
Practical Third-Party Attestation for the Cloud

Yan Zhai1 Qiang Cao2 Jeff Chase2 Michael Swift1
1University of Wisconsin Madison 2Duke University

Submission Type: Research

Abstract
Central to establishing trust in a service is knowing what
code is running. On a single host, this can be ensured by
locally downloading and compiling code, including the
operating system image. However, this is not possible
for programs that are run by another party: even if the
source code is known and available to a client, she cannot
verify that a service is actually running that trusted code.

This paper describes a layered attestation archi-
tecture Latte in the multi-tenant cloud that provides
source-based attestation and network-based authentica-
tion. Clients can verify that cloud services deployed in
Latte are running code built from specified source repos-
itory. Latte’s attestation enables new use cases such as
joint data mining, where two data owners can agree on
the code to use for data analysis, and then guarantee that
only the specified code can access their data. We imple-
mented Latte in Openstack, Docker and Spark to demon-
strate how Latte can be used to improve cross tenant trust
with attestation. We also show that our implementation
can be extended to support more general software and
platforms. The overhead of using Latte in most case is
negligible.

1 Introduction
Cloud-based applications are increasingly structured

as layered compositions, with components managed by
different tenants. For example, a tenant might deploy and
manage an elastic cloud-based micro-service as a plat-
form for other tenant applications. Layering and compo-
sition create new trust relationships among tenants and
new security challenges. This paper proposes an archi-
tecture for pervasive software attestation in the cloud, as
a foundation to address these challenges.

Consider this service composition example: suppose
tenant Alice launches a commercial website using Bob’s
storage service and Cindy’s machine learning service.
How can Alice verify that Bob and Cindy’s services are
properly secured and patched against known vulnerabil-
ities, and will safeguard her data? Existing cloud in-
frastructure provides a partial solution, in that services

can authenticate to their clients by name (e.g., with
IAM [17]). However, authentication by name offers only
“social trust”: Alice must rely on the reputation of the
service providers (Bob and Cindy). Service layering
adds another dimension to the problem. For example,
Bob’s software may run over a Platform-as-a-Service
(PaaS) environment provided by Dean, which further re-
quires that Alice trust Dean’s service as well.

One possibility is to rely on cryptographic mecha-
nisms for secure computation, such as homomorphic en-
cryption [29, 42], which can assure privacy and integrity
for software on untrusted platforms [36]. This approach
removes the need to trust hardware vendors (e.g., Intel)
and infrastructure providers (e.g., Amazon), but its per-
formance cost is prohibitive for most applications.

An appealing alternative is to use software attestation,
in which parties produce and consume statements about
running code objects as a basis to verify their security
properties. Many new systems use attestation enabled by
hardware support such as Intel’s SGX [19]. For exam-
ple, several systems allow a cloud tenant to verify that
its code is deployed correctly and is safe from tampering
by an untrusted cloud platform [22, 21]—an example of
first-party attestation, in which the attestation statement
is issued to the code owner, who has inherent trust in its
own code and build chain, and knows the hash of the bi-
nary code object. Our goal is to expand support for third-
party attestation, in which the statement is consumed by
a client of the attested service to check compliance with
the client’s security policy. Ryoan [32] is an early exam-
ple of third-party attestation enabled by SGX.

The goal of our work is to enable practical and gen-
eral third-party attestation that is compatible with exist-
ing software stacks in cloud environments. A key chal-
lenge is to enable reasoning about service compositions
with multiple layers and elements. For example, it is
easy to build trust in compact applications written with
powerful programming formalisms at the top of the cloud
stack, but this requires trust in the supporting infrastruc-
ture, which may be larger and more complex but also
more widely used and inspected, e.g., by an open-source
community. An effective architecture must address sev-

1

eral key safety challenges: (i) link binary artifacts to in-
spectable source code via a secure build chain, (ii) au-
thenticate instances to bind attestations to instances se-
curely; (iii) combine multiple trust assertions to infer
properties of compound deployments in a way that is
provably sound; (iv) use these properties within policies
to control access to protected data (attestation-based ac-
cess control).

We leverage several observations about cloud environ-
ments in our design:
• Cloud providers tightly control their infrastructure

and are (generally) trusted by tenants; hence they
can serve as a root of trust. Our architecture is com-
patible with a hardware root of trust (e.g., SGX),
but does not require its cost or complexity when the
cloud provider itself is trusted by the tenants.
• IaaS providers control their networks and prevent

spoofing and sniffing of packets by tenants, so we
can use network as secure identifiers of service in-
stances.
• Much of the code running in clouds originates from

public code repositories, which can provide trust
through a large developer and user base.
• There is a rich and growing ecosystem of code anal-

ysis tools that can automatically identify common
security bugs and verify software safety proper-
ties [33, 24, 31, 30]. Attestation enables us to apply
these sources of code trust to deployed instances.

Based on these observations, we propose the Latte ar-
chitecture1 for attestation in layered platform stacks an-
chored in a trusted IaaS cloud. A manager at each level
of the stack makes statements about the code it launches,
including the identify of the code, the configuration of
the instance, and the network endpoints controlled by the
instance (i.e., IP address and port ranges). Other par-
ties may combine these statements with external state-
ments endorsing properties of the software, and check
them against security policies expressed as logical rules.
Latte authenticates instances by their network addresses:
this approach is compatible with existing software and
reduces the need for expensive asymmetric cryptography
and the burdens of managing keypairs. Finally, attested
software objects support a limited management interface
to prevent tampering of instances after launch.

Latte enables cloud tenants to use a logic engine
to combine trust chains from multiple roots of trust
(anchors)—principals the client trusts a priori to estab-
lish trust in other entities. Trust anchors in Latte in-
clude: (i) IaaS cloud providers, who are trusted to launch
VM instances from images, to attest those instances, and
maintain a secure network; (ii) secure build services,
which link a binary artifact to a source code reposi-

1Layered Architecture for aTTEstation.

tory; and (iii) endorsers, who assert security properties
of source codes based on inspection or automated analy-
sis. Any of these anchor principals may itself be attested
as part of a larger composition; in principle, the entire
edifice may be grounded in hardware roots of trust such
as SGX.

We implement Latte on OpenStack with CQSTR [43]
to manage virtual machines. To demonstrate its layer-
ing capabilities, we built an extended Docker platform
called TapCon that runs in an attested VM and itself at-
tests the containers that it manages. We also extended the
Spark analytics platform to support attestation of Spark
programs and controlled access to data by trusted pro-
grams, and deployed Spark in attested TapCon contain-
ers. We show how layered attestation for Spark and Pre-
dictionIO [12] can support trusted programs that process
private data sets owned by multiple distrusting parties
(see §5).

We first motivate the use of attestation and discuss our
trust model (§2). We follow with description of the Latte
architecture(§3) and implementation (§4). Finally, we
describe application use cases (§5) and evaluate perfor-
mance (§6).

2 Background and Trust Model
Motivating example. Consider the problem of joint
data mining: suppose that two groups each have a pri-
vate dataset and want to cooperate by running analyt-
ics program P over both datasets (A and B) together.
They trust that P produces output that does not expose
confidential details of A or B to one another. They
choose to leverage cloud infrastructure and common
platform frameworks—an open analytics stack in Docker
containers—to deploy P and grant it access to A and B.
How can they ensure that their datasets are accessible by
a VM instance only if it runs the correct P?

Attestation-based access control. We propose attes-
tation based access control as a solution to this problem.
Each group installs an access policy that permits data ac-
cess from an instance running P. The cloud storage ser-
vice that stores A and B verifies that requesters comply
with a policy that the data owner provides or approves:
the request originates from a suitably trusted application
(P) running in a secured environment. A and B might
grant access based on the identity of P or on endorse-
ments of its general safety properties by trusted parties.

