
Attestation-based Authorization for Stronger Security in the Cloud
Yan Zhai1 Qiang Cao2 Jeff Chase2 Michael Swift1
1University of Wisconsin Madison 2Duke University

type: research

Abstract
Cloud platforms provide authorization systems that

govern how tenants and their applications interact with
one another and share data on the cloud. We consider
how a cloud platform can enable richer access control
when requests originate from within the cloud, e.g., from
a running software instance controlled by another tenant.
It is increasingly useful for these policy checks to con-
sider information about the requesting program, includ-
ing the software that it runs and its configuration, in order
to create a stronger foundation for secure sharing of data
in future clouds.

This paper describes Latte, a cloud attestation sys-
tem that provides a richer basis for authorization. It can
authorize operations based on requester’s code identity,
which includes source code, build environment and run-
time configuration, as well as third-party endorsements
of trustworthiness. Latte supports the layered environ-
ments common in cloud computing, such as Docker con-
tainers running within virtual machines, and distributed
services such as the Spark data-analytics platform.

We integrated Latte with OpenStack, Docker and
Spark to demonstrate how Latte can be used to improve
security and enable new usage scenarios, such as al-
lowing untrusted parties to compute over private data.
Adopting Latte requires few changes to application plat-
forms. The overhead of Latte in most cases is negligible.

1 Introduction
The security of any application service depends on the

security properties of its code. Our work seeks to in-
corporate software identity, such as which programs are
requesting access, as first-class entities in the protection
system of modern cloud environments. This provides
much tighter control over how data can is used. Software
programs run as instances, e.g., a hosted VM or container
launched from an image. Instances interact through a
network controlled by the cloud provider, and may act as
clients or servers for other instances or external entities.

Our premise is that a cloud platform can act as a
trusted broker to authenticate instances and expose meta-
data about them for access control and policy compli-
ance, including attesting to software identity and config-
uration. For example, a user might grant read access to
secret data to an instance of a program if the user’s policy
says that the program is trusted to be free of data leaks.

Modern cloud platforms have useful metadata about
instances that provide visibility into its code identity and
configuration. For example, code run directly on cloud
infrastructure must be launched and configured through

cloud platform APIs, which ensures the cloud provider
knows the disk image used to boot a service and its net-
work configuration.

Three intersecting technology trends suggest that the
time is right to explore how to expose such metadata and
reason about it in a comprehensive way. First, cloud en-
vironments have mature facilities for sharing access to
sensitive data. They are audited for many compliance
requirements for storage of sensitive data [51, 46]. In
addition, they provide many features to support sharing
across tenants, such as shared storage and authentication
services. As a result, tenants can share sensitive data
within a cloud.

Second, cloud-hosted applications are increasingly de-
ployed as immutable instances launched from declar-
ative specifications [9]; the configuration is frozen at
launch and any management changes are applied by
restarting the instance with a new configuration. These
and other DevOps practices ensure that each instance has
a known identity that is sealed at launch and not compro-
mised by management operations after launch.

Third, with the increasing criticality of cyberinfras-
tructure, there is a rich and growing ecosystem of ver-
ification tools to check or endorse the trustworthiness of
code. Verification systems such as IronClad [30], Iron-
Fleet [29], Verdi [62], Sel4 [35], and VCC [20] are in-
creasingly practical. Related tools like IBM Vulnerabil-
ity Advisor [32] and Clair [47] and verified software such
as s2n [52] are being deployed.

Building on these trends, we present a framework
called Latte that realizes this vision of pervasive attes-
tation and flexible authorization in a cloud environment.
It identifies the code and configuration of a running in-
stance, and provides authorization mechanisms to reason
about its trustworthiness. For example, a data owner can
specify an access control policy that allows access from
instances running qualified software stacks with proper
configuration (e.g., locked down).

Latte defines a basic vocabulary and set of tools
for services to issue authenticated assertions (attesta-
tion statements) about various objects—e.g., hosted in-
stances, program objects (identified by hash), and con-
figuration templates—together with logical policy rules
to derive checkable security predicates from chains of
related assertions. Cloud systems can use these tools
to expose metadata that is useful for trust and visibility.
These platforms can attest to properties of instances (i.e.,
about running code), while software build and verifica-
tion tools can endorse program security properties (i.e.,

1

about source code repositories or binary images).
With Latte, we show how cloud applications and ser-

vices can define and invoke logical guards that validate
assertions about instances requesting access, and reason
about them to infer high-level security predicates needed
for compliance with a logical policy. Similarly, a client
can examine a service’s attestation statements and en-
dorsements and decide whether to trust the service by
validating that it was launched by a trusted platform and
its code was endorsed by a trusted entity. These fea-
tures enable attestation-based authorization, in which a
service’s access policy can consider attestations of code
identity—together with endorsements of that code—for
the instances requesting access.

Latte’s use of logic allows us to address critical obsta-
cles to the practical use of attestation in cloud systems.
First, modern cloud services are often built atop multi-
ple layers of virtualization, e.g., a Spark JVM process in
a Docker container in a virtual machine. Latte’s logical
structure naturally supports chain attestations to validate
a full stack of software. Second, scalable cloud-hosted
services are distributed systems with multiple instances
working together. Latte’s logic enables a grouping mech-
anism that allows authorizers to verify that all members
of a distributed service meet trust requirements. Finally,
trust is usually granted to source code, which can be
inspected for correctness, as opposed to binary images.
Latte enables transitive trust in an image from a trusted
build service that builds a source repository into a binary
image, and issues an authenticated endorsement binding
the image back to its source.

We note that attestation does not improve security in
the presence of unknown bugs. However, like a firewall
it provides basis for avoiding known problems, such as
ensuring software is patched and locked down.

Latte introduces source-based attestation into cloud
environments, and provides layered attestation and
groups to check policies on a full software stack, in-
cluding distributed components. Its metadata service is
a centralized repository for instance metadata, enabling
a wide variety of policies. These policies are expressed
in a flexible logic-based policy language that can detail
which programs, not just which users, should be trusted
with access to data.

Our software prototype for Latte is based on a small
set of extensions to OpenStack, an open-source cloud
infrastructure-as-a-service platform (IaaS). Latte adds a
metadata service to store statements and uses the trusted
network environment of IaaS clouds for remote authen-
tication. We implement example platforms on Latte to
illustrate rich trust scenarios: platform services based
on containers (Docker) and JVMs (Spark). Experiments
show that Latte adds only minimal overhead.

2 Overview
As a motivating application scenario, consider the

problem of joint data mining or cooperative analytics.
Suppose that two tenants each have a private dataset and
wants to cooperate by running analytics program P over
both datasets (A and B) together. They trust that P pro-
duces output that does not expose confidential details of
A or B. When running on the same cloud platform, they
want to leverage cloud infrastructure and common plat-
form frameworks—an open analytics stack such as Spark
in Docker containers—to deploy P and grant it access to
A and B.

How can the data owners ensure that their datasets are
accessible by a requester only if it runs the correct pro-
gram P ? We propose that each party installs an access
policy for its dataset that permits data access only from
instances running P—an example of attestation-based
access control. The cloud storage service that stores A
and B examines metadata for the requesting instances
to verify that each requester complies the data owner’s
policy: e.g., grant access to requests originating from a
trusted program P running in a secured environment.

Latte defines a software infrastructure and tools to
realize such scenarios for secure, flexible data sharing.
Latte extends an IaaS platform with a secure metadata
service that stores authenticated statements about in-
stances. These statements are metadata assertions in a
declarative logic language. They are issued (spoken) and
published to the metadata store by the IaaS service itself
or by another service (e.g., a hosted PaaS) layered above
it. Latte defines client libraries: an attestation library
that issues statements from predefined templates, and a
guard library to check retrieved metadata for compliance
with a policy, which is specified as a set of logical rules.

