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ABSTRACT

In multi-turn dialogs, natural language understanding
models can introduce obvious errors by being blind to
contextual information. To incorporate dialog history,
we present a neural architecture with Speaker-Sensitive
Dual Memory Networks which encode utterances dif-
ferently depending on the speaker. This addresses the
different extents of information available to the system
- the system knows only the surface form of user utter-
ances while it has the exact semantics of system output.
We performed experiments on real user data from Mi-
crosoft Cortana, a commercial personal assistant. The
result showed a significant performance improvement
over the state-of-the-art slot tagging models using con-
textual information.

1. INTRODUCTION

Major technology companies have been investing in nat-
ural language understanding systems as effective tools
for human-computer communication [1, 2, 3, 4, 5, 6, 7,
8]. Of particular interest are task-oriented personal as-
sistants, e.g., Amazon’s Alexa, Apple Siri and Microsoft
Cortana. In task-oriented dialogs, the main role of the
system is to fill out the associated slots to the semantic
frame of the requested task. As the demand for fulfilling
more complex tasks with voice-interface agents keeps in-
creasing, it becomes crucial to address some issues faced
when handling multi-turn interaction. For example, in
Table 1, the user’s utterance at turn 3 could mean either
number people or time without any context.

Traditionally, the natural language understanding
(NLU) module [9] delegates the task of contextual in-
terpretation to downstream modules such as dialog state
tracker [10]. However, given that most dialog state track-
ers just exploit the slot-values recognized by the NLU
module as is without further transformation based on
context, the NLU errors due to the context-insensitivity

are very likely to propagate through downstream mod-
ules. Thus it is critical to reduce the context-related NLU
errors as early in the system pipeline as possible.

With this aim, a host of previous studies has at-
tempted to incorporate dialog history for contextual
interpretation [11, 12, 13]. A large body of work, how-
ever, exploited only previous turn information such as
the NLU results at the previous turn. Not only are
they limited in the range of history information but also
they internally suffer the error propagation problems
by directly using previous predictions. With the rise of
end-to-end deep neural network models, Chen et al. [14]
addressed such shortcomings with end-to-end memory
networks [15] where the embeddings of all past user
utterances are stored in a memory. In their work, how-
ever, no system’s information was used which will prove
powerful in our experimental results.

In this paper we propose an end-to-end neural archi-
tecture for slot tagging that uses Speaker-Sensitive Dual
Memory Networks (SSDMNs) to leverage both user and
system information in a tailored manner. Specifically,
since the system only gets to see the surface form of
user’s utterance, we encode each word of all past user’s
utterances using the Long Short-Term Memory (LSTM)
model [16]. We store the encoded vectors of each word in
a memory and use an attention mechanism [17] to selec-
tively use only relevant words to the current user input.
Whereas the system already knows the exact semantics
of its past utterances, thus we directly encode the targeted
slots of system’s question to avoid parsing noisy natural
language expressions. Due to this different nature, we in-
troduce a separate memory storing all system’s targeted
slot embeddings. The attention mechanism again allows
to selectively use relevant system information. Hori et
al. [18] adopted a similar concept, role-dependent encod-
ing, but their work is not aimed for slot tagging, nor does
it exploit the system output semantics. Furthermore, we
adopt an efficient pre-training method [19, 20, 21, 22] for
system’s targeted slot encoding that further improves the
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Turn Speaker Utterance Targeted Slots

1 System Where do you want to reserve? place name
User Pizza Hut -

2 System For how many people? number people
User Two -

3 System Okay. What time should I make the reservation for? {time, date}
User Actually it’s three -

Table 1. An example dialog for restaurant reservation. The targeted slots are the slots that the system asks about at
each turn.

system’s performance. To verify the efficacy of the pro-
posed model, we performed evaluation on a large amount
of real data gathered from five different domains of com-
mercial personal assistants. In comparison to previous
approaches our method showed a large improvement.