Similar scenarios are increasingly common in cloud
computing as service granularity becomes finer with
micro-services and lambda functions [18]. Layered at-
testation makes it possible to base dynamic trust on prop-
erties of the code running in the interacting instances,
rather than on the owners of those instances.

2

IaaS provider as a root of trust. Our implementa-
tion of Latte grounds all attestation chains in trusted
infrastructure-as-a-service (IaaS) providers. These
providers launch virtual disk images as virtual machine
instances, and fully control the platform infrastructure,
hypervisors, hardware, and network. This model follows
our earlier work on CQSTR [43], which extends Open-
Stack to support basic attestation of VM instances.

While not absolute, this trust is well founded: cloud
providers often have ample resources to devote to secu-
rity, and market forces push them to improve their se-
curity practices continuously. Trust in the IaaS provider
could be social (reputation), or based on auditing and en-
dorsement by a trusted third party, or (in principle) on
hardware-based attestation of the IaaS hypervisors and
cloud control system.

Specifically, we rely on cloud providers to (i) attest
that virtual machine instances are faithfully launched
from named virtual disk images, and (ii) secure their net-
works against spoofing or sniffing attacks, to protect and
authenticate network traffic without cryptography at the
application layer. Major commercial providers do assure
these properties, e.g., Amazon AWS, Google Cloud, and
Microsoft Azure.

Secure code provenance and source analysis. A key
principle of Latte and third-party layered attestation is
that it should be possible to bind attested code securely
to a hashed source code repository that produces the at-
tested binary artifact. Secure code provenance can har-
ness new software analysis capabilities that operate at
the source level. For example, a vulnerabilty scanning
service (e.g., Swamp [16]) might certify that a program
P passes a check, or that it P’s configuration has been
patched for known vulnerabilities such as Heartbleed [7].

But even if we can verify and certify safety proper-
ties at the source code level, how can we be sure that a
deployed binary was produced from exactly that source
code without tampering? A secure binding to source
code requires two properties: (i) verifying that the code
compiled to create a binary comes from a known version
of a code repository, and (ii) using a trusted environment
and trusted tools to compile the code into a binary [40].
Property (i) can be achieved using source-code control
tools such as Git [41] that provide a hash over the code
comprising a version; selecting a source repository and
version hash is sufficient to specify the specific source
code to be used. Property (ii) can be achieved using a
certified build platform and tool chain.

But this introduces a circular dependency: how can
a certified build platform be created to build code from
source, as the platform must exist as a binary? Latte
addresses this problem with support for reproducible
builds—the ability to build source code at a later time
and on a different platform and produce a matching bi-

nary. This capability allows a client to trust an existing
binary hash by building it locally from source and then
verifying the local build matches the binary used as a
compilation platform.

For example, Latte relies on a standard virtual machine
image to compile container and application code. This
virtual machine image can be verified by any client of
Latte by downloading the code for the image, compiling
it locally, and then comparing the resulting binary against
the standard image. It is not necessary for every user to
perform this check: the potential for any party to validate
it grounds our trust in the binary artifact broadly in the
community.

As we discuss in Section 4, we can support repro-
ducible builds only within certain limits. This makes it
difficult to use for all programs. Instead, we show how to
use reproducible builds for the base build service (as part
of the TapCon platform), which provides a trustworthy
foundation for certified builds of other source programs
to run in TapCon containers.

Ownership. The owner of a deployed cloud instance
usually has complete control over the instance and can
change it in arbitrary way through management inter-
faces. To make an instance trustworthy, it is critical to
block any tampering of the instance after launch in any
way that could undermine the attested properties. We
presume that any instance owner—e.g., of a virtual ma-
chine, container, or process—is a potential attacker.

To eliminate this threat, we must first secure any back
doors in the application source code itself. We view this
aspect as an element of the safety endorsement based on
the source code: any management APIs in the program
must be subject to inspection at endorsement time, and
considered by any analysis. For example, a trusted pro-
gram such as a privacy-preserving survey might provide
management APIs to close a survey and output aggre-
gated data, but not to read individual responses. Second,
we must close any dangerous management channels in
the underlying platform. Our approach restricts danger-
ous management channels at the cloud API for attested
instances.

3 Attestation Architecture for the Cloud
The Latte architecture is a practical layered attestation

architecture for the cloud. A host instance at each layer
(e.g., IaaS, PaaS, application) issues attestation state-
ments for any guest instance it launches. Figure 1 il-
lustrates how attestations are chained through the layers
and rooted in the IaaS layer. Furthermore, the binary for
an instance can be linked securely to a specified source
version by an attested build service that secure assertions
about what was compiled. The union of all of these state-
ments can prove exactly what code is running in a ser-

3

IaaS

VM

App
container

VM image

Attest

App code

Metadata Service

Launch
script

Container Image

 Launch
script
& Args

Attest

Attestations Controlled network
infrastructure

Figure 1: Layered attestation example: a trusted IaaS service
attests a sealed Latte VM, which launches and attests application
containers. The shaded areas represent attested programs and
their attestations stored in an IaaS metadata service. Latte attests
to the container’s image, application code, and the launch script
and parameters.

vice.
Latte supports a novel combination of features for

practical cloud attestation. Attestations available to end
user is property based: whether a remote party has a cer-
tain property. These property based attestations are is-
sued in logic sets and linked to form chains that con-
nect a running service back to a set of trusted roots, the
service’s source and the IaaS platform. Latte leverages
the trusted network of IaaS platforms to authenticate in-
stances at each layer and use source-based attestation to
reason program properties. With these, the architecture
naturally extends across multiple layers.

For example, in the joint data mining scenario, the
instance running P can be in a container managed by
a platform-as-a-service (PaaS) layer such as Docker
Swarm [27], which itself is on a virtual machine
launched by the IaaS. In this environment, a user wanting
to ensure data is used correctly can validate that P com-
plies with the policies of the owners of datasets A and B,
that the stack upon which P runs is trustworthy, and that
the code running P represents a faithful compilation of
the trusted source for P.

Attestation elements include Latte are instance princi-
pals and images. A principal represents a running body
of code that can be launched independently at some layer
of the system, such as an OS, a container, or an appli-
cation process. In addition, some principals may server
as managers in that their primary function includes act-
ing as hosts to launch guest instances at the layer above.
For example, Docker is a manager at the PaaS layer that
launches containers. An image is a body of code and data
that can be executed to form an instance principal, much
as an executing program creates a process. An image
may be a VM image, container image, or application.
Each instance principal associates to a UUID provided

by its parent/host instance.
Latte stores attestations and assertions about princi-

pals and images in a metadata service, which is an IaaS-
provided storage service. Principal and image assertions
are present in the form of logical statements, which can
precisely capture attestations and property assertions in
various layers of the system§ 3.2 and allow efficient rea-
soning on a set of relevant statements. An assertion can
be made by any principal in the system and it includes
the issuer principal ID that provided the statement. For
example, a container instance principal may have a prop-
erty, provided by the OS that launched the container,
specifying what image the container runs.

Managers publish attestations to the metadata service
when they launch new guest instances. For example, an
IaaS service manager publishes properties about the VM
instances it launches, and a container manager (e.g. Tap-
Con Docker) publishes properties about the containers it
launches. The metadata service stores the authenticated
identity of the issuer for each statement.

There are two special kinds of assertions. First, state-
ments made by a third party about an image can be useful
to incorporate external information and make the system
open. This allows, for example, statements that certain
image is trusted a priori. A builder property on an im-
age specifies the principal that compiled the image and
a URL specifying the source code for the image (e.g., a
Git URL). Similarly, principals have an associated image
property providing the UUID of the image used to launch
the principal.