Figure 1 depicts the phases and principal roles for a
typical program running as an instance in a Latte-enabled
cloud. We refer to the issuers of statements about in-
stances as attesters and to the compliance checker as an
authorizer. The attesters are platforms that launch in-
stances: the IaaS provider itself or tenant-managed third-
party cloud services layered above the IaaS platform
(§4.2). Various parties may act as authorizers: services
of the IaaS provider, tenant-managed services hosted as
tenant instances, or external entities that trust metadata
fetched from the IaaS provider over a secure connection.
An authorizer may conduct access checks at request time
or may store metadata for later auditing.

In the joint data mining example above, the cloud stor-
age service acts as the authorizer to check that the origin
(requester) of each data access request complies with the
data owner’s specified policy. This example scenario re-
quires extensions to the cloud platforms that launch the
instances (to issue statements about them as attesters)
and also to the cloud storage service (to check those

2

IaaS

VM

Container

Container attestation:
image, launch script,
and args

Authorizer
Attestation chain

source-image bindings

Endorser

Builder
Process Metadata

Service

Build phase Launch phase Authorization phase

VM attestation: VM
image, launch script

Process attestation:
code, conf, and args

Source-image
binding

Metadata
Service

Authenticated
endorsements of

source and images

External
store 0

External
store n

...

Program P Service client

A B

Cloud storage

Figure 1: Principal roles in three phases of Latte operation for a typical program running as an attested instance in the cloud. In the build phase,
a build service (builder) prepares a program image and certifies the build from an identified source repository. Other parties (endorsers) may issue
endorsements of the source code (top) or built image (bottom). In the launch phase, a Latte-enabled hosting cloud platform (an attester) launches
an instance from the image and certifies its image identity and configuration. In the authorization phase, an authorizer introspects on the instance
metadata (certifications and endorsements) to check compliance with a policy. For example, if the instance requests access from a Latte-enabled
service (it acts as a requester), the service may perform an attestation-based access control check (acts as an authorizer).

statements as an authorizer). There are no changes to
the data analysis programs.

How does a policy in an ACL infer trust in a program
P ? These guard policies may consider logical statements
that endorse a program object P , identified by a secure
hash of its source code or binary image. The issuer of
an endorsement is an endorser. An endorser asserts a
property of P as a named predicate with optional val-
ues (§3.1); for example, the endorser might be a program
analyzer (e.g., Clair [47]) or software assurance platform
(e.g, SWAMP [5]) hosted by a third party. A guard policy
specifies the endorsers it trusts to assert a given named
program property. The Latte guard library can also im-
port external endorsements authenticated by signature.

If an endorser is an instance within the cloud, a Latte
authorizer may inspect its instance metadata in consider-
ing whether to trust its endorsement. For example, our
prototype includes a trustworthy build service (§4.4) that
builds a source repository into a VM or Docker container
image. It runs within a VM instance and endorses the im-
age to indicate how it was built and from what source. An
authorizer may validate that the endorsement is issued
from a trusted build service (a builder) by inspecting the
builder’s metadata. Trusted builds enhance the power of
attestation by allowing endorsements of software proper-
ties at the source code level, e.g., by human inspectors or
source analysis tools.

2.1 Trust Assumptions
Latte makes three key trust assumptions:
Trusted IaaS. Latte takes the security and isolation

properties of the cloud IaaS as a given. While this is cur-
rently assumed by many (even most) cloud tenants, tech-
niques from previous work can ground the trust chain
in hardware roots of trust, and/or instantiate security-
critical code modules with a hardware-attested mini-
mal trusted computing base (TCB), as in Flicker [40],
Haven [14], and SCONE [12].

Secure internal network. The IaaS platform controls
the internal network that interconnects its tenants, so that

network addresses cannot be spoofed or forged [10, 65].
Latte uses instance IaaS addresses as authenticated prin-
cipal identifiers. This choice distinguishes Latte from
many previous systems that use public key infrastructure
to authenticate attested instances. Relative to these ap-
proaches, Latte is compatible with applications that do
not use cryptography, reduces communication overhead,
and does not require secure key management, which it-
self is a challenging problem [18]. We assume without
loss of generality an unconstrained flat public IP address
is used for space for all instances, e.g., IPv6 [11].

Sealed instances. Attested properties are only valid
if instances are sealed to block any tampering that might
undermine the properties: their configurations are fixed
and they cannot be changed by management APIs. Seal-
ing requires that the application code itself incorporates
its own management interface, which is subject to in-
spection at endorsement time. For example, a privacy-
preserving survey program might provide APIs to close
a survey and output aggregated data, but not to read indi-
vidual responses.

2.2 Logical Trust in Latte
Latte uses a declarative logic data model to express

secure metadata including attestation statements and en-
dorsements of program objects. We define an exemplary
vocabulary of predicates for Latte using ordinary safe
Datalog [17], a simple and tractable logic language. Poli-
cies are expressed as packages of Datalog rules. A guard
library incorporates an embedded Datalog inference en-
gine to check compliance with logical policies.

Logic serves as the foundation of Latte’s attestation
architecture. We show that logic rules capture precisely
how to validate chained attestations and combine them
with endorsements and other assertions for rigorous and
verifiable security checks. The vocabulary is easily ex-
tensible for a wide range of attestations, endorsements,
and user-defined compound policies, decoupled from the
Latte implementation. Extensions to the vocabulary re-
quire no change to the Latte framework itself: only the

3

Statement Description
runs(PID, ImgHash) Instance PID is launched from the

image with hash ImgHash.
config(PID, ConfKey, Instance PID was launched

ConfValue) with configuration property
(ConfKey, ConfValue).

bindToID(PID, Instance PID is bound to
NetAddr) network address NetAddr.

Table 1: Simple attestation statements in Latte. Each statement as-
serts a fact—a logical predicate with constant parameters—attributed
to an authenticated issuer.

logic templates and matching policy rules must change.
The logical approach allows Latte to address sev-

eral challenges for cloud attestation. Importantly, log-
ical rules can integrate statements published by mul-
tiple principals, enabling an authorizer to inspect the
full stack of a distributed cloud application. We show
how the logical structure supports querying instance
properties and configurations (§4.1), layered cloud plat-
forms (§4.2), authentication by network addresses (§4.3),
source-based attestation (§4.4), and composition for hor-
izontally scaled cluster services (§4.5). Generally, an au-
thorizer can use Latte rules to specify who it is willing to
listen to, what it trusts them to say, and what it needs to
hear to approve compliance with its policy.

As we will show, logic enables a rich space of policies
that combine metadata from multiple sources in a uni-
fied way. Evaluation cost scales with the complexity of
the policy and the length of the compliance proof (§7).
While complex logical policies take longer to evaluate
than simple role-based ACLs, our results show that the
relative cost of logical access checking can be negligible
in practical scenarios. Moreover, caching intermediate
results can reduce this cost [41].

To our knowledge Latte is the first use of Datalog for
attestation and the first use of logic for cloud attesta-
tion. Previous uses of Datalog as a trust language in-
clude Binder [22], SD3 [34], RT [36] and SeNDLOG [7].
Nexus [56, 50] introduces logical attestation based on a
more expressive logic; we contend that Datalog offers
sufficient power and is fast enough for practical use. (See
§8 for related work.)

3 Attestation in Latte
Latte defines an architecture and data model to expose

attestation statements about instances and their configu-
rations, maintain them in a cloud metadata store, query
the store to retrieve groups of related statements, and pro-
cess these statements to evaluate policy compliance.

