Bayesian causal phenotype network incorporating genetic variation and biological knowledge

Brian S Yandell, Jee Young Moon University of Wisconsin-Madison Elias Chaibub Neto, Sage Bionetworks Xinwei Deng, VA Tech

http://www.stat.wisc.edu/~yandell/talk/2012.oslo.pdf

BTBR mouse is insulin resistant

B6 is not

make both obese...

Alan Attie Biochemistry

glucose

insulin

Vionsanto: Yandell © 2012

bigger picture

- how do DNA, RNA, proteins, metabolites regulate each other?
- regulatory networks from microarray expression data
 - time series measurements or transcriptional perturbations
 - segregating population: genotype as driving perturbations
- goal: discover causal regulatory relationships among phenotypes
- use knowledge of regulatory relationships from databases
 - how can this improve causal network reconstruction?

BxH ApoE-/- chr 2: hotspot

QTL-driven directed graphs

- given genetic architecture (QTLs), what causal network structure is supported by data?
- R/qdg available at www.github.org/byandell
- references
 - Chaibub Neto, Ferrara, Attie, Yandell (2008) Inferring causal phenotype networks from segregating populations. *Genetics 179*: 1089-1100. [doi:genetics.107.085167]
 - Ferrara et al. Attie (2008) Genetic networks of liver metabolism revealed by integration of metabolic and transcriptomic profiling. *PLoS Genet 4*: e1000034. [doi:10.1371/journal.pgen.1000034]

partial correlation (PC) skeleton

partial correlation (PC) skeleton

edge direction: which is causal? M_1 : →(*Y*2) M2 : the above models are likelihood equivalent, $f(y_1)f(y_2 \mid y_1) = f(y_1, y_2) = f(y_2)f(y_1 \mid y_2)$ q_{11} q_{11} q_{21} q_{21} q_{1k} q_{2l} q_{1k} q_{2l} not likelihood equivalent due to QTL $f(\mathbf{q}_1)f(y_1 | \mathbf{q}_1)f(y_2 | y_1, \mathbf{q}_2)f(\mathbf{q}_2)$ $f(\mathbf{q}_2)f(y_2 | \mathbf{q}_2)f(y_1 | y_2, \mathbf{q}_1)f(\mathbf{q}_1)$

Oslo, Norway (c) 2012 Brian S Yandell

test edge direction using LOD score

$$LOD = \log_{10} \left\{ \frac{\prod_{i=1}^{n} f(y_{1i} \mid \mathbf{q}_{1i}) f(y_{2i} \mid y_{1i}, \mathbf{q}_{2i})}{\prod_{i=1}^{n} f(y_{2i} \mid \mathbf{q}_{2i}) f(y_{1i} \mid y_{2i}, \mathbf{q}_{1i})} \right\}$$

not likelihood equivalent because

$$f(\mathbf{q}_{1})f(y_{1} | \mathbf{q}_{1})f(y_{2} | y_{1}, \mathbf{q}_{2})f(\mathbf{q}_{2}) \\ \neq \\ f(\mathbf{q}_{2})f(y_{2} | \mathbf{q}_{2})f(y_{1} | y_{2}, \mathbf{q}_{1})f(\mathbf{q}_{1})$$

Oslo, Norway (c) 2012 Brian S Yandell

causal graphical models in systems genetics

- What if genetic architecture and causal network are unknown? jointly infer both using iteration
- Chaibub Neto, Keller, Attie, Yandell (2010) Causal Graphical Models in Systems Genetics: a unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. *Ann Appl Statist 4*: 320-339. [doi:10.1214/09-AOAS288]
- R/qtlnet available from www.github.org/byandell
- Related references
 - Schadt et al. Lusis (2005 Nat Genet); Li et al. Churchill (2006 Genetics);
 Chen Emmert-Streib Storey(2007 Genome Bio); Liu de la Fuente
 Hoeschele (2008 Genetics); Winrow et al. Turek (2009 PLoS ONE);
 Hageman et al. Churchill (2011 Genetics)