With these properties, the client of a service can ver-
ify a complete set of attestations about the service: its
code, its host manager code, and so on down the chain.
Furthermore, it can verify not just the code, but what in-
stance compiled the code for the service (and other lay-
ers), and by following the image properties for that prin-
cipal, recursively how the build instance itself was built.
Figure 1 shows an example of layered attestation.

Reproducible base image. These chains must eventu-
ally lead back to an inital binary used to build the other
images. We rely on a reproducible build to verify the
base image. This allows anyone to verify the binding of
the base image to source by building a copy locally and
comparing its hash against the base image.

Most build processes are not reproducible, as they
introduce differences through time stamps, deliberately
introduced entropy, build counters, or non-determinism
(e.g., random ordering of parallel build processes). For
example, Debian has been working on this topic for
years, but still has thousands of packages that are not
reproducible [3]. TapCon works around this by requr-
ing only that the base image is reproducible. A TapCon
instance running the base image then bootstraps trust by
building the remaining images and issuing certified state-

4

ments about them.

Source-based program properties. Knowing the
source code for a service can help provide assurance it is
correct, but is not sufficient due to bugs and other vulner-
abilties. TapCon provides facilties for high assurance by
allowing external principals (e.g., vulnerability scanning
services or auditors) to publish statements about source
code to the metadata service, authenticated by public key.

3.1 Network-based Authentication
Latte uses network endpoints to authenticate princi-

pals. The source IP address and port can be linked to
the principal controlling that address and port. The bind-
ing of a network address range and principal is stored
in the metadata service by managers when they launch a
new instance. Thus, the IaaS service initially publishes a
property for the principal of a new VM stating it controls
all the ports at the VM’s IP address. When the container
manager in the VM launches a container, it publishes a
property on the container with its restricted port range.

Port management. Within a VM instance, all in-
stances share the same IP address but use different ports.
We further extend network control to the software stack
on an end host by adding support for safe port manage-
ment for processes. The objective is to allow a parent
instance to safely delegate a range of its local ports to a
child instance it spawns. When launching a new process,
the parent process can specify a subset of its port range
to delegate to the child process. This has two effects: the
parent can no longer use that port range, and the child
can only use that port range. Furthermore, processes are
prevented from later expanding their port ranges. This
process also ensures that the port ranges for separate in-
stances do not overlap. We describe the details of this
mechanism in §4.

Managers of each layer needs to post network ad-
dress bindings of its children to the metadata service,
too. Also, any IP addresses outside the cloud can not be
authenticated by this means, so they cannot create new
principals or change existing network address bindings.

3.2 Logical Trust for Latte
Logic offers a natural formalism to represent lay-

ered attestations, program endorsements, network ad-
dress delegations, trust anchors, access policies, and val-
idation rules. Our logical inference engine is called
checking service, which is independent of the other com-
ponents. It fetches attestation statements from the meta-
data service and composes them as DAGs. Then it fol-
lows inference rules to determine whether a principal
is linked to its source, or more specifically, whether a
principal has a property that is associated with a source
repository.

IaaS

TapCon VM

Container

Application

Attestations
and

Authorizer

Network
address

assertions

Linked source
endorsements

Metadata Service

Figure 2: An application principal that wishes to perform
attestation-based access control checks is an authorizer. It runs an
off-the-shelf logic engine in a library or process to evaluate logi-
cal guard conditions according to its local policy rules. The logical
rules evaluate code attestations published at each layer, and en-
dorsements of the attested code.

Layered attestation chains. An attestation chain is a
linked DAG of trust logic statements that establishes the
code identity and network address(es) of the instance at
the top of a cloud stack (Figure 2). For example, it may
have statements about the source repository for its code,
the build chain that produced an image from the source,
and the layered platforms below it. Any relying party
or “authorizer” may use an off-the-shelf logic engine to
check compliance by evaluating specified conditions—
e.g., guard conditions for access control—against sets
of these authenticated logic assertions and policy rules
governing the authority of speakers to make those asser-
tions. Figure 3 shows statements across layers are linked
to form compact attestation chains anchored at the IaaS.

Listing 1: Policy rules to validate a layered attestation chain.
(R1) runs(Instance, Image) :-

runsInstance(H, Instance, Image),
attester(H).

(R2) runsInstance(H, Instance, Image) :-
AuthNID: attest(Instance, Image),
bindToID(H, AuthNID).

(R3) attester(Instance) :-
runs(Instance, Image),
E: endorseAttester(Image),
attesterImageEndorser(E).

(R4) attester(H) :- trustedCloudProvider(H).

Validation rules. Listing 1 shows simplified rules R1-
R4 that an authorizer uses to validate an attestation chain.
Each rule has a head on the left, which represents a belief
that is implied by (“:-”) a list of subgoals in a body on
the right: the head is true if all subgoals in the body are
true, under some assignment of string values to variables
(capitalized terms).

R1 allows an authorizer’s logic engine to verify that
an instance I runs a program image P, if some valid host
instance H attests that I runs P, and H is trusted to issue
such attestations. The value of P is a hash over the code
for P and and its configuration, as shown in Figure 1. R2
concludes that H attested I if the attestation was spoken
from a network address that is bound securely to the host

5

Container VM IaaS

runGuestInstance(vm2, img_hash2).
 bindToAuthNID(10.10.0.12, vm2).

 guestConf(vm2, config_hash2).

runGuestInstance(vm1, img_hash1).
 bindToAuthNID(10.10.0.11, vm1).

 guestConf(vm1, config_hash1).

runGuestInstance(vm0, img_hash0).
 bindToAuthNID(10.10.0.10, vm0).

 guestConf(vm0, config_hash0).

runGuestInstance(container20, img_hash20).
 bindToAuthNID(10.10.0.51, container20).

 guestConf(container20, config_hash20).

runGuestInstance(container21, img_hash21).
 bindToAuthNID(10.10.0.52, container21).

 guestConf(container21, config_hash21).

runGuestInstance(container10, img_hash10).
 bindToAuthNID(10.10.0.41, container10).

 guestConf(container10, config_hash10).

runGuestInstance(container11, img_hash11).
 bindToAuthNID(10.10.0.42, container11).

 guestConf(container11, config_hash11).

runGuestInstance(container00, img_hash00).
 bindToAuthNID(10.10.0.31, container00).

 guestConf(container00, config_hash00).

runGuestInstance(container01, img_hash01).
 bindToAuthNID(10.10.0.32, container01).

 guestConf(container01, config_hash01).

runGuestInstance(app-I, app_hash_I).
 bindToAuthNID(10.10.0.51:3001-4000, app-I).

 guestConf(app-I, app_config_I).

runGuestInstance(app-J, app_hash_J).
 bindToAuthNID(10.10.0.51:4001-5000, app-J).

 guestConf(app-J, app_config_J).

runGuestInstance(app-K, app_hash_K).
 bindToAuthNID(10.10.0.52:3001-4000, app-K).

 guestConf(app-K, app_config_K).

runGuestInstance(app-L, app_hash_L).
 bindToAuthNID(10.10.0.52:4001-5000, app-L).

 guestConf(app-L, app_config_L).

runGuestInstance(app-E, app_hash_E).
 bindToAuthNID(10.10.0.41:3001-4000, app-E).

 guestConf(app-E, app_config_E).

runGuestInstance(app-F, app_hash_F).
 bindToAuthNID(10.10.0.41:4001-5000, app-F).

 guestConf(app-F, app_config_F).

runGuestInstance(app-G, app_hash_G).
 bindToAuthNID(10.10.0.42:3001-4000, app-G).

 guestConf(app-G, app_config_G).

runGuestInstance(app-H, app_hash_H).
 bindToAuthNID(10.10.0.42:4001-5000, app-H).

 guestConf(app-H, app_config_H).

runGuestInstance(app-A, app_hash_A).
 bindToAuthNID(10.10.0.31:3001-4000, app-A).

 guestConf(app-A, app_config_A).

runGuestInstance(app-B, app_hash_B).
 bindToAuthNID(10.10.0.31:4001-5000, app-B).

 guestConf(app-B, app_config_B).

runGuestInstance(app-C, app_hash_C).
 bindToAuthNID(10.10.0.32:3001-4000, app-C).

 guestConf(app-C, app_config_C).

runGuestInstance(app-D, app_hash_D).
 bindToAuthNID(10.10.0.32:4001-5000, app-D).

 guestConf(app-D, app_config_D).