3.1 Attestations and Endorsements
When a Latte-enabled cloud platform launches an at-

tested instance it publishes one or more attestation state-

IaaS

runs(vm1,'Image-Docker').
config(vm1,"vpcid","vpc1").
config(vm1, "userdata.cidr",

"192.168.1.0/24").
bindToId(vm1,"192.168.0.1:1-65535").

vm1

VPC1

Image-Docker

runs(builder,'Image-Builder').
...

attest
use

endorse

config(vpc1, "secgroup", "tcp:0.0.0.0:2376").
config(vpc1, "secgroup", "tcp:0.0.0.0:8080").

builder:endorse(Image-Docker,
"source", "somegit#commit")
scanner:endorse(Image-Docker,
"no-crit-cve", "2018-05-16")

runs(scanner,'Image-Scanner').
...

builder

scanner

Legend

Figure 2: Metadata assertions in Latte. Logical statements include
attestations of newly launched guest instances, source certifications for
images, and endorsements of properties of code objects. The meta-
data service indexes each statement according to its subject (e.g., an
instance or code object). Each statement is attributed to a speaker—
a principal that issued the statement—which may also be an instance
that is the subject of other published metadata. Statements are linked to
both speaker and subject. For example, “vm1” is attached to “VPC1”
and uses “Image-Docker”.

ments (Table 1) about the instance’s code identity and
configuration parameters (key-value pairs). Latte’s meta-
data service generates a unique principal identifier (PID)
for each instance.

Instances or other principals may issue endorsements
of code objects (source or binary) identified by a unique
hash. Latte endorsers represent these properties as key-
value pairs whose meanings are user-defined. Listing 1
shows example endorsements coded as logic assertions.
The first is from Clair [47], a container image analyzer,
that determines that a container has no known critical
level vulnerabilities in the CVE database as of a given
date. The second is made by an auditor that the image is
sealed against remote shell access (ssh) once launched.
The third endorsement binds a VM image to its source
code on a GitHub repository.

Latte authenticates the issuing principal (speaker) of
each statement and attributes the statement to its speaker.
Any statement spoken by an instance within the cloud is
attributed to the speaker’s instance PID. A statement is-
sued by an external principal outside the secure cloud
network is attributed to the hash of the external princi-
pal’s public key.

3.2 Validation Logic
Listing 2 presents a sample set of logic rules that an

authorizer uses to reason from attestations and endorse-
ments to infer properties of a running instance. We first
illustrate simple inference rules for attestation, then re-
fine and extend them to meet various goals (§4).

The syntax is standard Datalog extended with a says
(“:”) operator. Each predicate (or each atomic state-
ment) has an optional says prefix that identifies the
speaker; if the prefix is omitted then the predicate rep-
resents a belief of the authorizer (policy owner) itself.
The capitalized parameters represent logical variables.

Facts F0-F1 and Rule R0 configure trust anchors for
the policy. F0 states that the authorizer trusts the IaaS as

4

Guard Predicate Description
hasConfig(I, Name, Value) check if instance I has a configuration
attester(I) check if instance I has attester property (§4.2)
builder(I) check if instance I has builder property (§4.4)
hasProperty(I, P, V) check if instance I has a customized property P of value V

Table 2: Some predefined guard predicates in the Latte guard library.

Listing 1: Sample endorsements.

endorse(img, "no-crit-cve", 2018-5-17).
endorse(img, "no-ssh", true).
endorse(img, "source", https://github.com/
boot2docker/boot2docker.git#2bb74c92).

Listing 2: Logic rules to infer instance properties from attes-
tations and endorsements.

(F0) trustedCloudProvider("[IaaS-ID]").
(F1) endorser("[endorser-keyhash]").
(R0) attester(H) :- trustedCloudProvider(H).

(R1) runs(Instance, Image) :-
Host: runs(Instance, Image),
attester(Host).

(R2) hasProperty(Image, Property, Value) :-
E: endorse(Image, Property, Value),
endorser(E).

(R3) hasProperty(Instance, Property, Value) :-
runs(Instance, Image),
hasProperty(Image, Property, Value).

a cloud provider; F0 implies (via R0) attestations issued
by the IaaS layer are trusted. F1 asserts that statements
signed with a specified key come from an endorser.

Rules R1-R3 capture what it means to validate a sim-
ple attestation. Rule R1 implies that if a trusted attester—
such as the IaaS cloud provider—asserts that some in-
stance was launched from a specific image, then the au-
thorizer believes it. Rule R2 implies that it trusts en-
dorsers, so if any endorser asserts that an image has some
specific property, then the authorizer believes it. Rule R3
implies that an instance launched from an image with a
property also has that property (i.e., if an program is se-
cure, then a process running the program is secure).

Suppose an authorizer runs a guard policy that requires
the requester to have some specific property. The autho-
rizer loads the logic in Listing 2 together with pertinent
attestation and endorsement statements, and tests a goal
statement hasProperty for the desired property. If
a matching attestation (runs) and a matching endorse-
ment (endorse) are present, then the inference engine
in the guard library concludes that a requesting instance
has the required property.

Listing 3: Logic rules using builder predicate and con-
strained list of endorsements.

(R4) builder(Instance) :-
hasProperty(Instance, "builder", true).

(R5) hasProperty(Image, "builder", true) :-
E: endorse(Image, "builder", true),
trustedEndorserOn(E, "builder").

3.3 Retrieving Metadata
Each basic statement applies to a single subject. The

subject of an attestation is an instance. The subject of
an endorsement is a code object (source repository or
image). The Latte metadata service (MDS) indexes the
statements it stores by their subjects (Figure 2). It also
stores a mapping from cloud network addresses to in-
stance identifiers (PIDs) (§4.3).

An authorizer queries the metadata service for pub-
lished metadata about an instance identified by network
address. The metadata service returns attestations for the
instance and any stored endorsements for its code. We
show how this indexing can be extended to chained attes-
tations and endorsements in §4. The Latte guard library
also allows an authorizer to import additional logic con-
tent from external services such as a designated Web ser-
vice or a certificate store (e.g., queried by image hash),
as shown in authorization phase of Figure 1.

4 Logical Attestation in a Cloud
Latte supports flexible and general cloud attestation

building on the logical foundation in §3, including ex-
tensions for common software deployment patterns.

4.1 Logical Guards
Guard policies can incorporate rules that require arbi-

trary conjunctions or disjunctions of basic properties to
be satisfied. In essence, a guard is an extended access
control list that identifies sets of instance properties that
are compliant with the policy, e.g., what access is granted
to a requester.

Beyond attestations about the running code, guard
rules may consider instance configuration properties.
Latte-enabled cloud platforms expose configuration
metadata as attested key-value pairs (Table 2, §6). An
authorizer can check for the presence of a specific con-
figuration value with a guard rule requiring its presence.
For example, Listing 4 shows rule R6 verifying that a

5

Listing 4: Logic rules to infer instance configurations.

(R6) isolatedContainer(Instance) :-
H: hasConfig(Instance, "volume", ""),
attester(H).

(R7) sparkMasterCmd(Instance) :-
H: hasConfig(Instance, "cmd0",

"start-master.sh"),
attester(H).

Docker container mounts no volumes, so it cannot store
any data persistently after it terminates. Rule R7 verifies
that a Spark instance starts with command line “cmd0”
indicating it a cluster master. We describe how each plat-
form attests configuration in §5.

Guard policies are structured as sets of facts (e.g.,
trusted principals or other statements the authorizer be-
lieves) with guard predicates that help derive high-level
properties of an instance.. For user convenience, Latte
defines a library of useful guard predicates listed in Ta-
ble 2. Authorizers can use these guard predicates as
building blocks for more advanced policies. For exam-
ple, rule R4 in Listing 3 infers a guard predicate called
builder from an instance property; §4.4 and List-
ing 6 show how a rule for source-based attestation uses
builder.

R5 in Listing 3 also illustrates how guard policies use
trustedEndorserOn to constrain their delegations
of trust to endorsers. The policy in Listing 2 trusts a
named endorser to assert any property of the code object.
R5 limits this trust: it requires that the authorizer trusts
the endorser specifically to assert the builder prop-
erty. This restriction on endorsement is applicable to in-
ference of other principal properties, such as attester
(§4.2).

4.2 Layered Platforms
We next show how to extend logical cloud attestation

for layered environments, such as IaaS virtual machines
running Docker containers running Spark programs. The
premise of layered attestation is that any platform-as-a-
service (PaaS) server may itself run as an attested in-
stance, or even as a tenant of an attested instance. A PaaS
server loads and runs code images in a PaaS-specific for-
mat (e.g., Docker container images, Spark .jar files), gen-
erating a new instance with its own network address. For
attestation to be useful, we require that PaaS instances
are isolated from one another and from external tamper-
ing, and that they have unique network addresses (dis-
cussed below). PaaS software must be extended with
callouts to publish attestation statements for the instances
that it launches. An example of a layered PaaS server is
the TapCon secure container server outlined in §5.1.