Basic idea of QTLnet

- iterate between finding QTL and network
- genetic architecture given causal network
 - trait y depends on parents pa(y) in network
 - QTL for y found conditional on pa(y)
 - Parents pa(y) are interacting covariates for QTL scan
- causal network given genetic architecture
 - build (adjust) causal network given QTL
 - each direction change may alter neighbor edges

missing data method: MCMC

- known phenotypes *Y*, genotypes *Q*
- unknown graph G
- want to study Pr(Y | G, Q)
- break down in terms of individual edges
 Pr(Y|G,Q) = sum of Pr(Y_i | pa(Y_i), Q)
- sample new values for individual edges
 given current value of all other edges
- repeat many times and average results

MCMC steps for QTLnet

- propose new causal network *G*
 - with simple changes to current network:
 - change edge direction
 - add or drop edge
- find any new genetic architectures Q
 - update phenotypes when parents pa(y) change in new G
- compute likelihood for new network and QTL
 - $\Pr(Y \mid G, Q)$
- accept or reject new network and QTL
 - usual Metropolis-Hastings idea

BxH ApoE-/- causal network for transcription factor Pscdbp

Data: Ghazalpour et al.(2006) PLoS Genetics

scaling up to larger networks

- reduce complexity of graphs
 - use prior knowledge to constrain valid edges
 - restrict number of causal edges into each node
- make task parallel: run on many machines
 - pre-compute conditional probabilities
 - run multiple parallel Markov chains
- rethink approach
 - LASSO, sparse PLS, other optimization methods

graph complexity with node parents

parallel phases for larger projects

8 May 2012

Oslo, Norway (c) 2012 Brian S Yandell

parallel implementation

- R/qtlnet available at www.github.org/byandell
- Condor cluster: chtc.cs.wisc.edu
 - System Of Automated Runs (SOAR)
 - ~2000 cores in pool shared by many scientists
 - automated run of new jobs placed in project

BIC samples for 100 MCMC runs

neighborhood edge reversal

select edge drop edge identify parents

orphan nodes reverse edge find new parents

Grzegorczyk M. and Husmeier D. (2008) Machine Learning 71 (2-3), 265-305.

how to use functional information?

- functional grouping from prior studies
 - may or may not indicate direction
 - gene ontology (GO), KEGG
 - knockout (KO) panels
 - protein-protein interaction (PPI) database
 - transcription factor (TF) database
- methods using only this information
- priors for QTL-driven causal networks
 more weight to local (*cis*) QTLs?

modeling biological knowledge

- infer graph G_{γ} from biological knowledge B
 - $-\Pr(G_{\gamma} \mid B, W) = \exp(-W^* \mid B G_{\gamma} \mid) / \text{ constant}$
 - -B = prob of edge given TF, PPI, KO database
 - derived using previous experiments, papers, etc.
 - $-G_{\gamma} = 0.1$ matrix for graph with directed edges
- *W* = inferred weight of biological knowledge
 - W=0: no influence; W large: assumed correct
 - $P(W|B) = \phi \exp(-\phi W)$ exponential
- Werhli and Husmeier (2007) J Bioinfo Comput Biol

combining eQTL and bio knowledge

- probability for graph G and bio-weights W
 - given phenotypes Y, genotypes Q, bio info B
- Pr(G, W | Y, Q, B) = c Pr(Y|G,Q)Pr(G|B,W,Q)Pr(W|B)
 - Pr(Y|G,Q) is genetic architecture (QTLs)
 - using parent nodes of each trait as covariates
 - $\Pr(G|B,W,Q) = \Pr(G_{Y}|B,W) \Pr(G_{Q \to Y}|Q)$
 - $Pr(G_{\gamma}|B,W)$ relates graph to biological info
 - $Pr(G_{Q \rightarrow Y} | Q)$ relates genotype to phenotype

Moon JY, Chaibub Neto E, Deng X, Yandell BS (2011) Growing graphical models to infer causal phenotype networks. In *Probabilistic Graphical Models Dedicated to Applications in Genetics.* Sinoquet C, Mourad R, eds. (in review)

encoding biological knowledge *B* transcription factors, DNA binding (causation)

$$B_{ij} = \frac{\lambda e^{-\lambda p}}{\lambda e^{-\lambda p} + (1 - e^{-\lambda})}$$