Figure 3: Linked attestations in Latte: attestation to an app is
linked to the attestation of the host container; attestation to a con-
tainer is linked to the attestation of the host vm; an attestation
chain is anchored at the IaaS.
instance H by other rules for bindToID (not shown). It
could use other authentication methods (e.g., keypairs)
to establish the binding; this is a form of reconfigurable
authentication [34]. The recursion in R3 enables these
rules to check layered attestation chains of any depth.
R4 is a basis for the recursion: it trusts attestations from
a trusted IaaS provider.

Validating an attester. R1 requires that the attesting
host H at each step is accepted as a valid attester: as
we have explained before, this property captures the be-
lief that H is faithful in launching guest instances, bind-
ing them to secure network addresses, and attesting to
the guest programs. This condition is satisfied if, for ex-
ample, H is a trusted IaaS cloud provider (R4), or if H
itself attested by its own host as running a secure pro-
gram, and some endorser E endorses that program for
the attester security property (R3). Trust in the en-
dorser E—and in the IaaS provider—is also derived from
authenticated (e.g., signed) logic statements and/or local
policies (not shown). An authorizer could, for example,
accept endorsers that are approved by its enterprise or by
an open-source consortium.

Authorizing data access. In our joint data mining sce-
nario, a policy decision to grant access to dataset A or B
can be based on the identity of the code running in the
requesting instance, and the data owner’s beliefs about
the security properties of that code. As shown in Fig-

ure 2, the data owner attaches an access policy to an ob-
ject. The data owner trusts the authorizer—in this case,
the data storage service—to apply its policy faithfully.
Similarly, the data owner places trust in third-party en-
dorsers according to its other rules, as discussed above.
Listing 2 shows an exemplary rule that verifies (i) that the
Owner says that Endorser is trusted to endorse Property
about the program, (ii) that Endorser says that Program
has Property, and (iii) Owner says the object can be ac-
cessed by a program with Property.

Listing 2: Policy rule that grants access based on accepted
properties of an attested program that the requester is running.

hasAccessPrivilege(Program, ObjID, Owner) :-
Owner: trustEndorserOn(Endorser, Property),
Endorser: hasProperty(Program, Property),
Owner: accessPrivilegeByProgramProperty(

Property, ObjID).

Authorizing access from workers. Applications such
as Spark form clusters across containers. Data access
requests are often sent from individual workers. To au-
thorize access from a worker to data objects on a store,
an authorizer checks i) the worker is running code with
accepted program property; ii) a master has endorsed the
worker as a member of the cluster; iii) its master is also
running right code. Listing 3 shows logic rules we use to
authorize a worker’s data access requests.

Listing 3: Policy rules used to grant access to a worker run-
ning in a cluster.
ApproveAccessFromWorker(Worker, ObjD, Owner) :-
approveAccess(Worker, ObjID, Owner),
Master: clusterMember(Worker),
approveAccess(Master, ObjID, Owner).

approveAccess(Instance, ObjID, Owner) :-
runs(Instance, Image),
hasAccessPrivilege(Image, ObjID, Owner).

3.3 Latte service APIs
We defined a set of APIs on the metadata service

through which cloud instances can send requests to post
statements for new guest instances or new images (Ta-
ble 1). In attestation-based access control, we defined a
set guards (Table 2) to perform authorization on a run-
ning instance from an authenticated network address.

3.4 Security Analysis
The main goal of Latte is to guarantee properties of a

running service to third parties, either clients of the ser-
vices or other services invoked by the attested service.
Here we discuss the threats that Latte addresses as well
as threats it does not.

Service operators. Normally services are completely
vulnerable to operators who can remotely log in, access
all data in use by the service, and control or change the

6

API Description
launchGuest
(GuestID, ImageID,
IP, PortRange,
Config)

Post attestation statements for a
guest instance using the parameter
values.

createImage
(ImageID,
SourceURL, Config)

Post statements for a new image.

Table 1: APIs implemented in the metadata service.

Guards Description
attest (IP, Port) Attest what is running in an in-

stance at a network address.
attestProp (IP,
Port, Property)

Check if an app running at a net-
work address has an accepted prop-
erty.

accessObject (IP,
Port, DataObject)

Determine if an app running at a
network address has access to a data
object based on accepted program
properties.

Table 2: APIs implemented in the trust script of an authorizer
using attestation-based access control.

service’s behavior. Furthermore, operators may be able
to use management APIs at the IaaS or Paas level to con-
trol services. With Latte, security against this kind of
attack depends on the secured service and all layers of
code below it not allowing operations that would change
the attested guarantees of code. For example, the oper-
ating system cannot be secured if it allows remote logins
an the ability to load kernel code dynamically.

If, however, management APIs are restricted to pre-
vent such remote acces, then Latte can secure client data
against access by the operator: it can ensure the system
was booted from a secure configuration that prohibits re-
mote changes.

Buggy code. Latte does little to secure code contain-
ing vulnerabilities that can be exploited remotely. How-
ever, if these bugs are found, Latte allows a client to
verify that a service is using patched code by checking
the statements about which repository and code version
were used to build the service. In addition, Latte allows
clients to verify that security scanning tools were run
as part of the build service and verify that they did not
find any bugs. Despite these efforts, some bugs may per-
sist. Thus, Latte is best deployed with a defense-in-depth
strategy that also relies on restrictive access controls and
network protections such as firewalls to make it more dif-
ficult to exploit vulnerabilities.

Fake attestations. The security of Latte depends on
the security of each layer: a compromised IaaS or PaaS
manager could publish false statements about services
they launch. Similarly, a third party could publish false
claims about a principal, such as claiming a repository
should be trusted. In this case, client’s can detect that

these claims are not linked to a trusted root (i.e., a trusted
repository or IaaS provider), and will therefore ignore the
claims when verifying attestations.

4 Latte Implementation
We implemented Latte in a layered system with Open-

Stack as the IaaS layer and Docker as a PaaS layer. In §5
we extend the stack upwards to include a Spark analytics
service that is hosted on the PaaS and attests Spark ap-
plications. This section describes our extensions to both
OpenStack and Docker, and services for certified builds
and sharing of attestations. In total, our implementation
comprises about 9000 lines code based on CQSTR [43]
and SAFE [25].

4.1 OpenStack Extensions
We based our implementation on CQSTR, which is it-

self based on OpenStack Kilo [11]. CQSTR provides a
metadata service to publish attestations and other secu-
rity assertions. CQSTR also supports “sealed” VM in-
stances that restrict the use of IaaS management APIs
that an attacker can use to subvert a running instance,
such as backing up the VM or setting up tunnels that by-
pass firewall rules. To prevent changes to an instance
from outside, Latte disables access to port 22, block-
ing remote ssh, so that only sealed services with self-
contained management APIs may be used.