An endorser asserts the attester property for an

Listing 5: Policy rule for inference of an attester.

(R8) attester(Instance) :-
hasProperty(Instance, "attester", true).

image that implements a layered execution service, af-
ter verifying that it meets these requirements. If an au-
thorizer trusts the endorser, and a trusted cloud provider
attests the PaaS instance running the image, then it can
infer an attester property of the instance. Likewise,
execution platforms launched within a PaaS platform can
also be attesters. Rule R8 in in Listing 5 codifies this re-
cursive definition of an attester.

Rule R1 in Listing 2 together with R8 can be applied
recursively to validate the attestations issued by a layered
attester. In this way, Latte’s use of logic naturally vali-
dates chains of endorsements and attestations describing
the entire software stack of an instance. To support fast
verification of attestation chains, the Latte MDS main-
tains the lineage between image endorsements and attes-
tation of an instance launched from that image, and the
lineage between an instance attestation and its hosting
platform attestation. Using this linkage, an authorizer
can retrieve a complete attestation chain without unnec-
essary statements.

4.3 Network Authentication
Latte delegates network addresses hierarchically to en-

sure that each instance has exclusive control of a unique
network address. If an instance is an attester, it controls
a block of addresses and invokes the MDS to delegate
addresses to its child instances at instance creation time.
The MDS verifies that the attester controls the delegated
addresses, and updates its map of addresses to instances.
The attester must ensure that the instances it creates can
transmit or receive only on their assigned addresses. This
ensures that network addresses are accountable: each
packet uniquely identifies the instance that sent it. The
Latte prototype implements address delegation in Open-
Stack, Docker, and Spark (§5).

4.4 Source-based attestation
Many previous systems support attestations for binary

program objects. However, software trust is often based
on inspection or analysis of source code. For example,
FindSecBugs [13] is a source-level analyzer that checks
Java source code for common vulnerabilities, e.g., to en-
sure that the code sanitizes user inputs properly. A key
basis for trust in open-source software is open inspection
of the source code by a community. Furthermore, at-
testing source is critical for sharing data across tenants:
how can a data owner they trust a binary program without
knowing how and from where it was built?

Attestation is more valuable if an authorizer can apply

6

Listing 6: Policy rule to apply a source endorsement to an
instance that is attested to run an image built from this source
by a certified builder.

(R9) hasProperty(Image, P, V) :-
B: endorse(Image, "source", Repo),
builder(B),
hasProperty(Repo, P, V).

safety properties of source code to binary objects derived
from it. In general, that is possible only if the build chain
is also trusted [59].

We extend Latte’s logic with rules to reason about
builds and other program transformations. Latte defines
two exemplary endorsement properties: builder and
source for this purpose. The builder property rep-
resents a belief that an image implements a trustworthy
build service. A trusted build service runs as an instance
that is attested as launched from an endorsed builder
image via the rules in Listing 3 combined with rules R1
and R3 in Listing 2.

A builder issues an endorsement after each successful
build, using the source property to assert that the im-
age derives from a source repository fingerprinted by a
secure hash. Listing 6 gives a logic rule to apply prop-
erties of source to a derived binary. Rule R9 says that if
a certified builder B endorses Image as derived from a
source repository version Repo, and trusted endorser E
says Repo has property P with value V , then the derived
image also has property P with value V .

With this extension, Latte provides a powerful mech-
anism for an authorizer to acquire trust in a service: if
it trusts how an image was built from a source repos-
itory, and endorsements of safety of the source code,
then it has a strong basis to trust an instance executing
the image. AWS provides a hosted build service called
CodePipeline [8]. The Latte prototype includes a hosted
build service (§5.2). A Latte authorizer may examine the
metadata of the build service instance recursively, as de-
scribed above.

4.5 Grouping for Distributed Systems
Cloud-hosted services often comprise many server in-

stances grouped in a cluster for horizontal scaling. These
instances may share data or have other internal relation-
ships and dependencies. It follows that trust in the in-
tegrity of a service as a whole requires some degree of
trust in the integrity of all of its instances.

Latte implements a simple grouping mechanism to
support clustered services. Our approach presumes that a
cluster service consists of a group of worker instances led
by a master instance. Each worker contacts the master to
join the service group as a worker. The master controls
membership in the group. Specifically, Latte grouping

requires that the master acts as an authorizer to verify the
metadata of each worker and validate its code identity
and configuration.

After validating each worker, the master issues a state-
ment to the metadata service granting the worker mem-
bership in a named group. This statement is stored with
the worker instance metadata (example of Spark cluster
in Figure 3). An authorizer that queries for the worker
receives the metadata of the master as well for valida-
tion. An authorizer checks a worker by verifying (i) it is
a member of a duly constituted service group and (ii) the
master complies with its policy. If the master’s member-
ship requirements (i.e., code identity and configuration)
are configurable, an authorizer can verify that the mas-
ter’s configuration meets its requirements.

The authorizer may optionally validate the worker’s
metadata. However, in our prototype the authorizer does
not validate that the worker meets the master’s require-
ments for membership in the group. Rather, it validates
its trust in the master and then accepts that the trusted
master has validated all of its workers. This optimization
reduces validation costs substantially.

4.6 Other Extensions
Policies may incorporate supporting assertions (or

rules) from any authenticated source, e.g., external en-
dorsements or delegations of trust to other asserting prin-
cipals. In particular, the logic system enables the guard
library to derive trust in endorsers based on logical dele-
gations issued (transitively) by other designated trust an-
chors, which may also be external and authenticated by
keypairs. For example, a policy might allow an endorser
to assert particular properties based on statements about
the endorser by a more trusted party, e.g., the owner’s
employer, or an open-source consortium. An authority
may also define groups of properties that the endorsers
are trusted to assert. A policy might also delegate to
another authority control over which cloud sites are ac-
cepted as attesters (e.g., a cloud federation root).

Latte supports end-to-end authorization in which each
user can invoke the guard library to validate compliance
with its policy for itself. The logical approach also makes
it easy to designate an intermediary to act as an autho-
rization service by checking policy and issuing assertions
of compliance. Intermediaries are useful when metadata
is proprietary or sensitive, and they can also reduce the
cost of compliance checking by representing the result of
a complex check with a simple assertion.

5 Exemplary Principals
We built several components that act in various Latte

principal roles to demonstrate its capabilities and exer-
cise our Latte prototype. This section describes services
that run as attested instances and themselves act as en-
dorsers, attesters, and builders. We show how these com-

7

SPARK_WORKER0

master: member(worker0, service0).
vm0: runs(worker0, spark_img).
vm0: bindToID(worker0, 10.10.0.31).
vm0: config(worker0, key_w0, value_w0).

SPARK_MASTER

master: group(master, service0).
vm1: runs(master, spark_img).
vm1: bindToID(master, 10.10.0.41).
vm1: config(master, key_m0, value_m0).

VM0

IaaS: runs(vm0, docker_img).
IaaS: bindToID(vm0, 10.10.0.10).
IaaS: config(vm0, key_vm0, value_vm0).

SPARK_WORKER1

master: member(worker1, service0).
vm2: runs(worker1, spark_img).
vm2: bindToID(worker1, 10.10.0.51).
vm2: config(worker1, key_w1, value_w1).

VM1

IaaS: runs(vm1, docker_img).
IaaS: bindToID(vm1, 10.10.0.11).
IaaS: config(vm1, key_vm1, value_vm1).

VM2

IaaS: runs(vm2, docker_img).
IaaS: bindToID(vm2, 10.10.0.12).
IaaS: config(vm2, key_vm2, value_vm2).