The rest of the paper is structured as follows. In Sec-
tion 2 we describe SSDMNs in depth. In Section 3 we
discuss our experiments. We finish with conclusions in
Section 4.

2. SPEAKER-SENSITIVE DUAL MEMORY
NETWORKS

At turn t, the multi-turn slot tagging model takes a user
input ut and outputs semantic tags mt by considering
the contextual information, i.e., a sequence of user’s past
utterances {u1, . . . ,ut−1} and the corresponding system
outputs {m1, . . . ,mt−1}.

2.1. Overall architecture

The overall SSDMNs architecture is illustrated in Fig-
ure 1. The model first encodes the last user input and
system output to produce vector embeddings. Then it up-
dates the dual memories with the generated vectors. Af-
ter that, as it encodes the current user utterance, at each
word position, it computes the attention weights to find
relevant information. Finally it makes prediction for each
word by jointly considering the encoded vector of each
word and the memory content averaged with respect to
the attention weights. The main steps are described be-
low.

2.2. User utterance encoding

In order to obtain a more contextful vector representa-
tion of the j-th word uij of the user utterance at turn i,
we adopt a stateful LSTM instead of a vanilla LSTM en-
coder - the LSTM output for the last word in an utterance
is fed as the initial state into the LSTM network for the

next utterance while all LSTM weights are shared. The
stateful LSTM runs over both past user utterances and
the current input:

ũi = StatefulLSTM(ui), i < t

ht = StatefulLSTM(ut)

2.3. System output encoding

Since the system has the exact semantics of system utter-
ances, we directly encode the targeted slots that usually
have strong influence on the following user’s response.
Concretely, for each system output, we are given an k-hot
vector mi ∈ Rl, where l is the number of slot tags, which
indicates which slot is targeted by the system’s output.
Then we use a trainable projection matrix P ∈ Rd×l to
map the k-hot vector to a d-dimensional dense vector m̃i:

m̃i = Pmi

Note that since mi is a k-hot vector, m̃i is the sum of
the targeted slot embeddings. It has been observed that
pre-trained embeddings can serve as good initialization
values that help avoid converging to bad local optima
and speed up model training. Inspired by [19], we adopt
Canonical Correlation Analysis (CCA) to efficiently pre-
train the projection matrix. The CCA algorithm finds a
lower dimensional projection that maximizes the corre-
lation between a set of random vector pairs:

• {ai} is a set of zero vectors in which the entry cor-
responding to the slot tag of the i-th sentence is set
to 1.

• {bi} is a set of zero vectors in which the entries
corresponding to words spanned by the tag are set
to 1.

2.4. Memory update

Although an LSTM network can capture long-term de-
pendencies, it has been argued that LSTM networks’
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Fig. 1. The overall architecture of Speaker-Sensitive Dual Memory Networks.

fixed-size memory may not be enough to contain a large
amount of information encoded in variable-sized in-
puts [17]. Thus before performing the tag prediction we
update the dual memories with the encoded vectors of
each word of the user utterances (ũik) and system output
vectors (m̃i) encoded in the manner described above,
respectively.

2.5. Attention mechanism

Since not every piece of history information is helpful in
making prediction for a current word, we selectively use
only relevant information. To this end, we first compute
the attention weights for both memories:

αij = softmax(Wα(ũij ◦ htk) + bα)

βi = softmax(Wβ(m̃i ◦ htk) + bβ)

where htk is the LSTM output for utk, Wα and Wβ are
weight matrices, bα and bβ are bias vectors, ◦ denotes
element-wise vector multiplication, and softmax(xij) =

ex
i
j /
∑
k,l e

xk
l . Then we compute the weighted sum of

memory entries:

ū =
∑
i,j

αijũ
i
j

m̄ =
∑
i

βim̃i

Domain Train Dev Test
Orderfood 5,993 1,333 1,714

Reservation 5,130 1,215 1,339
Taxi 6,120 1,216 1,414

Events 4,347 822 850
Movieticket 3,781 712 738

Average 5,074 1,059 1,211

Table 2. Data description

2.6. Tag prediction

Finally we use ū and m̄ along with htk to make the tag
prediction:

ŷtk,l =
exp ztk,l∑
l′ exp ztk,l′

where ztk = Whh
t
k + Wuū + Wmm̄ and W∗ are all

trainable weight matrices.