CQSTR provides general mechanisms to restrict VMs
to boot from a select set of images. Our Latte proto-
type initially limits VM launches to a single Root VM
Image, described below, which implements a platform
named TapCon for secure Docker containers. We imple-
mented a policy that also allows launch from any VM
image that is built by the root image using the certified
build service in TapCon (see below).

Root VM Image. The Root VM Image is the base OS
installation for all containers running on Latte. We use
a customized version of boot2docker [1], which is a
lightweight distribution designed to run Docker contain-
ers, and the only service it runs is our TapCon extension
of Docker. The image uses Linux kernel version 4.4.39
with corresponding AUFS patches from Docker. The im-
age itself requires a standard Docker daemon to build.

The Root VM image is the only image in Latte that
cannot be certified by Latte. As described previously, we
instead rely on reproducible builds to allow any client to
verify the image by building a replica from source for
comparison. Table 4.1 shows the steps needed to allow
boot2docker to be built reproducibly, which are based on
published instructions [14]. The largest causes of binary
mismatch are timestamps embedded in libraries.

So far, we can reproducibly build everything in the
boot2docker image except the Docker daemon itself, and
there is no publicly available build of TapCon Docker.

7

1. Remove unnecessary software.
2. Add all source explicitly downloaded with curl dur-
ing build to Git source repository.
3. Use faketime tool [5] to generate identical build
timestamps.
4. For packages installed by a package manager (e.g.,
apt or dpkg), specify the exact version and required
hash, which is verified during build.
5. Instruct GCC to omit build IDs.

Table 3: Steps for reproducible image build.

We work around this with a two-step process that instead
uses a certified build for just Docker. When first launch-
ing Latte, we use an initial Root VM image that specifies
which version of the official Docker source to use from
the Docker repository (relying on Git to reliably copy
and verify the hash of the source code). During the first
launch of this image, the VM applies our patches (below)
to the Docker source and compiles Docker binaries. To
avoid such bootstrapping on every VM launch, the ini-
tial VM generates a new VM image including TapCon
Docker during this process and registers its source and
build properties into the IaaS metadata service. Thus this
image can be used for subsequent secure VM launches.

4.2 Docker Extensions
Our extended Docker creates and deletes container

principals and publishes statements about its containers
in the metadata service. It also delegates port ranges to
specific containers, so that the source of network traffic
can be identified from the port and IP address.

Docker modifications. We made changes to Docker to
(i) post statements about newly launched containers, (ii)
limit what images can be launched, and (iii) limit admin-
istrative access to Docker. TapCon adds a container mon-
itor that detects container start and stop. On detecting a
change of state, the monitor calls the metadata service
to create and delete principals and images. We imple-
mented this as a separate service to minimize changes to
Docker itself, but it could be integrated.

Like our modified OpenStack, we modified Docker
to limit the allowable images to launch. Currently, it
launches only images built on the Docker host; it allows
no external Docker images except for a small number of
white-listed images that contain the base OS distribution
(e.g., Debian or Ubuntu). We rely on only a few existing
reproducible packages like modified gcc [15] tools, and
we compile the initial Docker images from scratch.

For each container built and launched, TapCon posts
the source information and the base container image to
the metadata service. The metadata is trustworthy be-
cause TapCon runs a verifiable image that is known to
launch only allowed images and to post their metadata

faithfully. Then through the base container image proper-
ties, one can obtain a full chain of container build scripts
grounded in the initial white list packages.

We limit the functionality of standard Docker to en-
sure security properties are not violated through manage-
ment APIs. To do so, we first use an authz plugin [4] to
put restrictions on API usage. TapCon’s Docker cannot
execute command shells in the container, directly copy to
or from a container, or launch privileged containers (i.e.,
with root or other elevated access to the OS). Mapping
of host path as volume is also prevented; instead docker
assigns a random path.

Port Management. Latte uses network endpoints for
authentication, so TapCon ensures containers use only
ports assigned to them. Docker already handles assign-
ing server ports to containers. We extend this functional-
ity by also limiting what client ports a container may use
when initiating a connection.

We extended the Linux kernel to support allowable
port ranges on clients and processes. The kernel drops
any packets from ports outside this range. We added 5
system calls to manage port ranges. The container man-
ager sets the port range for containers it creates and spec-
ifies the range via environment variables. Similarly, a
process running in a container can refine the allowable
port range for its child processes, which is useful for
application services such as Spark that also launch new
code.

4.3 Metadata Service and Guards
We implement the prototype metadata service using

SAFE [25], which adds scripted linking to connect re-
lated statements in DAGs that match the delegation struc-
ture, and publishes linked trust statements in an indexed
put/get metadata service. SAFE scripts provide an API
for a principal to issue a certificate of statements accord-
ing to a pre-defined logic template. To enable efficient
retrieval of relevant attestations, SAFE allows a certifi-
cate template to include programmable link statements
to refer to dependency certificates.

For example, the scripts for Latte provide a generic
API for a host layer to attest a guest instance. The tem-
plate includes statements about the image and configu-
ration of the guest instance, as well as a link pointing to
the host’s attestation. This parameterized primitive can
be used to attest a TapCon VM, a Spark container, or a
Spark application. As a result, a valid attestation chain
in Latte is linked for efficient retrieval.

The cloud metadata service stores only authenticated
statements. It authenticates each client to its network ad-
dress, and includes the issuer’s id into each statement.

We further develop guard scripts to perform compli-
ance checks for access control. We implement guards
as primitives in another SAFE trust script. They instruct

8

SAFE to retrieve and cache attestations and to perform
logic inference against a closure of linked logic sets. A
guard specifies a target query, references to local policy
rules, and a reference to an attestation DAG used as the
inference context. Exemplary guards include those that
check the identity of a program running in an instance
and the properties of the program. Compliance checks
for attestation based access control are end to end: the
guard checks program properties against access policies
(e.g., ACLs) attached to data objects for attestation-based
access control.

4.4 Certified Build Service
The Root VM image contains basic OS services but

no applications. TapCon builds application container im-
ages from source repositories with its secure build ser-
vice. It allows a user to build new VM images and con-
tainer images in a known and trusted environment. It
takes a Git URL with a Dockerfile (a manifest desecrib-
ing how to build the container), then uses the Dockerfile
to generate a Docker image. Once complete, the build
service publishes the image to IaaS storage (such as a vir-
tual block device or blob storage), and posts statements
about the image to the metadata service.

5 Application Use Cases
We describe how Latte is used to strengthen security in

five use cases: a package and container building service,
data storage, joint data analytics, machine learning, and
a multi-tier web service.

5.1 Building Service
We extended the certified build service to also build

packages from a makefile. The service publishes a bi-
nary it builds and provides public access to it via a spec-
ified path. At the same time, it posts statements about
what was built to the metadata service.

We also added extensions to automatically apply static
analysis tools during the build process to scan for bugs
and vulnerabilities. The building service uploads the
source package to SWAMP [16], which runs the clang
static analyzer and gcc checker [6]. It then issues state-
ments about the number of common weakness enumer-
ation bugs (CWEs) found in the package. These state-
ments are linked to attestations of the instances that run
the code and can be retrieved by a client to verify if a
service meets its security requirements.

5.2 Data Storage
We extended two existing data stores to add

attestation-based access control to their existing authen-
tication and access control methods. This addition allows
data owners to ensure that data can only be accessed from
an approved software stack. We rely on the existing au-
thentication mechanisms of the underlying data store to

identify users and apply normal access controls; Latte’s
access control is an additional layer of control.