Figure 3: Chained attestations in an exemplary service–a Spark analytics platform with layering and composition. Each box has the attestations
about an instance, labeled with their subject. A Spark worker instance at the top of the software stack is attested by a chain of attestations from
lower platform layers, and statements from an attested cluster master admitting it to a cluster service group as a worker.

ponents work together in a complete example: an at-
testesd Spark data-analytics cluster in which Spark pro-
gram identity can be used as a basis to grant access
to sensitive data in an HDFS storage service. In this
example, Spark jobs run on a cluster group of worker
nodes controlled by a master, all of which run in attested
Docker containers layered on attested OpenStack virtual
machines.

5.1 Attesters
The core job of attesters (i.e., execution platforms) is

to enforce isolation, delegate network addresses, and is-
sue attestations.
OpenStack. We extend our previous work CQSTR [65]
to issue statements to the Latte MDS. Before launching
a VM, OpenStack attests the image used to launch a VM
and IP addresses assigned to the VM. In addition, we
use CQSTR’s sealing mechanisms to lock down manage-
ment APIs. Latte OpenStack attests VM’s configuration
from configuration files, which it parses into key/value
pairs and publishes to the metadata server. Latte Open-
Stack only attests new VMs when requested by a tenant.
Docker. We extended Docker from our previous work
TapCon [64]. Each container receives a unique IP ad-
dress from an IP pool reserved by its hosting Docker
service running in an attested VM. The Docker dae-
mon attests containers to their images and configurations,
i.e., container options, environment variables and launch
command. As many deployments provide passwords via
environment variables, we implement a mechanism to fil-
ter out some configuration keys. We reuse the sealing
mechanisms from TapCon and disable privileged con-
tainers and certain administrative APIs that can break es-
tablished attestations, e.g. launching of arbitrary shell
commands in a container. To support delegation of indi-
vidual ports, we extended Linux with a new system call
to allow parent processes to restrict their children to a
specified range of ports.
Spark. We deploy Spark in Docker containers using

standalone mode, with a single master and multiple
workers, all attested by Latte Docker instances. When
workers contact the master, in checks and adds qualified
workers to a Latte group. This naturally follows the boot-
strapping steps of a Spark cluster. In addition, workers
attest per-job task executors as a process instances.

5.2 Builder
We implement a trustworthy build service that runs a

standard tool chain to build certain container and virtual
machine images from a git source repository, and en-
dorse the binary with a source assertion. The build ser-
vice runs a pre-defined environment with standard build
tools and takes as input the location of a code reposi-
tory, including a revision hash and build script. The build
script can download standard packages from a list of
trusted binary repositories or compile them from source.
The build service issues a source endorsement to bind
the hash of a generated image to the source repository
and revision.

A challenge is to bind the source of the build ser-
vice itself to the running builder instance—it cannot
build itself. To permit authorizers to trust the build ser-
vice image, we use a reproducible build approach for
the VM image running the build service [4]. This al-
lows anybody to build the service image from source and
verify it is correct. Our reproducible build is based on
boot2docker [1].

5.3 Endorsers
We an attested endorser by adapting the image scan-

ning tool Clair [47] to issue endorsements for Docker im-
ages. Tools such as Qualys for scanning VM images [38]
could be similarly adapted. Clair runs in a container in-
stance and checks whether a client-provided image has
any known vulnerabilities (CVEs) above a given sever-
ity level. If so, it issues an endorsement of the image
"no-crit-cve", 2018-5-17 to indicate no criti-
cal level CVEs were found in the CVE database of up to
the specified date.

8

5.4 Grouping
Our adaptation of Spark requires two overlapping

groups. The Spark master creates the first group and
authorizes all workers before adding them to the group
(referred to as SparkGroup). Second, the Spark driver
for a job creates a group (DriverGroup) of executors,
i.e., JVM processes that get launched and attested by
worker containers as members. The job submission pro-
cess, when launching the driver, attests the user-supplied
jar file as the image. This means an authorizer can verify
what program the driver runs. When assigned executors
by the master, the driver checks that the worker is a mem-
ber of the master’s SparkGroup. If this is successful, it
adds the executor to its DriverGroup. As we describe be-
low, this allows authorizers to verify which user program
generated a request.

5.5 Guard policies
We describe a set of guard policies for our Spark clus-

ter when accessing data in HDFS. An application is de-
ployed as attested instance, either in a container hosted
by Latte Docker, or on Spark’s worker node.

The sample guard targets a data owner who wants to
limit access to an instance (i) running a known Spark
distribution (ii) without known vulnerabilities (iii) con-
figured in a closed network (iv) running an analytics pro-
gram endorsed as not leaking secrets. We assume that the
data owner Alice trusts that the code in the Clair source
repository correctly checks for vulnerabilities in con-
tainer images. Alice also trusts an external endorser Bob
to only endorse analytics programs (Spark jar files) with
privacy-preserving analyses and implementations that do
not leak data.

Listing 7 lists a complete guard policy Alice can put
on her data to safely grant access to Spark executors.
F2 states Alice trusts Bob to endorse a custom prop-
erty "no-leak" indicting an image will not leak se-
crets. R10 extends the predicate “trustedEndoserOn”
to trust an instance running the Clair source on the
"no-crit-cve" property.

Rule R11-R13 captures the safety requirements
needed to grant an executor access to data. The
safeNode predicate requires a worker node to be ad-
mitted by a Spark master running Latte Spark, and runs
locked down configuration. The Spark master is trusted
to check the worker runs correct code and configuration.
The safeJob predicate checks a driver has admitted the
executor into its group . It further examines this driver
runs on a worker node subject to safeNode rule, and the
driver is attested by the worker to a qualified image (a
.jar file endorsed by Bob). Finally, grantAccess com-
bines the two rules to ensure that the requesting executor
runs on a qualified worker node, and driven by a qualified
application driver.

Listing 7: Sample access policies to protect grant data access
only to certain analytic jobs.

(F2) trustedEndorserOn(Bob, "no-leak").

(R10) trustedEndorserOn(Instance, "no-crit-cve") :-
hasProperty(Instance, "source",

ClairSource).

(R11) safeNode(Node) :-
Master: member(Node, MasterGroup),
hasProperty(Master, "no-crit-cve",

2018-5-16),
hasProperty(Master, "source",

LatteSpark),
hasConfig(Master, "volume", "").

(R12) safeJob(Executor) :-
Driver: member(Executor, DriverGroup),
Worker: runs(Driver, AppJar),
hasProperty(AppJar, "no-leak", true),
safeNode(Worker).

(R13) grantAccess(Executor) :-
Worker: runs(Executor, SomeImage),
safeNode(Worker),
safeJob(Executor).

5.6 Authorizers
For the Spark example above, we integrated authoriza-

tion checks into HDFS. We allow users to install a per
file policy, which will in turn be translated into a list of
data block IDs. The policy is then distributed to each
data node, so that each time a HDFS client requests for
datablock, it will check the guard policy if the operation
is approved. We also integrated attestation-based autho-
rization into other applications.
Attestation protected credentials. We integrate attesta-
tion into OpenStack’s authentication service Keystone,
so that one can create a role with a guard policy spec-
ifying who can use the role. Keystone will check the
guard at authentication time, and only issue an access to-
ken if the client instance passes the guard. This allows
credentials to be bound to a specific software stack or
even source repository, so that only instances using im-
ages built from target repository can authenticate with
the role. With such capability, even if the credential is
lost, anyone trying to use the credential must run in the
exact same software stack.
Database protection. We implement connection-based
protection in mysql-router proxy for MySQL [44]. The
proxy loads a guard and verifies that all incoming con-
nections are from approved instances. This can be used
to harden the database port so it can only be accessed
from certain instances.

9

6 Implementation of Latte
The Latte framework consists of the metadata service

and the client library.

6.1 Metadata Service
The Latte metadata service (MDS) stores statements

as objects in a key-value store indexed by the subject
of the statement: instances (attestations) or code objects
(endorsements). To accelerate fetching all the statements
needed for authorization, the MDS automatically links
instances to related statements, such as their launching
instance and image. The Latte library defines an inter-
face for authorizers to fetch the transitive closure of all
statements pertaining to an instance.

