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Abstract
Cloud computing promises rapid adaptation to
changes in workload by spinning up more virtual-
machine instances. However, the ability to re-
spond quickly depends on the time it takes the cloud
provider to provision a new virtual machine and the
time it takes the guest operating system to boot. We
find that typical Linux instances used in Amazon’s
EC2 cloud can take more than 50 seconds to boot
and provide application services.

We describe a new technique that greatly reduces
the latency to launch a new instance without requir-
ing OS modifications. In a measurement study, we
find that I/O delay to transfer OS code and data from
storage is the dominant factor in boot time. Our
proposed solution leverages existing Linux ramdisk
support to optimize I/O and effectively prefetch the
entire OS and application data in one operation. In
an evaluation in EC2, we find our approach reduces
boot latency by more than 80%.

1 Introduction
Booting an operating system quickly is useful: in
enterprise datacenters, faster boot means faster up-
grades and failure recovery. In personal computing,
faster boot reduces the time users spend waiting. In
cloud environments, fast boot has an additional use:
agile adaptation to workloads changes. A service de-
ployed in the cloud that experiences a rapid load in-
crease can quickly launch more instances to shoulder
the load.

However, current cloud systems boot slower than
ideal. In our experiments on Amazon’s EC2, we
found that it can take an average of 40 seconds for
Amazon to start the virtual machine and an addi-
tional 50 seconds for applications to start.

To understand why, we studied Linux boot perfor-

mance on a local testbed, where we have tight con-
trol over the system, and then in EC2. As we show in
Section 2, we found that the bottleneck lies in trans-
ferring the OS image from storage servers to the vir-
tual machine’s host computer.

Based on this observation, we propose Quick-
Start, a technique for fast Linux boot in cloud en-
vironments. QuickStart leverages existing support
for ramdisks during boot (initramfs in Linux) to
stream the critical data in one large transfer, which
greatly improves network efficiency. Currently,
Linux places only a few files critical to OS boot, such
as low-level device drivers, in the initial ramdisk. In-
stead, we propose populating it with all files needed
to launch applications. Remaining files can still be
referenced from network storage. QuickStart re-
quires no kernel modification and uses existing tools
to rearrange which files are packaged in the initial
ramdisk. We make no assumptions about the under-
lying platform, so our method works with any VMM
or even physical hardware.

In tests on EC2, we evaluate QuickStart on three
applications: the Nginx and Apache webservers and
the MySQL database. While speedup varies with
the size and complexity of the application, on aver-
age QuickStart is 80% faster than booting Amazon’s
stock Linux image.

2 Understanding VM Boot Performance

We begin with a study of boot performance to iden-
tify bottlenecks in a local testbed and on Amazon’s
EC2.

2.1 Local Boot Performance

We emulate a cloud boot environment using an NFS
server, connected by a 100mbps network, to hold
VM images. The VM host has a 4-core Intel Core

1



Configuration Test Time (sec)

Local
NFS without cache 30.8
NFS cached 7.5
local disk 12.3

EC2

boot small 60.5
boot medium 51.5
reboot small 23.8
reboot medium 15.1

Table 1: Average boot times (in seconds) on a local
VM setup and on EC2.

i5-2500K with 16GB memory and a SATA disk. We
use Xen hypervisor [4], version 4.1.2. Dom0 system
is Gentoo Linux, customized from the official stage3
tarball, and the target DomU guest is also a Gentoo
system.

For local experiments, we have three configura-
tions:

(1) NFS without cache: all I/O during boot goes to
the NFS.

(2) NFS cached: I/O goes to a local in-memory
cache.

(3) Local disk: I/O goes to local disk using EXT4
file system. system.

The results in the top half of Table 1 report the av-
erage boot times: from /proc/uptime right after
sshd starts. The averages are over 5 runs. The re-
sults are as one might expect: if the image is already
in memory (NFS cached), then the boot is extremely
fast. If the image is stored either locally on disk or
across the network, the boot time is much slower.
Using bootchart [1] to profile startup performance,
we found that in the NFS without cache case, more
than 20 seconds was spent within the guest waiting
for I/O. In the cached case, this dropped to less than
one second.

As mentioned, our local experiment used a
100mbps network, which is an order of magnitude
slower than the 1gbps networks currently used in
public clouds such as IaaS. The slower network
therefore exacerbates the performance cost of I/O
compared to real EC2 behavior. Nevertheless, we
hypothesize that I/O remains the key bottleneck for
boot time.