MySQL. We implemented attestation-based access
control at the granularity of database connections using
MySQL-router [10]. This service acts as a transparent
proxy for a backend database. We extended MySQL-
router to store aaccessor IDs and corresponding ACLs
that specify what software versions are allowed to con-
nect. On each connection, the router invokes a guard to
authorize based on the attestation statements about the
client. Only if the attestations prove that the client’s soft-
ware stack is permitted does the router proxy connect to
the MySQL backend. This design re-uses MySQL’s ex-
isting password-based user authentication mechanism.

HDFS. We extend HDFS to associate each file path
with a local policy file. This policy file contains a list
of ACLs, specifying required code properties, e.g., ver-
sion of source code, that the client program must have
to gain the access. On creation of a file, HDFS posts
its code property-based ACLs to the metadata service.
When a client requests to access using the file path (e.g.,
traversal, read write), HDFS invokes a guard to check if
the client code, authenticated by network address, is per-
mitted to have access. This allows different software to
access different sets of files. This design demonstrates
how to add attestation-based access control to HDFS.

5.3 Data analytics
We extend Apache Spark [20] to post attestations and

sandbox applications. A cluster of modified Spark runs
as a platform that provides data analytics service to mul-
tiple clients. Spark provides isolation among clients’
apps: tasks of each app run on a separate set of executors.
We extend Spark to attest to the code an application runs,
allowing data access to be granted to a single computa-
tion. This is useful for solving the data sharing problem
in joint data mining: clients can store data in HDFS or
MySQL protected ACLs that limit access only to desired
analysis programs.

Cluster attestation. Both Spark master and workers
run in Docker containers. When a worker joins a clus-
ter, the Spark master posts attestation statements about
the cluster membership of this worker with a link refer-
ring to the master’s attestation. A worker’s attestation by
its host TapCon VM further links to the worker’s mem-
bership attestation. This allows a storage service to ver-
ify that a client is part of a valid Spark cluster, and that
all members of the cluster run the correct code: the guard
verifies the worker is correct, and checks for membership
statements from the master, and then also checks that the
master is correct.

Web frontend. The Spark master also attests the web
front end, through which one can upload code, submit

9

jobs, and upload and download data sets. The frontend
authenticates clients and harvests each client identity as
a public key hash. It then binds the ID to job-related
requests so that Spark workers and HDFS name nodes
can use the client identity for access and authorization
checks.

Program attestation. Each Spark worker publishes at-
testations about the programs it runs. These programs
are submitted as jar archives. Before job submission, the
builder of the jar, e.g., the building service, issues state-
ments about the program, using the hash of the jar as ID,
and its source information as properties. When a job is
submitted to Spark, it launches an application, issues at-
testations about the new instance principal and the ID of
the program running on it. Thus, the source information
is naturally linked to the attestation of a running applica-
tion.

We deploy Spark within containers, where each Spark
container has code for master, worker and web frontend
service, and can launch the service by different com-
mands. We run the containers within VMs, and use
port restrictions to specify which ports are used by each
running Spark program. This allows storage services to
identify which Spark program generated a request from
the IP address and port of the source.

Application sandboxing. Spark provides a rich pro-
gramming interface for applications to operate on data
sets, e.g., RDD operators to incorporate user-defined
functions. This has potential to violate the security and
privacy of client data. Thus, with our Spark extension
a worker sandboxes application code by rejecting tasks
containing sensitive data operations, e.g., transmitting
records over a network connection created by the app.
The Spark master further attests to the membership of
each worker. An authorizer verifies if each cluster node
runs a correct Spark version to assure that applications
are sandboxed across the entire cluster before releasing
data.

5.4 Machine learning
We further extend Spark to use it as a component of

a machine learning system, Prediction IO (PIO) [12].
This use case of Latte demonstrates how attestation can
be used in multi-component applications to restrict data
flow and provide assurance in how data is used. Predic-
tion IO contains several pieces: a front end that accepts
users input, a data storage for training data and model,
and a learning engine that compiles and submits Spark
applications to a Spark cluster. The storage can be either
MySQL or HBASE; in our experiments we use MySQL.

The system architecture of the trusted Prediction IO
service in Latte is shown in Figure 4. A front end con-
tainer includes all components of Prediction IO to re-
ceive user’s data and command. On launch of such con-

Figure 4: Prediction IO data flow. A Prediction IO container,
which can belong to any tenant, is running as a controller. Tenant
A and Tenant B can feed in training dataset, which will be stored
in a container local MySQL database. The Prediction IO submit
training job to Spark cluster and will access these data from Spark
worker. After training is finished, a model is write back and future
prediction can be served.

tainer, an learning engine is created with a secret access
key, which is shared among clients of this container to
send private data in. These clients can also invoke train-
ing process, or send queries to the container for pre-
diction result. To train a model, the container talks to
a SafeSpark cluster to submit submit analytic jobs with
database credential, which will then access Prediction IO
controlled secured MySQL database. The trained model
is written back to MySQL, and will be used by Prediction
IO to serve future requests.

To trust this setup in a join data mining scenario, a
client needs to verify a few conditions before pushing in
training data: (i) a correct version of the Prediction IO
container that implements only the approved command
interface, (ii) the Prediction IO container verifies a cor-
rect Spark cluster is running, and (iii) Prediction IO con-
tainer restricts database access so that only a container
and a Spark job that runs trusted learning engines can di-
rectly access the training data. To do this, clients query
the metadata service about the Prediction IO’s code iden-
tity (condition (i)), from which he/she can infer that Pre-
diction IO will enforce condition (ii) and (iii).

5.5 Web Service
As a final example, we set up a Docker container based

multi-tier web service. For each container, they will post
the environmental variables configured by Docker, and
use these variables to start the actual components. All
such variables are posted into the metadata service by
starting script of the container. These self-claims could
be trusted as long as the underlying source code iden-
tity is correctly verified, since we can inspect the startup
script and make sure it does so. We aim to use these
properties for high assurance in deployment.

10

The web site administrator can enforce correct instal-
lations by ensuring each component only talks to correct
implementations of the other components. In particular,
the web front end can verify that the database is correctly
installed and configured. For example, the client of a web
service could verify that the webserver is patched against
known vulnerabilities such as Heartbleed.

We set up Mediawiki [9] as an attestable web service.
There are three tiers architecture: frontend load balancer
built with Nginx TCP load balancer module [35], appli-
cation server using Mediawiki container, and backend at-
tested version of MySQL database, guarded by MySQL-
router.

This installation is bootstrapped by first launching
MySQL as a separate container, with a trust script only
allowing access to Mediawiki’s image. When Mediawiki
launches, it posts the IP address and port of the MySQL
database it’s configured to use. Finally, the load balancer
launches and posts the IP addresses and ports of all the
web servers to balances load across.

A client of the web site sees only the load-balancer’s
address, and can verify through attestations it is correct.
It can then enumerate the web servers linked to the load
balancer and verify they are all correctly instantiated,
and finally, enumerate databases connected to the web
servers and similarly verify their correctness. We note
that most clients would not bother doing such verifica-
tion, but administrative users may, for example to verify
correctness before publishing data.

6 Evaluation
We measured the overhead of our Latte prototype for

launching containers and the performance of attestation-
based access control. As most attestation checking only
happens when establishing a new connection, overhead
should be generally low for long-running applications.
We evaluate on a 7-node cluster on CloudLab [2]. Each
node has 16 Intel E5-2630 cores, 128GB memory, and
two 10GbE NICs. The cluster runs OpenStack and
Docker with modifications for Latte. For OpenStack
setup, we use 4 compute nodes, one for storage, one for
network gateway, and one for cloud controller.

6.1 Micro Benchmarks
Metadata service and checking service. To bench-
mark the metadata service, we post attestations at dif-
ferent layers, using the uniform post primitive but pass-
ing in suitable values to attest a particular guest. With
the metadata service, 95% attestation post operations can
be finished within 8 ms. We also synthesize workload
to comprehensively evaluate our checking service. We
observed that 95% attestation-based access authorization
queries can be resolved within 5ms.