The MDS is structured as a front-end that implements
the client API and metadata management, and a scalable
back-end storage service. The front-end is largely state-
less and can be replicated for scalability. For the back
end we use Riak [58], a distributed key-value store that
is fault tolerant and scalable.
Network authentication and control. The MDS inter-
nally uses PIDs to refer to instances, and stores a map
from network address to PID. All access to the MDS is
authenticated by address using this map. To allow ad-
dress delegation, an instance may be created with a range
of addresses, which are passed to the MDS in CIDR for-
mat [24]. When an instance delegates addresses using
the bindToID statement, the MDS verifies that the is-
suer controls the addresses (i.e., it is bound to a range
including the addresses). The MDS uses a hash map and
interval tree to cache the mapping of IP and port ranges
to instance PIDs.
Caching and consistency. The front end of the MDS
caches recently accessed statements. Most statements
are immutable, and only need to be evicted when an in-
stance is deleted. Similarly, the back end can use even-
tual consistency for most data: if a statement is missing
it may temporarily cause a guard to fail, but retrying au-
thorization will eventually fetch any missing statements.
The one piece of data that requires strong consistency is
the map of network addresses to PIDs: if an address is
reused and an MDS is unaware, it may fetch statements
for the previous instance using the address. We require
strong consistency for bindToID statements. In addi-
tion, the MDS assigns a time-to-live, so that cached val-
ues will be re-fetched periodically.
Garbage collection. Statements are garbage collected
automatically when their subject is defunct. An instance
is defunct when it has terminated and the subjects of any
statements it has issued are also defunct. An image is
defunct when it has been deleted from the MDS and any
instances launched from that image are defunct. Our pro-
totype does not permit statements about a live subject to

be withdrawn.

6.2 Latte Library
The Latte Library comprises two parts: an API for

issuing attestations and endorsement statements and an
API for authorization. Statements are marshaled as
JSON requests and sent to the MDS using HTTP. The
authorization functionality runs in a separate container,
which which the library communicates via local RPC.

We implement authorization using SAFE [16], which
uses the Styla Datalog engine [57] to check guard pol-
icy. The library takes as input a requester’s network ad-
dress, and contacts the MDS to fetch statements about
the requester. Authorizers can also pass additional en-
dorsements to consider, but the authorizer must verify the
endorsements’ authenticity. The implementation caches
statements using the same rules described above.

6.3 Total Effort
Latte: Attestation and guard libraries comprise 4322
lines of C++ and the metadata service took 1761 lines
of Go and 959 lines of python. We link against SAFE.
Attesters: We reused code from CQSTR and TapCon
comprising 6000 lines of Python and Go, and 852 lines in
the Linux kernel. Spark changes required 268 lines for
adding attestations and authorizations, and a 133 lines
wrapper in C to enforce port usage using our added sys-
tem calls.
Authorizers: HDFS changes are 480 lines, the MySQL
router took 278 lines, and we added 20 lines in CQSTR’s
version of Keystone. There are in total 710 lines for all
guards.
Endorsers: The build service is about 500 lines, and the
Clair scanner is 172, both written in Go.

7 Evaluation
The costs of Latte come from (i) issuing attestations

during instances startup and (ii) evaluating guards for au-
thorization. We evaluate these costs separately, as well as
the overall performance overhead on applications

7.1 Evaluation Setup
We evaluate Latte on a 6-node cluster on Cloud-

Lab [2]. Each node has 20 Intel E5-2660 cores, 160GB
memory, and two 10GbE NICs. The cluster runs Open-
Stack and Docker with modifications for Latte. We use
four compute nodes for OpenStack, one for a network
gateway, and one for the cloud controller. The meta-
data service’s frontend runs on one compute node, and
backend storage runs on the other three compute nodes.
The 4 compute nodes are also used for applications such
as Spark. We configure VMs with 4 VCPUs and 16GB
memory.

10

7.2 Attestation Cost
The metadata service introduces the dominant over-

head of attestation, as it must be contacted to issue and
delete statements when instances start and stop.

Methodology We simulate parallel instance startup by
running driver programs on multiple machines that is-
sue the attestations needed to start VM, container, and
process instances. We evaluate the cost for deployments
using 1 (VM only) , 2 (VM + container), and 3 (VM +
container + process) layers. The table below shows the
number of instances at each level for each configuration.

Layers VMs Containers Processes Total
1-layer 204,800 0 0 204,800
2-layer 4096 50 0 204,800
3-layer 1024 50 4 204,800

The VM posts 10 configuration statements for each
container. We run this experiment using 32, 128, and
256 threads.

We measure the total time to post all statements and
report on the throughput and latency in Figure 4. We
separately measure the latency and throughput of fetch-
ing all the statements for each instance.

Figure 4(e) shows the throughput for instance creation
and fetch for a single MDS with 3 backend Riak servers,
which store data on a SSD. With 32 threads, there is
not enough parallelism to saturate the MDS, so through-
put is lower. With 256 threads, throughput reaches its
peak at 2500 create operations/sec and 3600 fetches/sec.
Figure 4(a) shows a CDF for fetch request latency, and
shows that latencies are generally below 50ms. With
fewer threads, there is less queuing in the MDS and
hence lower latency. Figure 4(f) shows the impact of lay-
ering on throughput. Layering increases latency slightly,
as it requires more linking operations and fetches must
return more statements. Overall, these results indicate
that a single MDS is able to handle thousands of instance
creations per second, which is suitable for a large net-
work. Latency for issuing creation statements is gener-
ally much lower than the time to start a VM or container,
although they may slowdown launch of very small pro-
cesses.

The above results look only at cost of accessing the
MDS. On an authorizer, caching can substantially re-
duce costs. Figure 4(c) shows the impact of caching
statements and network address-to-instance mappings.
Overall, performance without caching statements is 100x
slower (not shown), and without caching network ad-
dresses is 5x slower.

Figure 4(b) shows the impact of group membership.
We configure a master to create groups of 30 instances
and measure the latency to fetch statements for the group
master and members. Being a member has little impact
on fetch latency, as it only incrementally adds to the
number of statements. Fetching statements for a mas-

ter, though, returns all the member statements and hence
leads to larger tail latencies: 20% of fetch requests for a
group master take longer 40ms.

Space usage is very low: each instance or image takes
less than 1KB, so even for large networks all data can be
kept in memory.

7.3 Authorization Cost
We measured the latency to evaluate guard predicates

described in previous sections on containers (2 levels)
and Spark executors (3 levels). For builder we check
the building service instance. For attester we check
a container. For the cvewe check a single guard (adding
more did not change the results). The isolation guard add
more isolation conditions to the one in Listing 4. And the
cluster guard refers to Listing 7.

Figure 4(d) shows the average latency and standard de-
viation for each of these guards when cache hits. Cache
miss effect is consistent with Figure 4(c). The number
of rules is shown after the guard’s name. Overall, guards
took between 5-10ms except for the cluster guard, which
took 13ms. The time for logical inference alone is 1ms
for most guards, and 8ms for the cluster guard due to its
complexity (isolation guard has longer rules but fewer
statements involved and used). The time above infer-
ences comes from unoptimized guard parsing. To put
these time in perspective comparison, AWS S3 access
latencies are generally higher than 10ms. In the case of
coarse-grained access, such as connecting to a database,
the authorization check is only needed once. For stor-
age services, the results of authorization can be cached
and used for any object with the same guard (not imple-
mented).

7.4 Applications
Finally, we evaluate application performance. For

Spark, we use Intel’s HiBench [33] bigdata benchmark,
and compare Latte-extended Spark and HDFS perform-
ing authorization against their native counterparts. The
execution time of “Large” dataset is shown in Fig-
ure 4(g). Overall, Latte performed identically to the na-
tive system. This is explained by the nature of analytics
jobs, which are not storage bound.

