.464 3.82

3 0.1453 30.63 30.63 8.76 1.614 4.946 2.56

4.1 1.1040 29.50 29.50 29.50 18.055 0.226 18.28

4.2 0.2730 74.30 74.30 74.30 0.805 7.924 8.73

5 0.2447 68.87 68.87 82.00 3.151 1.521 4.03

6 0.8383 59.00 59.00 59.00 5.525 9.188 14.62

7 0.1553 15.28 55.60 15.28 0.336 4.899 4.92

8 0.1320 56.93 59.00 17.52 1.272 2.475 2.24

9 0.1173 12.00 64.87 12.00 0.771 4.097 4.08

10 0.0947 37.95 75.40 37.95 0.627 1.092 1.35

11 0.1717 17.50 39.57 13.10 1.217 2.822 2.50

12 0.0947 1.10 46.55 1.10 0.400 3.457 3.76

13 0.0767 24.40 28.40 14.23 0.746 1.990 2.14

14 0.0840 0.00 46.35 0.00 0.701 3.200 3.65

15 0.9607 17.50 17.50 17.50 1.736 9.677 11.38

16 0.0813 8.37 8.37 10.46 0.302 2.618 2.68

17 0.1123 50.30 1.10 50.30 0.288 3.019 3.28

18 0.0663 2.20 14.20 2.20 0.662 3.235 3.55

19 0.1117 55.70 53.62 55.70 1.723 1.329 2.89

6.4 LOD, LPD and BF

The classical approach introduced by Lander and Botstein (1989) profiles the likelihood only along the
ridge of maximum β for each λ. That is, at each λ, find β that maximizes the LOD. The LOD map is a
plot of this profile. The LOD statistic to assess QTL is

LOD(λ) = c + log10

(
max

θ
L(γ, θ|y, m)p(λ|γ)

)
,

with the constant being c = − log10(maxµ L(µ|y)) . The likelihood ratio is LR = 10LOD , and deviance
is D = 2 log(10)LOD .

The Bayesian approach provides a direct estimate of the posterior as the histogram of the samples
from the Markov chain Monte Carlo. Sen and Churchill (2002) proposed profiling the log posterior
density, LPD, which involves averaging over the unknown parameters θ,

LPD(λ) = C + log10

(∑
θ

p(γ, θ|y, m)p(λ|γ)

)
.

[The sum over θ is actually an multidimensional integral, but we ignore those details here.] Here the
constant C would involve averaging over the null likelihood with respect to the prior on µ. In practice,
LOD and LPD are often pretty close to each other and can be used interchangeably.

One advantage of sampling a large set of possible models by MCMC is that Bayes factors are easily
computed. We do not have to resort to fancy harmonic means as in Newton and Raftery (199x). Instead,
we construct marginal posterior histograms for models to be compared, and rescale by their priors. For
instance, to compare two genetic architectures, we construct

BF =
p(γ|y, m)/p(γ)

p(0|y)/p(0)
,

in which p(0) is the prior on γ being all zero (no QTL at all) and p(0|y) is the posterior. Actually,
p(0|y)/p(0) ∝ p(y) =

∑
µ

p(y|µ)p(µ) , with the sum really an integral over the real line. Often this is

more interpretable on a log scale as 2 log(BF ) , which we can compute as

> summary(qb.scanone(qbHyper,type="2logBF"))
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2logBF of bp for main,epistasis,sum

n.qtl pos m.pos e.pos main epistasis sum

1.1 0.3077 43.70 43.70 41.50 2.927 0.827 3.1015

1.2 1.0233 67.80 67.80 67.80 6.157 2.438 6.1807

2 0.3477 51.90 51.90 42.63 1.117 0.000 1.3074

3 0.1453 30.63 30.63 8.76 0.000 0.000 0.0000

4.1 1.1040 29.50 29.50 29.50 9.923 4.317 9.9240

4.2 0.2730 74.30 74.30 74.30 0.644 2.673 2.9394

5 0.2447 68.87 68.87 82.00 1.357 0.370 1.5288

6 0.8383 59.00 59.00 59.00 5.296 5.389 5.4882

7 0.1553 15.28 55.60 15.28 0.000 0.293 0.3432

8 0.1320 56.93 59.00 17.52 0.000 0.000 0.0000

9 0.1173 12.00 64.87 12.00 0.000 0.000 0.0000

10 0.0947 37.95 75.40 37.95 0.000 0.000 0.0000

11 0.1717 17.50 39.57 13.10 0.000 0.000 0.0643

12 0.0947 1.10 46.55 1.10 0.000 0.000 0.0000

13 0.0767 24.40 28.40 14.23 0.000 0.000 0.0000

14 0.0840 0.00 46.35 0.00 0.000 0.000 0.0000

15 0.9607 17.50 17.50 17.50 4.718 6.257 6.2913

16 0.0813 8.37 8.37 10.46 0.000 0.000 0.0000

17 0.1123 50.30 1.10 50.30 0.000 0.000 0.0000

18 0.0663 2.20 14.20 2.20 0.000 0.000 0.0000

19 0.1117 55.70 53.62 55.70 0.000 0.000 0.0000

6.5 Marginal Summaries

Our primary interest here is in marginal statistics. Consider that the model has genetic architecture γ
that include loci λ . We want to ask what is the contribution to the model of some subset of indicators,
γ2 , associated with a locus, or a set of loci, λ2 . We might ask this in a variety of ways, looking at evidence
in terms of LOD or a related statistics, or the contribution in terms of variance components, heritability,
or parameter effects. We can think of partitioning the genetic architecture into two components, γ =
(γ1, γ2) , with a corresponding partition of the effect parameters,

Γβ = (Γ1 + Γ2)β .

