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Abstract. Motivated by the fact that distances between data points in many real-world cluster-
ing instances are often based on heuristic measures, Bilu and Linial [13] proposed analyzing objective
based clustering problems under the assumption that the optimum clustering to the objective is pre-
served under small multiplicative perturbations to distances between points. The hope is that by
exploiting the structure in such instances, one can overcome worst case hardness results.

In this paper, we provide several results within this framework. For center-based objectives,
we present an algorithm that can optimally cluster instances resilient to perturbations of factor
(1 +

√
2), solving an open problem of Awasthi et al. [3]. For k-median, a center-based objective of

special interest, we additionally give algorithms for a more relaxed assumption in which we allow
the optimal solution to change in a small ε fraction of the points after perturbation. We give the
first bounds known for k-median under this more realistic and more general assumption. We also
provide positive results for min-sum clustering which is typically a harder objective than center-based
objectives from approximability standpoint. Our algorithms are based on new linkage criteria that
may be of independent interest.

Additionally, we give sublinear-time algorithms, showing algorithms that can return an implicit
clustering from only access to a small random sample.
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1. Introduction. Problems of clustering data from pairwise distance informa-
tion are ubiquitous in science. A common approach for solving such problems is to
view the data points as nodes in a weighted graph (with the weights based on the
given pairwise information), and then to design algorithms to optimize various objec-
tive functions such as k-median or min-sum. For example, in the k-median clustering
problem the goal is to partition the data into k clusters Ci, giving each a center ci, in
order to minimize the sum of the distances of all data points to the centers of their
cluster. In the min-sum clustering approach the goal is to find k clusters Ci that
minimize the sum of all intra-cluster pairwise distances. Yet unfortunately, for most
natural clustering objectives, finding the optimal solution to the objective function is
NP-hard. As a consequence, there has been substantial work on approximation algo-
rithms [18, 14, 9, 15, 1] with both upper and lower bounds on the approximability of
these objective functions on worst case instances.

Recently, Bilu and Linial [13] suggested an exciting, alternative approach aimed
at understanding the complexity of clustering instances which arise in practice. Moti-
vated by the fact that distances between data points in clustering instances are often
based on a heuristic measure, they argue that interesting instances should be resilient
to small perturbations in these distances. In particular, if small perturbations can
cause the optimum clustering for a given objective to change drastically, then that
probably is not a meaningful objective to be optimizing. Bilu and Linial [13] specifi-
cally define an instance to be α-perturbation resilient1 for an objective Φ if perturbing
pairwise distances by multiplicative factors in the range [1, α] does not change the op-
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timum clustering under Φ. They consider in detail the case of Max-Cut clustering
and give an efficient algorithm to recover the optimum when the instance is resilient
to perturbations on the order of α > min{n/2,

√
n∆} where ∆ is the maximal degree

of the graph. They also give an efficient algorithm for unweighted Max-Cut instances
that are resilient to perturbations on the order of α ≥ 4n/δ where δ is the minimal
degree of the graph.

Two important questions raised by the work of Bilu and Linial [13] are: (1) the
degree of resilience needed for their algorithm to succeed is quite high: can one develop
algorithms for important clustering objectives that require much less resilience? (2)
the resilience definition requires the optimum solution to remain exactly the same
after perturbation: can one succeed under weaker conditions? In the context of
center-based clustering objectives such as k-median and k-center, Awasthi et al. [3]
partially address the first of these questions and show that an algorithm based on the
single-linkage heuristic can be used find the optimal clustering for α-perturbation-
resilient instances for α = 3. They also conjecture it to be NP-hard to beat 3 and
prove beating 3 is NP-hard for a related but weaker notion (see the α-center proximity
property in Definition 3.1).

In this work, we address both questions raised by [13] and additionally improve
over [3]. First, for the center-based objectives we design a polynomial time algo-
rithm for finding the optimum solution for instances resilient to perturbations of
value α = 1 +

√
2, thus beating the previously best known factor of 3 of Awasthi

et al [3]. Second, for k-median (which is a specific center-based objective), we con-
sider a weaker, relaxed, and more realistic notion of perturbation-resilience where we
allow the optimal clustering of the perturbed instance to differ from the optimal of
the original in a small ε fraction of the points. Compared to the original perturba-
tion resilience assumption, this is arguably a more natural though also more difficult
condition to deal with. We give positive results for this case as well, showing for
somewhat larger values of α that we can still achieve a near-optimal clustering on the
given instance (see Section 1.1 below for precise results). We additionally give positive
results for min-sum clustering which is typically a harder objective than center-based
objectives from approximability standpoint. For example, the best known guarantee
for min-sum clustering on worst-case instances is an O(υ−1 log1+υ n)-approximation
algorithm that runs in time nO(1/υ) for any υ > 0 due to Bartal et al. [9]; by contrast,
the best guarantee known for k-median is factor 1 +

√
3 + ε [20] for any ε > 0.