Network performance. network performance is not
affected by kernel changes at connection time. We use
qperf [13] to measure the latency and bandwidth of
changed kernel and unmodified kernel from container
network to host network. Both bandwidth is stable at
9.6Gbps under multiple measurement. Latency wise, the
modified kernel runs 255us (+-22us), while the unmodi-
fied runs 237us (+-27us), tail latency shows similar trend.
This result comes mainly from extra iptable rules to en-
forcing container network usage and additional connect
time checking.

Principal Boot time. there will be a slight overhead
added to application launching. We specifically mea-
sured the container boot overhead with principal creation
for a simple process image, there is a 10ms overhead in
average, and is 2% for the whole container to setup.

Similar results can be confirmed with Prediction IO
container, which takes 3 second to boot and configure,
within which 40ms is spent on configuring attestation
based access control and principal.

6.2 Application Workloads
We set up ive application usage scenarios from Sec-

tion 5 to evaluate Latte.

Storages. We query Mysql booted in a Docker con-
tainer with a trivial select statement, and measure the
latency changes. The container runs in a VM with 8
vcpu and 32 GB memory. For HDFS we evaluate simply
HDFS read performance We run HDFS in 4 VMs with
same configurations. There are 4 datanodes and 1 na-
menode. We mesure the read performance on a 128MB
file repeatively, and compare the case for unmodified
HDFS, and modified HDFS w/wo access policy set on
the target file. In fact, w/wo policy incurs only 1% dif-
ference so we show only the case w/ policy.

Spark. We use a five virtual-machine (VM) cluster,
with each VM having 8 virtual CPUs and 32GB mem-
ory. One VM runs the Spark master and the remainder
run workers, with one container per VM. We also run the
same HDFS configuration described above. The client
workload is Pagerank from the Intel HiBench suite [8],
with input scale “large”. The client uploads data into
HDFS. For modified HDFS, client will then specify ac-
cess policy to restrict code identity. When data is pre-
pared, Spark jobs are launched to compute the ranks.
In this process, the client verifies the code correctnes
of both HDFS and the Spark cluster, and HDFS verifies
the correctness of Spark. We compare completion time
of SafeSpark with modified HDFS against unmodified
Spark and HDFS.

Prediction IO (PIO). We test Prediction IO with a
one-million song dataset [23]. For training we extracts
20000 data points with 90 features. The total size of the

11

Workload Latte baseline
Mysql 20.6ms (+-1.2ms) 9.6ms (+-0.3ms)
HDFS 2.3sec (+-0.1sec) 2.2sec (+-0.1sec)

Page Rank 65.8sec (+-1.0sec) 64.4sec (+-1.5sec)
PIO Training 38.5sec (+- 0.4sec) 38.3sec (+-0.4sec)

PIO Prediction 392.2sec (+-2.2sec) 391.9sec (+-1.3sec)
Web Checking 122.6ms (+-1.6ms) N/A
Web Accessing 22.3sec (+-0.4sec) 18.4sec (+-0.2sec)

Table 4: Workload execution time. Web Checking means
integrity check, and fetching is completion time of web
pages access.

features is about 16MB. We then send 100,000 prediction
queries using the generated model.

Web service. We launch a cluster of containers with
one MySQL database, two nginx load balancers, and five
Mediawiki servers. We measure the time to verify attes-
tations for the entire cluster. We also measured the com-
pletion time to fetch 1000 wiki pages with 10 parallel
clients with hot cache.

The completion times for all workloads are in Table 4.
The difference is that there will be attestation during
Spark worker tries for data request. Mysql latency is
almost doubled in trivial test, but this does not affect
Prediction IO performance. On the other hand, the web
fetching case has 17% difference is because the wiki
server is initiating frequent Mysql connection, which in-
curs quite a bit attestation query to the checking service.
It could be improved if long connection is used.

7 Related Work
Secure containers in TapCon are complementary to

SCONE [21], which runs container code in SGX en-
claves (following Haven [22]). The TapCon alternative
avoids the performance costs and limitations of enclaves.
More generally, Latte shows how to support third-party
attestations with logical trust rules that extend checks to
multiple layers. Latte could use SCONE to ground at-
testation chains in secure hardware enclaves, although
we have not yet explored this possibility. However, en-
claves still impose a considerable performance cost, as
the SCONE paper shows, and this cost is avoidable when
the cloud provider is trusted, as is common in deploy-
ments today.

Our use of logical trust to reason about attested soft-
ware is similar to logical attestation in Nexus [39], which
provides a rich framework for logical attestation within
a single host [39]. Latte extends logical attestation to
a cloud setting with distributed applications, and it uses
Datalog as a trust language, which is simple, standard,
and fast. In contrast, Nexus introduces a powerful autho-
rization language that is intractable in the general case.

Terra [28] supports layered attestation rooted in hard-
ware where each software layer (hypervisor, operating

system, etc.) attests to the layer above and endorses an
encryption key for remote communication. Latte applies
layered attestation in a trusted cloud setting, using net-
work addresses as secure identifiers. This approach is in-
teroperable with existing applications and layering archi-
tectures, with minimal changes to invoke the new APIs
for attestation and access control—no new protocols or
key management.

The CQSTR secure cloud [43] attests the boot image
and configuration for one or more virtual machines run-
ning in a cluster. Compared to CQSTR, Latte provides
layered attestations allowing multi-tenancy within a vir-
tual machine, container, or even an application, all with
different access rights.

Other attestation solutions. BIND [38] offers a fine
grained attestation service which attests to binary code
region. It uses sandbox mechanism to execute attested
code and bind the output with it. Chen et al [26], Sadeghi
et al [37] both implemented property-based attestation,
which cares more about properties of a given platform,
instead of the binary identity. All these works focus on
binary code objects; Latte extends these ideas with se-
cure linkages to source code, which facilitates practical
third-party attestation.

Secure joint data mining. Our motivating examples
can plausibly be addressed by cryptographic solutions
for verifiable and secret computing. For example, secure
multiparty computation can provide guarantees about se-
crecy and correctness for a computation that reads in-
puts from multiple parties [36]. Also, using fully ho-
momorphic encryption [29, 42], the data can be safely
outsourced to a remote computation without disclosing
the secret. These approaches are attractive but impose
substantial costs and burdens for cryptography and key
management.

8 Conclusions
Many computing settings require high assurance in the

code being run, which cannot be provided by current
cloud computing systems. We propose that code attesta-
tion is a suitable primitive for establishing this trust, and
show how it can be applied to a hierarchy of service man-
agers using Latte. This architecture enables the client of
a service to verify that the all the code comprising an ap-
plication are from a trusted repository built on a trusted
platform, so that what is executing exactly matches the
desired program.

References
[1] Boot2docker. https://github.com/

boot2docker/boot2docker.
[2] Cloudlab. https://www.cloudlab.us.
[3] ”debian reproducible build project”.

12

https://github.com/boot2docker/boot2docker
https://github.com/boot2docker/boot2docker
https://www.cloudlab.us

https://wiki.debian.org/
ReproducibleBuilds.

[4] Docker authz plugin. https://github.com/
twistlock/authz.

[5] Faketime tool. https://launchpad.
net/˜sweptlaser/+archive/ubuntu/
faketime.

[6] Gnu c compiler. https://gcc.gnu.org/.
[7] Heart Bleed Bug. https://cve.mitre.

org/cgi-bin/cvename.cgi?name=
cve-2014-0160.

[8] Intel hibench suite. https://github.com/
intel-hadoop/HiBench.