The subset of effect parameters, β2 = Γ2β , may include, for instance, the main effects for locus λ2 plus
some or all epistatic effects that involve this locus. We can then ask questions about β2, or about γ2 and
λ2, adjusting for the presence of effects β1 = Γ1β . Note that β1 could include some model parameters
for λ2.

6.5.1 Variance components

Here and through the rest of this document, we argue that we can characterize important diagnostic
summaries using marginal properties of MCMC samples. The key technical argument is in the next
paragraph. Namely, we can use the marginal variance components of our model fit, ignoring covariances,
to construct approximate statistics.

If the columns of X are nearly orthogonal to each other, then the variance-covariance matrix for the
effect parameter MLEs, var(β̂) = σ2V , would be diagonally dominant. That is, we suppose the variances
along the diagonal are larger than the sum of the absolute covariances. Formally, with v = diag(V ) and
V(j) the j column of V ,

2v(j) ≥
∑

|V(j)| .

In other words, we assume the covariances among effect estimates are negligible, and the diagonal
values are approximately v(j) ≈ γ(j)/

∑
X2

(j) , with X(j) the jth column of X . In this case we can

approximate V by its diagonal, D = diag(v), and get a good approximation of V −1 using D−1:

V −1 = D−1[I + O]−1 ,

with O being on the order of (V − D)D−1 . As long as the diagonal entries of D are large, then this
approximation is good. Where these variances are small, the approximation is not so useful.
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Since we are interested in learning about effects with larger variance components, this approximation
seems quite workable in the present setting. It should a pretty reasonable between terms for unlinked
loci, and under conditions of Hardy-Weinberg equilibrium among alleles at each locus. Note also that
epistatic effects between linked loci will be addressed directly by construction of columns of X. [I believe
the discrepancy of the diagonal can be readily checked under H-W by adding another type to the qb.scan
routines–next freeze.]

With this approximation the explained variation can be approximated as

TSS −RSS(θ) =
∑

(XΓβ)2 ≈ γT r ,

with r(j) = β2
(j)

∑
X2

(j) being the variance explained by the jth component of the genetic architecture.

Then the difference, RSS(θ1)−RSS(θ) ≈ γT
2 r =

∑
r2 , is simply the sum of variance components, which

are readily stored for each MCMC iteration. Here, r2 contains the elements of r corresponding to γ2 = 1,
and θ1 = (µ, β1, σ

2) .
Marginal heritability is computed as the additional variation explained by the genetic architecture γ2

given γ1 ,

h2 =
RSS(θ1)−RSS(θ)

TSS
=

γT
2 r

TSS
.

6.5.2 LOD, LPD and BF

The adjusted LOD to compare the full model to the reduced model with γ2 = 0 is

LOD(γ2|γ1) = log10

(
max

θ
L(γ, θ|y, m)

max
θ1

L(γ1, θ1|y, m)

)
.

The adjusted LPD is similarly,

LPD(γ2|γ1) = log10

(∑
θ

p(γ, θ|y, m)

p(γ1, θ1|y, m)

)
,

with again the sum actually being an integral over θ .
In the case of normal data and complete marker information, the LOD reduces to

LOD(γ2|γ1) =
n.ind

2
log10

(
min
θ1

RSS(θ1)/df1

min
θ

RSS(θ)/df

)
,

with degrees of freedom, df = n.ind− 1−
∑

γ , and df1 = n.ind− 1−
∑

γ1 . The LPD follows a similar
form, but involving an average (or really, integral) over θ ,

LPD(γ2|γ1) =
n.ind

2
log10

(∑
θ

RSS(θ1)/df1

RSS(θ)/df

)
.

The Bayes factors are easily computed, as noted earlier. To compare the two genetic architectures γ
and γ1 , we construct

BF =
p(γ|y, m)/p(γ)

p(γ1|y, m)/p(γ1)
.

Often this is more interpretable on a log scale as 2 log(BF ) , which we can compute as

6.6 Model Averaging Algorithm

Here we briefly describe the model averaging idea. The MCMC samples include a wide variety of models,
indexed by γ. The 1-D and 2-D scans first compile a selected diagnostic for each sample (also known as
an iteration). That is, at each genome position, or pair of positions, we average the values for samples
that include that position, i.e. have γ = 1 at that position. The posterior is simply an average of the γ
samples at each position.

These samples are kept for each model component, either in terms of the un-aggregated Cockerham
(1954) partition or in terms of main effects and epistasis, and for the sum of these components. There
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are some mechanics involved. For instance, for 1-D averages involving epistasis, we want to count each
pair for both loci, and for 2-D averages, we want to count epistatic effects separately at each locus. But
these are details that can be found by looking at the code if interested.

Chromosome summaries, or summaries within regions of chromosomes, are found as weighted averages
of these per-position summaries. The weights are naturally the number of MCMC samples per position.
At present the code does not separate out multiple loci on a chromosome [next freeze].

With moderate MCMC sample sizes, the 1-D and 2-D scans can be rather rough, or jagged. We have
found nearest neighbor smoothing to be helpful. That is, a position is equally weighted against the sum
of its neighbors, accounting for number of MCMC samples. This can be repeated several times (e.g.
smooth = 3) to further local smoothing.

7 Summary

In this overview, we have explored the use of many of the Bayesian interval mapping routines. Through
examples using the hyper experimental data, we have demonstrated the key steps in identifying both
main and epistatic effects. Further information on using using R/qtlbim to explore the hyper data set
can be found in the prototype.qtl.hyper.slides vignette. In order to view the vignette, simply type

> vignette(topic="prototype.qtl.hyper.slides",package="qtlbim")

at the R prompt.
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