2.2 EC2 Boot Performance

To understand boot times in a commercial cloud,
we ran experiments using Amazon Linux AMI
2013.03 in the us-east-1a region. Using both small
and medium instances, we started a fresh VM in-
stance and measure the boot time as we did above:
we inserted into the stock AMI a script that col-
lects /proc/uptime immediately after sshd starts.
Note that medium instances have roughly twice the
CPU capacity of small instances. The timing re-
sults are shown in Table 1 in the “boot small” and
“boot medium” rows. As one would expect, small
instances have slightly longer boots compared to
medium instances due to reduced CPU capacity.

We also measure the effect of caching on boot
time. Before an instance is launched, the VM images
are stored in network storage and must be copied to
the VM host. When an instance reboots, though,
it uses the locally cached copy of the instance and
avoids much of the network traffic [5] The last two
rows in Table 1 shows boot time when rebooting the
same EC2 instances. On average, rebooting is 50%
faster than booting the first time.

All this points to I/O performance as a bottle-
neck for faster boot performance. In the next section
we develop QuickStart which will improves perfor-
mance by reducing the number of I/O operations on
the critical path for boots.

3 Design and Implementation

Given that network I/O is the bottleneck for boot, two
prior approaches to reducing I/O costs would seem
applicable. First, one can create a stripped-down
system that only starts the minimal necessary ser-
vices and a kernel with only the minimal necessary
drivers [3]. Second, one could put the entire root file
system into a ramdisk, which will ensure high-speed
sequential I/O for files needed during boot.

Stripped-down images. We gauged whether a
stripped-down image might help by measuring
whether Amazon VM images (AMIs) include many
unnecessary files. We downloaded 1,249 public im-
ages, and found that most AMIs include hundreds
of files unnecessary in a virtual environment, such
as wireless and bluetooth drivers. They also start
dozens of services during boot. Using OpenRC,
we emulated the stripped-down system approach by
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configuring the default Amazon Linux AMI to only
start the network and no other services. Such an
AMI, however, still required more than 30 seconds
to boot on EC2. The problem still remained that I/O
was not efficient, because data is fetched on demand.
For example, running a script requires bringing over
the shell, executables invoked by the shell, shared
libraries linked to the executables, and any configu-
ration files referenced by the script.

Ramdisks. The second common approach fetches
the entire root file system into memory during
boot [7], leveraging the existing Linux initramfs
mechanism. Initramfs is an in-memory file used to
provide files during boot. When the VM starts, the
OS loader PV-GRUB fetches the kernel and ramdisk
from network storage into the host’s memory, and
passes the address of the ramdisk to the kernel. The
kernel then mounts the ramdisk, and all files on the
ramdisk are accessible without additional I/O. A nat-
ural embellishment for faster boots, then, is to in-
clude the entire file system (applications, data, and
all) into the ramdisk. While this promises good per-
formance, but is a waste of memory. Even after re-
moving many unnecessary files the ramdisk was still
larger than 1GB, but small EC2 instances provide
only 1.7 GB of memory leaving very little for the
OS and applications.

3.1 The QuickStart Approach

We instead propose a new boot mechanism called
QuickStart that combines the above two approaches.
First, we build a minimal environment containing
files necessary to start applications, and ensure those
files are transferred efficiently with a ramdisk. To
preserve generality, however, we enable the remain-
ing files on the root volume to be accessed via nor-
mal network I/O. Thus, QuickStart can start critical
applications quickly but enables full access to all the
files found in a full Linux installation.

Minimum ramdisk environment Our approach
tries to minimize the services required to boot a
normal system, and packs most necessary files in
the initramfs for boot programs to use. There are
three major steps to building the ramdisk: (1) deter-
mine the necessary services—application files, net-
work and clock services for our tests, (2) determine
the files needed by the kernel and desired services,

and (3) modify the /init script to use files from the
ramdisk rather than root volume. Currently, we de-
termine the necessary files manually by analyzing an
I/O trace of the kernel during startup and using ldd

to determine shared files. We put any executables
(from the trace), libraries (from ldd), and configura-
tion files into the ramdisk. Currently, we include the
entire /etc directory for simplicity. To minimize the
size of the executables, we use BusyBox, a package
of the frequent use programs, in our environment.

Normally, the kernel frees the initial ramdisk
once it has mounted the root file system. Be-
cause we rely on it for applications, QuickStart must
keep it around. We therefore modify the /init

script to remount the ramdisk under /fast, and di-
rect applications to find files with their PATH and
LD LIBRARY PATH environment variables. When
files are not found on the ramdisk, the normal path
search mechanism will look on the root volume,
where they will be fetched from network storage.