For Keystone, we measure the latency to obtain the
credential and use it with an unmodified OpenStack
Swift storage service. Latte added 40ms, which is a
6% slowdown on small object access and less for large
objects. Similarly, we compare the result of an OLTP
benchmark dbt2 [45] with modified MYSQL proxy and
no proxy case. The transactions per minute reduced by
2% with Latte, within the standard deviation of 3%.

8 Related Work
Code attestation. Several hardware-based attestation ap-
proaches have been proposed. Terra [26] and BIND [54]

11

0 50 100 150 200

Latency (ms)

0

0.2

0.4

0.6

0.8

1
C

D
F

32-thread

128-thread

256-thread

(a) Normal Fetch Latency

0 50 100 150 200

Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F fetch-member

fetch-master

(b) Group Fetch Latency

0 20 40

Time Serie

0

10

20

30

40

50

L
a
te

n
c
y
 (

m
s
)

fully cached

w/o net cache

(c) Caching Effect

 build
er(2

)

 is
olatio

n(15)

 atte
ster(2

)
 cve(7)

 cluster(1
1)

0

10

20

30

L
a

te
n

c
y
 (

m
s
)

(d) Time to Check Guards

Create Fetch

Operation Type

0

1000

2000

3000

4000

O
p

e
ra

ti
o

n
/S

e
c
o

n
d

32-thread

128-thread

256-thread

(e) Throughput

Create Fetch

Operation Type

0

1000

2000

3000

4000

5000

6000

O
p

e
ra

ti
o

n
/S

e
c
o

n
d

1-Layer

2-Layer

3-Layer

(f) Throughput on Layering

SVD
ALS

GBT
LDA

Linear

Logistic PCA RF

Bayes

Kmean

PageRank
SVM

0

50

100

150

200

250

300

E
x
e
c
u
ti
o
n
 T

im
e
(s

)

Latte

Original

(g) HiBench Spark Suite

Figure 4: Evaluation results. Unless noted, experiments use 3 layers and 32 threads. For figure(d), the number in
parenthesis is the number of rules in guard.

use hardware TPM to make secure statements about what
code is running in a VM. Similarly, Azure provides
shielded VMs for stronger protection against rogue op-
erators [42]. Haven [14], SCONE [12], and Ryoan [31]
attest code running in hardware-protected SGX enclave
which is tamper-proof after launch. These approaches
are complementary and could be used as an alternate root
of trust in Latte. Like Latte, Asylo provides a framework
to integrate enclave attestations into application policies,
e.g. a storage ACL [6]. However, these systems attest to
binary hash of identify for a single instance. Our work
enables reasoning about combinations of attestations and
endorsements, extends software identity to source code,
and supports third-party authorizers, making it suitable
to protect inter-tenant interactions in the cloud.

Attestations provide a basis for access control to ser-
vices and data. Singularity [55] and Nexus [56] explore
attestation-based access control in an operating system of
a single host. Latte’s use of logical trust is similar to log-
ical attestation in Nexus [56], but extends logical attesta-
tion to a cloud setting with distributed applications, and
is based on standard Datalog logic. Like Latte, Open-
Stack Congress [3] allows verifying policy compliance
using Datalog rules. However, Congress targets compli-
ance checks for system policies using system-generated
metadata. Latte extends this idea to multiple sources of
metadata and policy and multiple authorizers, and incor-
porates software identity.
Software bases for trust. Property-based attestation [19,
49] advocates attesting to security properties of a given
platform, instead of the binary identity. These proper-
ties are similar to Latte endorsements, and are attainable

through formal verification and sandboxing. Formally
verified systems [30, 29, 62, 35, 20, 39, 43, 52] may pro-
vide a strong basis for software trust and automated en-
dorsers in Latte.

As containers are a popular technique to package,
build, and deploy applications in the cloud, a num-
ber of tools and frameworks exist to secure contain-
ers: container scanning with Atomic [48], Clair [47],
and DockerScan [21]; credential management with
HashiCorp [28]; and certification of images with Docker
Notary [23]. These can also be integrated into Latte as
endorsers. Sandboxing [63, 25, 37] is another basis for
software trust and is used in Nexus and Ryoan.
Secure computation. Cryptographically verifiable com-
putation proves the correctness of remote computa-
tions [60, 53, 15, 61], and fully homomorphic computa-
tion [27] provides an alternate basis for safe computation
on private data. However, to date they are substantially
slower than native execution or are limited to restricted
application domains. In contrast, Latte applies to a wide
variety of existing software.

9 Conclusions
Many computing settings require high assurance in the

code being run, which cannot be provided by current
cloud computing systems. We propose that code attes-
tation is a suitable primitive for establishing this trust.
We show how it can be applied for flexible authorization
policies. While Latte roots its trust in the IaaS platform,
the same architecture can be used with trusted hardware
such as SGX, by seeding the metadata service with state-
ments that the processor is trusted.

12

References
[1] Boot2docker. https://github.com/

boot2docker/boot2docker.
[2] Cloudlab. https://www.cloudlab.us.
[3] OpenStack Congress. https://

wiki.openstack.org/wiki/Congress.
[4] Reproducible build project. https:

//reproducible-builds.org/.
[5] the software assurance marketplace. https://

continuousassurance.org/.
[6] An Open and Flexible Framework for Enclave Ap-

plications. https://asylo.dev, 2018.
[7] M. Abadi and B. T. Loo. Towards a declarative lan-

guage and system for secure networking. In NetDB,
2007.

[8] Amazon Web Service. AWS Code
Pipeline. https://aws.amazon.com/
codepipeline.

[9] Amazon Web Service. Life Without
SSH: Immutable Infrastructure in Produc-
tion. https://www.slideshare.net/
AmazonWebServices/aws-reinvent-
2016-life-without-ssh-immutable-
infrastructure-in-production-
sac318.

[10] Amazon Web Services. Vpc security ca-
pabilities. https://aws.amazon.com/
answers/networking/vpc-security-
capabilities/.

[11] Amazon Web Services, Inc. Ipv6 support for
ec2 instances. https://aws.amazon.com/
blogs/aws/new-ipv6-support-for-
ec2-instances-in-virtual-private-
clouds/.

[12] S. Arnautov, B. Trach, F. Gregor, T. Knauth,
A. Martin, C. Priebe, J. Lind, D. Muthukumaran,
D. OKeeffe, M. L. Stillwell, et al. SCONE: Secure
Linux Containers with Intel SGX. In Proceedings
of the 12th USENIX Symposium on Operating Sys-
tems Design and Implementation, 2016.

[13] P. Arteau. Find security bugs. https://find-
sec-bugs.github.io/.

[14] A. Baumann, M. Peinado, and G. Hunt. Shielding
Applications from an Untrusted Cloud with Haven.
In Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation,
pages 267–283, 2014.

[15] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J.
Blumberg, and M. Walfish. Verifying computations
with state. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
pages 341–357, 2013.

[16] Q. Cao, V. Thummala, J. S. Chase, Y. Yao,
and B. Xie. Certificate Linking and Caching

for Logical Trust. http://arxiv.org/abs/
1701.06562, 2016. Duke University Technical
Report.

[17] S. Ceri, G. Gottlob, and L. Tanca. What you always
wanted to know about datalog (and never dared to
ask). IEEE transactions on knowledge and data en-
gineering, 1(1):146–166, 1989.

[18] R. Chandramouli, M. Iorga, and S. Chokhani.
Cryptographic key management issues and chal-
lenges in cloud services. In Secure Cloud Comput-
ing, pages 1–30. Springer, 2014.

[19] L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R.
Sadeghi, and C. Stüble. A protocol for property-
based attestation. In Proceedings of the first ACM
workshop on Scalable trusted computing, pages 7–
16, 2006.

[20] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinen-
bach, M. Moskal, T. Santen, W. Schulte, and S. To-
bies. Vcc: A practical system for verifying con-
current c. In International Conference on Theo-
rem Proving in Higher Order Logics, pages 23–42,
2009.

[21] Daniel Garcia, Roberto Munoz. Dockerscan: A
Docker Analysis and Hacking Tools. http://
github.com/cr0hn/dockerscan.