3. EXPERIMENTS

3.1. Models

To evaluate the SSDMNs model, we conducted compar-
ative experiments with the following systems:

• LSTM uses the stateful LSTM only with no con-
textual information used.

• +LS additionally uses the last system output.

• +PreLS uses the pre-trained system tag projection
matrix for encoding the last system output to show
the efficacy of the CCA pre-training scheme.
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Domain LSTM +LS +PreLS MNs MNs+S SSDMNs
Orderfood 87.38 93.70 94.10 92.07 94.36 96.45

Reservation 86.29 91.96 92.81 90.80 91.64 94.37
Taxi 89.46 93.77 94.58 92.57 93.11 96.67

Events 85.17 91.39 90.80 87.61 89.64 92.21
Movieticket 88.06 93.76 94.53 90.96 91.89 96.14

Average 87.27 92.92 93.36 90.80 92.13 95.17

Table 3. Comparative performance in F1 score on five domains.

• MNs similarly to the Memory Networks model in
Chen et al. [14], the system does not use system’s
output information.

• MNs+S MNs with system’s output in surface
form.

3.2. Data

The data is collected from five domains of Microsoft Cor-
tana. Table 2 shows the number of utterances of the train-
ing, development and test datasets of each domain. All
datasets were labeled by expert editors.

3.3. Training setting

In our experiments, all the models were implemented us-
ing Dynet [23] and were trained using Stochastic Gradi-
ent Descent (SGD) with Adam [24]—an adaptive learn-
ing rate algorithm. We used the initial learning rate of
4 × 10−4 and left all the other hyper parameters as sug-
gested in [24]. Each SGD update was computed with
Intel MKL (Math Kernel Library) 1 without minibatch-
ing. We used the dropout regularization [25] with the
keep probability of 0.4. Both dimensions of the input
and output of the stateful LSTM model were 100. To ini-
tialize word embedding, we used the pre-trained GloVe
model [26]. For system slot tag embedding, we used
CCA to induce 100 dimensional vector representation
from 20 personal assistant domains consisting of 3M ut-
terances and 130 distinct tags.

3.4. Results

To compute slot F1-score, we used the standard CoNLL
evaluation script2. In Table 3, the stateful LSTM-only
model (LSTM) achieved 87.27% in averaged F1 score.
The improved performance of the +LS model, 92.92%,

1https://software.intel.com/en-us/articles/intelr-mkl-and-c-
template-libraries

2http://www.cnts.ua.ac.be/conll2000/chunking/output.html

confirms the same findings of previous studies on the ef-
fectiveness of previous turn information for contextual
interpretation. The further performance increase of the
+PreLS model, achieving 93.36%, demonstrates the pos-
sible gain with the proposed pre-training scheme. Inter-
estingly the MNs model couldn’t show a better perfor-
mance than the +LS model, even after incorporating sys-
tem’s output in surface form, justifying our novel con-
tribution on the dual encoding of system output. This
claim is also supported by the best performance of the
SSDMNs model reaching 95.17%.

4. CONCLUSION

We presented a novel Speaker-Sensitive Dual Memory
Networks model for the multi-turn slot tagging task
which extends the state-of-the-art Memory Networks-
based approach with tailored memories to exploit the
exact semantic knowledge on system output. We also de-
scribed an efficient pre-training scheme to obtain better
slot tag embeddings. The large performance improve-
ment on real data demonstrates the efficacy of SSDMNs.
Future work includes a detailed analysis on various rea-
soning behaviors of the model depending on different
contexts. Also we plan to incorporate more elements
of dialog state beyond system output. Another interest-
ing direction is to perform multiple memory references
to handle more complex discourse phenomena such as
ellipsis, anaphora resolution.
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