While conceptually simple, we ran into several
obstacles applying this methodology. First, deter-
mining the complete set of library dependencies is
difficult. While not a correctness problem (the li-
braries will be found on network storage), leaving
a library out of the ramdisk can slow startup time.
We found two major causes of such misses: first,
some applications explicitly load libraries with the
dlopen() function, such as libnss. These will not
be reported by ldd. Second, some applications have
hard coded paths and will not search for files under
/fast. For example, the C library’s popen() func-
tion hard-codes the location of the shell as /bin/sh.
Finally, a ramdisk may be inappropriate for files that
are written to or need persistence, such as system
logs.

To address these issues, we modified startup
scripts to reference the /fast directory, and discov-
ered explicitly loaded libraries using strace. We
leave data files at their original location to avoid run-
ning out of space if they exceed the ramdisk capacity.

Note that one downside of the QuickStart ap-
proach is that when we modify files stored in the
ramdisk, changes are not reflected to the original
files. However, boot images within EC2 are already
read-only, so changes to the image are not written
back to image storage.
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4 Evaluation

In the 1249 images from EC2, we discovered that the
most popular applications were Apache(Httpd)

and MySQL, which were included in 551 and 479 im-
ages, respectfully. We will therefore use these ap-
plications for evaluation. We additionally include
the Nginx web server , as an example of a lighter-
weight application. We perform experiments on both
m1.small and m1.medium instance types.

4.1 Methodology

We measure the total provisioning time of applica-
tions (the time from launch request to application
responsiveness) as well as the boot times (the time
from the beginning of VM boot to application re-
sponsiveness). The former includes provisioning de-
lays that are out of the control of the user, such as
time spent in queues waiting for a server assignment.
In more detail, we use a client to execute our exper-
iments. The time it requests a VM instance to be
launched is Tlaunch. We modified the VM’s /init
script to configure the network using udhcpc, and
as soon as that configuration finishes, to record the
value of /proc/uptime and send it to the client
using netcat. The time at which this informa-
tion is received by the client is Tnetcat. From these
values we can calculate the provisioning time

Tpr = (Tnetcat−Tlaunch)−Tuptime. This is the time
EC2 takes to select a physical host and initiate boot.

To determine when an application becomes avail-
able, the client polls the application service (GET /

for a web server and show databases; for
MySQL) every second until it responds successfully.
The time of the successful response is Tprobe. The
application boot time is Tapp = (Tprobe−Tlaunch)−
Tpr, and total application launch time is Ttotal =
Tprobe − Tlaunch.

We compared QuickStart with three other config-
urations. First is a pure ramboot AMI (RAMBoot),
but here with only the necessary applications placed
inside, as opposed to the entire file system. This is
the optimal case, but limiting since the full func-
tionality of the AMI is not available to users. Sec-
ond is the stripped-down AMI without adding to
the ramdisk (Minimal), as described in the previous
section. Third is the standard Amazon Linux AMI
(Standard).

4.2 Boot Times

We report in Figure 1 the average application launch
time Ttotal (entire bar) made up of provisioning time
Tpr and application boot time Tapp (upper bar). The
averages are taken over 50 runs and we repeated the
experiment both for m1.small and m1.medium in-
stance types.

As can be seen, QuickStart reduces by half the
launch time compared to standard Amazon AMIs.
For example, Apache requires only 49 seconds,
compared to 104 seconds for standard Amazon
Linux on a small instance. When compared with
the optimal RAMboot, QuickStart is only 10 sec-
onds slower. The difference is due mostly to provi-
sioning times: discounting EC2 provisioning over-
heads, we see QuickStart boot time is close to
optimal for Apache (8.1 seconds), while RAMBoot

takes 7 seconds. Both systems outperform Amazon
Linux’s 61.6 seconds by more than 80%, and the
other two applications show similar improvements.
Minimal, meanwhile, is 20 seconds faster than the
standard AMI on average, but still three times slower
than QuickStart. This shows that removing services
helps, but not nearly as much as optimizations that
use initramfs.

To help understand the I/O improvement, we
recorded the I/O stats of the root file system from
/proc/diskstats before application startup. The
number of read operations were reduced by a factor
of three for the two web servers when moving from
the minimal AMI to QuickStart. For MySQL,
read operations are reduced only by a factor of two.
This helps explain why MySQL benefits slightly less
from QuickStart.

We note that the difference between small and
medium instances is approximately 2 seconds. This
suggests again that the CPU is not a major bottle-
neck during boot for the Amazon AMIs. In Quick-
Start CPU improvements bring relatively more ben-
efit, since more of the I/O is eliminated.