[22] J. DeTreville. Binder, a logic-based security lan-
guage. In Security and Privacy, 2002. Proceedings.
2002 IEEE Symposium on, pages 105–113, 2002.

[23] Docker. Docker Notary. https:
//docs.docker.com/notary/.

[24] J. Ellingwood. Understanding IP Addresses, Sub-
nets, and CIDR Notation for Networking. https:
//www.digitalocean.com/community/
tutorials/understanding-ip-
addresses-subnets-and-cidr-
notation-for-networking, Mar. 2014.

[25] B. Ford and R. Cox. Vx32: Lightweight User-Level
Sandboxing on the x86. In USENIX Annual Tech-
nical Conference, pages 293–306, 2008.

[26] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A Virtual Machine-based Plat-
form for Trusted Computing. In Proceedings of the
19th ACM Symposium on Operating Systems Prin-
ciples, 2003.

[27] C. Gentry. Fully homomorphic encryption using
ideal lattices. In Proceedings of the Forty-first An-
nual ACM Symposium on Theory of Computing,
2009.

[28] HashiCorp. HashiCorp Vault: A Tool for Managing
Secrets. https://www.vaultproject.io/.

[29] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,
B. Parno, M. L. Roberts, S. Setty, and B. Zill. Iron-
Fleet: Proving Practical Distributed Systems Cor-
rect. In Proceedings of the 25th ACM Sympo-

13

sium on Operating Systems Principles, pages 1–17,
2015.

[30] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill. Ironclad Apps:
End-to-End Security via Automated Full-System
Verification. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Im-
plementation, pages 165–181, 2014.

[31] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel.
Ryoan: A Distributed Sandbox for Untrusted Com-
putation on Secret Data. In Proceedings of the
12th USENIX Symposium Operating Systems De-
sign and Implementation, 2016.

[32] IBM inc. Is your docker container se-
cure? ask vulnerability advisor. https:
//www.ibm.com/blogs/bluemix/2015/
07/vulnerability-advisor/.

[33] Intel Corp. Intel hibench suite. https://
github.com/intel-hadoop/HiBench.

[34] T. Jim. Sd3: A trust management system with cer-
tified evaluation. In Security and Privacy, 2001.
S&P 2001. Proceedings. 2001 IEEE Symposium
on, pages 106–115, 2001.

[35] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal Verification of an OS
Kernel. In Proceedings of the 22nd ACM Sympo-
sium on Operating Systems Principles, 2009.

[36] N. Li and J. C. Mitchell. Datalog with Constraints:
A Foundation for Trust Management Languages. In
Proceedings of the 5th International Symposium on
Practical Aspects of Declarative Languages, PADL
’03, 2003.

[37] Y. Li, J. M. McCune, and J. Newsome. MiniBox:
A Two-Way Sandbox for x86 Native Code. In Pro-
ceedings of the Usenix Annual Technical Confer-
ence, 2014.

[38] J. Lute. Qualys virtual scanner appliance.
https://community.qualys.com/
docs/DOC-3452-reference-qualys-
virtual-scanner-appliance).

[39] H. Mai, E. Pek, H. Xue, S. T. King, and P. Mad-
husudan. Verifying security invariants in expres-
sos. In Proceedings of the Eighteenth International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages
293–304, 2013.

[40] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: An execution infrastruc-
ture for tcb minimization. In Proceedings of the
3rd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2008, pages 315–328, 2008.

[41] Microsoft Corp. Caching access checks. https:

//msdn.microsoft.com/en-us/library/
windows/desktop/ff394767(v=
vs.85).aspx.

[42] Microsoft Corp. Guarded Fabric and
Shielded VMs on Azure. https://
docs.microsoft.com/en-us/windows-
server/virtualization/guarded-
fabric-shielded-vm/guarded-
fabric-and-shielded-vms-top-node.

[43] L. Nelson, H. Sigurbjarnarson, K. Zhang, D. John-
son, J. Bornholt, E. Torlak, and X. Wang. Hyperk-
ernel: Push-button verification of an os kernel. In
Proceedings of the 26th Symposium on Operating
Systems Principles, pages 252–269, 2017.

[44] Oracle Corporation. Mysql-router. https:
//dev.mysql.com/doc/mysql-router/
2.1/en/.

[45] Oracle Inc. Mysql benchmark tools.
https://dev.mysql.com/downloads/
benchmarks.html.

[46] PCI Security Standards Council. Offi-
cial PCI Security Standards. https:
//www.pcisecuritystandards.org/
document library.

[47] Red Hat, Inc. https://coreos.com/clair.
[48] Red Hat, Inc. Project Atomic. https://

www.projectatomic.io/.
[49] A.-R. Sadeghi and C. Stüble. Property-based attes-

tation for computing platforms: caring about prop-
erties, not mechanisms. In Proceedings of the 2004
workshop on New security paradigms, pages 67–
77, 2004.

[50] F. B. Schneider, K. Walsh, and E. G. Sirer. Nexus
authorization logic (nal): Design rationale and ap-
plications. ACM Transactions on Information and
System Security (TISSEC), 14(1):8, 2011.

[51] A. W. Service. AWS Artifact. https://
aws.amazon.com/artifact/.

[52] A. W. Service. Automated Reasoning and Amazon
s2n. https://aws.amazon.com/blogs/
security/automated-reasoning-and-
amazon-s2n/, 2016.

[53] S. Setty, A. J. Blumberg, and M. Walfish. Toward
practical and unconditional verification of remote
computations. In Proceedings of the 13th USENIX
Conference on Hot Topics in Operating Systems,
2011.

[54] E. Shi, A. Perrig, and L. Van Doorn. Bind: A fine-
grained attestation service for secure distributed
systems. In Security and Privacy, 2005 IEEE Sym-
posium on, pages 154–168, 2005.

[55] D. R. Simon, A. Yumerefendi, T. Wobber,
M. Abadi, and A. Birrell. Authorizing applications
in singularity. In Proceedings of the 2007 Eurosys

14

Conference, March 2007.
[56] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh,

K. Walsh, D. Williams, and F. B. Schneider. Logi-
cal Attestation: an Authorization Architecture for
Trustworthy Co mputing. In Proceedings of the
23rd ACM Symposium on Operating Systems Prin-
ciples, pages 249–264, 2011.

[57] P. Tarau. Styla - a prolog in scala,. https:
//code.google.com/archive/p/styla/,
2012.

[58] B. Technologies. Riak is a Distributed, De-
centralized Data Storage System. https://
github.com/basho/riak.

[59] K. Thompson. Reflections on trusting trust. Com-
munications of the ACM, 27(8):761–763, 1984.

[60] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A
hybrid architecture for interactive verifiable com-
putation. In Security and Privacy (SP), 2013 IEEE
Symposium on, pages 223–237, 2013.

[61] R. S. Wahby, Y. Ji, A. J. Blumberg, A. Shelat,
J. Thaler, M. Walfish, and T. Wies. Full account-
ing for verifiable outsourcing. In CCS, 2017.

[62] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock,
X. Wang, M. D. Ernst, and T. Anderson. Verdi:
a framework for implementing and formally ver-
ifying distributed systems. In Proceedings of the
ACM SIGPLAN 2015 Conference on Programming
Language Design and Implementation,, pages 357–
368, 2015.

[63] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Ful-
lagar. Native client: A sandbox for portable, un-
trusted x86 native code. In 30th IEEE Symposium
on Security and Privacy, pages 79–93, 2009.

[64] Y. Zhai, Q. Cao, J. Chase, and M. Swift. Tapcon:
Practical third-party attestation for the cloud. In 9th
USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 17), 2017.

[65] Y. Zhai, L. Yin, J. Chase, T. Ristenpart, and
M. Swift. CQSTR: Securing Cross-Tenant Ap-
plications with Cloud Containers. In Proceedings
of the 7th ACM Symposium on Cloud Computing,
pages 223–236, 2016.

15