[9] Mediawiki. https://www.mediawiki.org.
[10] Mysql-router. https://dev.mysql.com/

doc/mysql-router/2.1/en/.
[11] Openstack. http://www.OpenStack.org/.
[12] Prediction io. http://prediction.io.
[13] Qperf. https://www.openfabrics.org/

downloads/qperf/.
[14] ”reproducible build project”. https:

//reproducible-builds.org/.
[15] Reproducible tools. https://wiki.

debian.org/ReproducibleBuilds/
ExperimentalToolchain.

[16] the software assurance marketplace. https://
continuousassurance.org/.

[17] I. Amazon Web Services. Aws identity and access
management (iam). https://aws.amazon.
com/iam/.

[18] I. Amazon Web Services. Aws lambda. https:
//aws.amazon.com/lambda/.

[19] I. Anati, S. Gueron, S. Johnson, and V. Scarlata.
Innovative Technology for CPU-based Attestation
and Sealing. In Proceedings of the 2nd Interna-
tional Workshop on Hardware and Architectural
Support for Security and Privacy, volume 13, 2013.

[20] Apache Foundation. Spark. https://spark.
apache.org/.

[21] S. Arnautov, B. Trach, F. Gregor, T. Knauth,
A. Martin, C. Priebe, J. Lind, D. Muthukumaran,
D. OKeeffe, M. L. Stillwell, et al. SCONE: Secure
Linux Containers with Intel SGX. In Proceedings
of the 12th USENIX Symposium on Operating Sys-
tems Design and Implementation. USENIX Asso-
ciation, 2016.

[22] A. Baumann, M. Peinado, and G. Hunt. Shielding
Applications from an Untrusted Cloud with Haven.
In Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation,
pages 267–283. USENIX Association, 2014.

[23] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and
P. Lamere. The million song dataset. In Proceed-
ings of the 12th International Conference on Music

Information Retrieval (ISMIR 2011), 2011.
[24] K. Bhargavan, M. Kohlweiss, A. Pironti, P.-Y.

Strub, S. Zanella-Beguelin, and C. Fournet. Prov-
ing the TLS Handshake Secure (As It Is). In Ad-
vances in Cryptology – CRYPTO 2014, pages 235–
255, July 2014.

[25] Q. Cao, V. Thummala, J. S. Chase, Y. Yao, and
B. Xie. Certificate Linking and Caching for Log-
ical Trust. http://arxiv.org/abs/1701.
06562, 2016. Duke University Technical Report.

[26] L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R.
Sadeghi, and C. Stüble. A protocol for property-
based attestation. In Proceedings of the first ACM
workshop on Scalable trusted computing, pages 7–
16. ACM, 2006.

[27] Docker Inc. Swarm mode overview. https://
docs.docker.com/engine/swarm.

[28] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A Virtual Machine-based Plat-
form for Trusted Computing. In Proceedings of the
19th ACM Symposium on Operating Systems Prin-
ciples, 2003.

[29] C. Gentry et al. Fully homomorphic encryption us-
ing ideal lattices. 2009.

[30] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,
B. Parno, M. L. Roberts, S. Setty, and B. Zill. Iron-
Fleet: Proving Practical Distributed Systems Cor-
rect. In Proceedings of the 25th ACM Sympo-
sium on Operating Systems Principles, pages 1–17.
ACM, 2015.

[31] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill. Ironclad Apps:
End-to-End Security via Automated Full-System
Verification. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Im-
plementation, pages 165–181, 2014.

[32] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel.
Ryoan: A Distributed Sandbox for Untrusted Com-
putation on Secret Data. In Proceedings of the
12th USENIX Symposium Operating Systems De-
sign and Implementation, 2016.

[33] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal Verification of an OS
Kernel. In Proceedings of the 22nd ACM Sympo-
sium on Operating Systems Principles, 2009.

[34] W. R. Marczak, D. Zook, W. Zhou, M. Aref, and
B. T. Loo. Declarative Reconfigurable Trust Man-
agement. Computing Research Repository, Sept.
2009.

[35] Nginx Software. Nginx. https://www.
nginx.com/.

[36] T. Ristenpart and S. Yilek. The power of

13

https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds
https://github.com/twistlock/authz
https://github.com/twistlock/authz
https://launchpad.net/~sweptlaser/+archive/ubuntu/faketime
https://launchpad.net/~sweptlaser/+archive/ubuntu/faketime
https://launchpad.net/~sweptlaser/+archive/ubuntu/faketime
https://gcc.gnu.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://github.com/intel-hadoop/HiBench
https://github.com/intel-hadoop/HiBench
https://www.mediawiki.org
https://dev.mysql.com/doc/mysql-router/2.1/en/
https://dev.mysql.com/doc/mysql-router/2.1/en/
http://www.OpenStack.org/
http://prediction.io
https://www.openfabrics.org/downloads/qperf/
https://www.openfabrics.org/downloads/qperf/
https://reproducible-builds.org/
https://reproducible-builds.org/
https://wiki.debian.org/ReproducibleBuilds/ExperimentalToolchain
https://wiki.debian.org/ReproducibleBuilds/ExperimentalToolchain
https://wiki.debian.org/ReproducibleBuilds/ExperimentalToolchain
https://continuousassurance.org/
https://continuousassurance.org/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://spark.apache.org/
https://spark.apache.org/
http://arxiv.org/abs/1701.06562
http://arxiv.org/abs/1701.06562
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://www.nginx.com/
https://www.nginx.com/

proofs-of-possession: Securing multiparty signa-
tures against rogue-key attacks. In Advances in
Cryptology-EUROCRYPT 2007, pages 228–245.
Springer Berlin Heidelberg, 2007.

[37] A.-R. Sadeghi and C. Stüble. Property-based attes-
tation for computing platforms: caring about prop-
erties, not mechanisms. In Proceedings of the 2004
workshop on New security paradigms, pages 67–
77. ACM, 2004.

[38] E. Shi, A. Perrig, and L. Van Doorn. Bind: A fine-
grained attestation service for secure distributed
systems. In Security and Privacy, 2005 IEEE Sym-
posium on, pages 154–168. IEEE, 2005.

[39] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh,
K. Walsh, D. Williams, and F. B. Schneider. Logi-
cal Attestation: an Authorization Architecture for
Trustworthy Co mputing. In Proceedings of the
23rd ACM Symposium on Operating Systems Prin-
ciples, pages 249–264, 2011.

[40] K. Thompson. Reflections on trusting trust. Com-
munications of the ACM, 27(8):761–763, 1984.

[41] L. Torvalds. Git Version Control. https://
git-scm.com/.

[42] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikun-
tanathan. Fully homomorphic encryption over the
integers. In Annual International Conference on the
Theory and Applications of Cryptographic Tech-
niques, pages 24–43. Springer, 2010.

[43] Y. Zhai, L. Yin, J. Chase, T. Ristenpart, and
M. Swift. CQSTR: Securing Cross-Tenant Ap-
plications with Cloud Containers. In Proceedings
of the 7th ACM Symposium on Cloud Computing,
pages 223–236. ACM, 2016.

14

https://git-scm.com/
https://git-scm.com/

	Introduction
	Background and Trust Model
	Attestation Architecture for the Cloud
	Network-based Authentication
	Logical Trust for Latte
	Latte service APIs
	Security Analysis

	Latte Implementation
	OpenStack Extensions
	Docker Extensions
	Metadata Service and Guards
	Certified Build Service

	Application Use Cases
	Building Service
	Data Storage
	Data analytics
	Machine learning
	Web Service

	Evaluation
	Micro Benchmarks
	Application Workloads

	Related Work
	Conclusions