4.3 Initramfs Size

As we mentioned before, we use initramfs to hold
necessary data. This memory currently cannot be
swapped out or reclaimed, so we report our initramfs
size in Table 2. Recall that in the RAMBoot configu-
ration we included only application-related data, and
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Figure 1: The average application launch time and provisioning time for three applications with four con-
figurations, on both small and medium EC2 instances. The small/medium specify instance types;

Application Type Initramfs Size
Mysql 35MB
Nginx 27MB

Apache 28MB

Table 2: Initramfs size of different configurations.

so it does not have a complete functional environ-
ment. To support a full environment of the Ama-
zon Linux AMI, one requires nearly 1GB of mem-
ory, which is highly prohibitive in most settings. By
comparison, the largest initramfs in our experiments
with QuickStart required only 35MB.

One might be tempted to compress (most) of the
initramfs in order to save space. Counterintuitively,
we found that this can slow boot. Using Mysql,
compressing the initramfs yielded a 10MB file, but
increased boot time from 11.5 seconds to 14.8 sec-
onds. On medium instances, boot time similarly in-
creased from 8.1 seconds to 10.8 seconds. This indi-
cates that the bandwidth savings in sending the com-
pressed ramdisk do not outweigh the CPU time re-
quired to decompress it.

5 Related Work
Bare-metal boot. Microsoft Windows Ready-
Boot [9] is perhaps most similar to our proposal,
in that it optimizes boot by streamlining disk I/O,
though for non-virtualized and local-storage settings.
Rather than relying on a single ramdisk contain-

ing all necessary files, ReadyBoot dynamically con-
structs a list of files referenced during boot, and then
prefetches them into memory early during boot. In
a cloud environment, dynamically identifying files
is an unnecessary complexity because the same disk
image is used every time. Windows 8 extends this by
defaulting to hibernating, where an existing snapshot
of system state is loaded in a sequential transfer [11].

As discussed in Section 3, a well-known technique
(c.f., [7]) for speeding up Linux boots in bare-metal
settings is to place the whole Linux root file system
in a ramdisk. We note that we are unaware of any
previous suggestions to use this approach in virtual-
ized settings, but the techniques apply there as well.
The major problem with this approach, however, is
that it wastes memory by storing unnecessary files in
RAM. As a result, its users typically build minimally
functional environments that may limit which appli-
cations can run. In contrast, our approach only places
the files needed for startup in RAM, while the re-
mainder of the root file system is accessed normally.

There have been many other techniques for faster
OS boot. Specific techniques for Linux—including
measuring boot time, stripping down the kernel and
optimizing user applications—can be found at the
Linux boottime website [2]. Many of these efforts
are for embedded devices and are not yet publicly
measured on a cloud environment. The ChromeOS
system optimizes boot to support fast system up-
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grades [6], and can reboot a laptop in under 15 sec-
onds. The OS uses a custom BIOS and removes or
delays anything not critical for user login.

VM boot. Past studies of cloud boot time across
multiple cloud providers showed that boot perfor-
mance is strongly dependent on the VM image
size [8], which agrees with our measurements that
I/O is the dominant cost. One past approach is to
use cloning with migration to lower boot times [13].
However, this requires support from cloud providers,
while QuickStart works with existing cloud services.

In paravirtualized systems, a modified kernel can
reduce boot time, such a Xen mini OS [3]. Google
proposed initializing devices in one VM and transfer-
ring them to another [10] and accelerating timer rates
in a VM, since virtual devices usually do not require
delays [12]. These techniques are complementary to
ours, as QuickStart could use such optimized kernels
to further speed boot.

6 Conclusion

In this work, we investigated how to improve pro-
visioning time for Linux VM instances in clouds
such as Amazon’s EC2. Our initial experiments
highlighted that network I/O for retrieving needed
files from network storage is a bottleneck to boot
performance. We then presented a design, called
QuickStart, that optimizes the critical path of appli-
cation initialization using the initramfs functionality
already existent in modern clouds. This reduces the
amount of network I/O and improves performance,
yet does not limit functionality nor require signifi-
cant memory overheads. We showed experimentally
that launch time for applications such as MySQL,
Apache, and Nginx are all reduced by a factor of two.

Our method currently does have some limitations.
We require manual manipulation of images to create
the needed initramfs. Likewise, updates to appli-
cations require changes to the ramdisk (which in EC2
is handled separately from a VM image). In typical
usage one sets up an AMI/ramdisk and reuses it fre-
quently, thus amortizing the setup costs. Moreover,
QuickStart is flexible in that one can leave frequently
modified files (e.g., application data files) on network
storage while retaining performance improvements.
In future work we will investigate techniques for au-
tomating more parts of the process so as to enable

non-expert users to streamline their images.
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