- p = p-value for TF binding of $i \rightarrow j$
- truncated exponential (λ) when TF $i \rightarrow j$
- uniform if no detection relationship
- Bernard, Hartemink (2005) Pac Symp Biocomp

encoding biological knowledge *B* protein-protein interaction (association)

$$B_{ij} = B_{ji} = \frac{\text{posterior odds}}{1 + \text{posterior odds}}$$

- post odds = prior odds * LR
- use positive and negative gold standards
- Jansen et al. (2003) Science

encoding biological knowledge B gene ontology(association)

$$B_{ij} = B_{ji} = c \bullet mean(sim(GO_i, GO_j))$$

- GO = molecular function, processes of gene
- sim = maximum information content across common parents of pair of genes
- Lord et al. (2003) Bioinformatics

MCMC with pathway information

- sample new network G from proposal R(G*|G)
 add or drop edges; switch causal direction
- sample QTLs Q from proposal R(Q*|Q,Y)

– e.g. Bayesian QTL mapping given pa(Y)

- accept new network (G*,Q*) with probability
- $A = \min(1, f(G,Q|G^*,Q^*)/f(G^*,Q^*|G,Q))$ - $f(G,Q|G^*,Q^*) = \Pr(Y|G^*,Q^*)\Pr(G^*|B,W,Q^*)/R(G^*|G)R(Q^*|Q,Y))$
- sample W from proposal R(W*|W)
- accept new weight W* with probability ...

weight on biological knowledge

yeast data—partial success

26 genes NDD1 FKH2 CLN1 36 inferred edges dashed: indirect (2) CDC5 FAR1 SWI6 STB1 HTA1 starred: direct (3) missed (39) MCM1 ACE2 SWI5 EGT2 PCL2 ALG7 SWI4 MBP1 reversed (0) CLB2 CLN2 CTS1 SIC1 CLB5 CDC20 CDC6 ASH1 CDC21 FKH1 Data: Brem, Kruglyak (2005) PNAS

limits of causal inference

- Computing costs already discussed
- Noisy data leads to false positive causal calls
 - Unfaithfulness assumption violated
 - Depends on sample size and omic technology
 - And on graph complexity (d = maximal path length $i \rightarrow j$)
 - Profound limits
- Uhler C, Raskutti G, Buhlmann P, Yu B (2012 in prep) Geometry of faithfulness assumption in causal inference.
- Yang Li, Bruno M. Tesson, Gary A. Churchill, Ritsert C. Jansen (2010) Critical reasoning on causal inference in genome-wide linkage and association studies. *Trends in Genetics 26*: 493-498.

sizes for reliable causal inference genome wide linkage & association

Li, Tesson, Churchill, Jansen (2010) Trends in Genetics

8-node DAGs

8 May 2012

Thanks!

- Grant support
 - NIH/NIDDK 58037, 66369
 - NIH/NIGMS 74244, 69430
 - NCI/ICBP U54-CA149237
 - NIH/R01MH090948
- Collaborators on papers and ideas
 - Alan Attie & Mark Keller, Biochemistry
 - Karl Broman, Aimee Broman, Christina Kendziorski

BxH ApoE-/- chr 2: hotspot

causal model selection choices in context of larger, unknown network

causal architecture references

- BIC: Schadt et al. (2005) Nature Genet
- CIT: Millstein et al. (2009) BMC Genet
- Aten et al. Horvath (2008) BMC Sys Bio
- CMST: Chaibub Neto et al. (2010) PhD thesis — Chaibub Neto et al. (2012) *Genetics* (in review)

Extends Vuong's model selection tests to the comparison of 3, possibly **misspecified**, models.

$$(M_1) (M_2) (M_3)$$

$$Q_1 \rightarrow Y_1 \rightarrow Y_2 \prec Q_{2|1} Q_{1|2} \rightarrow Y_1 \prec Y_2 \prec Q_2 Q_1 \rightarrow Y_1 Y_2 \prec Q_2$$

I

BxH ApoE-/- study Ghazalpour et al. (2008) *PLoS Genetics*

Liver expression data in a mice intercross.

3,421 transcripts and 1,065 markers.

261 transcripts physically located on chr 2.

8 May 2012

Analysis restricted to 78 traits composing a hotspot around 54.2Mb.

Map position (cN)

This collection of traits enriches for "immune system process".

Pscdbp, the local trait at 58.4Mb, is a transcription factor.

8 May 2012