Our results are achieved by carefully deriving structural properties of perturbation
resilience. At a high level, all the algorithms we introduce work by first running
appropriate linkage procedures to produce a hierarchical clustering, and then running
dynamic programming to retrieve the best k-clustering present in the tree. To ensure
that (under perturbation resilient instances) the hierarchy output in the first step has
a pruning of low cost, we derive new linkage procedures (closure linkage and robust
average linkage) which are of independent interest. While the overall analysis is quite
involved, the clustering algorithms we devise are simple and robust. This simplicity
and robustness allow us to show how our algorithms can be made sublinear-time by
returning an implicit clustering from only a small random sample of the input.

From a learning theory perspective, the resilience parameter, α, can also be seen
as an analog to a margin for clustering. In supervised learning, the margin of a
data point is the distance, after scaling, between the data point and the decision
boundary of its classifier, and many algorithms have stronger guarantees when the
smallest margin over the entire data set is sufficiently large [27, 28]. The α parameter,
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similarly controls the magnitude of the perturbation the data can withstand before
being clustered differently, which is, in essence, the data’s distance to the decision
boundary for the given clustering objective. Hence, perturbation resilience is also a
natural and interesting assumption to study from a learning theory perspective.

Our Results. In this paper, we advance the line of work of [13] by solving several
important problems of clustering perturbation-resilient instances under metric center-
based and min-sum objectives.

In Section 3 we improve on the bounds of [3] for α-perturbation resilient instances
for center-based objectives, giving an algorithm that efficiently2 finds the optimum
clustering for α = 1 +

√
2. Most of the frequently used center-based objectives,

such as k-median, are NP-hard to even approximate, yet we can recover the exact
solution for perturbation resilient instances. Our algorithm is based on a new linkage
procedure using a new notion of distance (closure distance) between sets that may be
of independent interest.

In Section 4 we consider the more challenging and more general notion of (α, ε)-
perturbation resilience for k-median, where we allow the optimal solution after per-
turbation to be ε-close to the original. We provide an efficient algorithm which for
α > 2 +

√
3 produces (1 + O(ε/ρ))-approximation to the optimum, where ρ is the

fraction of the points in the smallest cluster. The key structural property we derive
and exploit is that, except for εn bad points, most points are α times closer to their
own center than to any other center. To eliminate the noise introduced by the bad
points, we carefully partition the points into a list of sufficiently large blobs, each of
which contains only good points from one optimal cluster. This then allows us to
construct a tree on the blobs with a low-cost pruning that is a good approximation
to the optimum.

In Section 5 we provide the first efficient algorithm for optimally clustering α-
perturbation resilient min-sum instances. We show that when α in the order of the
ratio between the sizes of the largest and smallest clusters, there exists an algorithm
that can output the optimal clustering in polynomial time. Our algorithm is based on
an appropriate modification of average linkage that exploits the structure of min-sum
perturbation resilient instances.

In Section 6, we show that for (α, ε)-perturbation resilient min-sum instances with
α in the order of the ratio between the sizes of the largest and smallest clusters and
ε = Õ(ρ), there exists a polynomial time algorithm that outputs a clustering that
is both a (1 + Õ(ε/ρ))-approximation and Õ(ε)-close to the optimal clustering. The
key structural property is that except for Õ(εn) bad points, most points are O(α)
times closer to their own optimal cluster than to any other optimal cluster. Similar
to the case of k-median, we can partition the points into a list of sufficiently large
blobs, each of which contains only good points from one optimal cluster. However,
the properties of the good points are significantly weaker than those in the k-median
case, and thus the linkage there does not guarantee a tree with a low-cost pruning.
To utilize these properties, we introduce the notion of potentially good points which
can act as a proxy of the actual good points. We then design a robust average linkage
algorithm based on the cost computed only on the potentially good points, which
constructs a tree with a pruning that assigns all good points correctly. The pruning
can be found out efficiently, and after some processing it leads to a clustering that is
both a good approximation and close to the optimal clustering.

2For clarity, in this paper efficient means polynomial in both n (the number of points) and k (the
number of clusters).
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We also provide sublinear-time algorithms both for the k-median and min-sum
objectives (Sections 4.3 and 5.1), showing algorithms that can return an implicit
clustering from only access to a small random sample.

Related Work. A subsequent work [12] of [13] by Bilu, Daniely, Linial and Saks
studied the Max-Cut problem under perturbation resilience, and showed how to solve
in polynomial time (1 + ε)-perturbation resilient instances of metric and dense Max-
Cut, and Ω(

√
n)-perturbation resilient instances of general Max-Cut. The later bound

is further improved by Makarychev, Makarychev and Vijayaraghavan [22]. They
proposed a polynomial time exact algorithm for Ω(

√
log n log log n)-perturbation re-

silient Max-Cut instances based on semidefinite programming. They also proved that
for Max k-Cut with k ≥ 3, there is no polynomial-time algorithm that solves ∞-
perturbation resilient instances of Max k-Cut unless NP= RP. Here an instance is
∞-perturbation resilient if it is α-perturbation resilient for every α. Finally, they also
studied a notion called (γ,N)-weakly stability for Max-Cut, which means that after
perturbing the weights by a factor of at most γ, the optimal solution must be from the
set N . When N is the set of solutions that differ from the optimal solution on at most
δ fraction of nodes, the notion is the same as the (γ, δ)-perturbation resilience studied
in our work. They showed that when γ = Ω(

√
log n log log n), there exists an efficient

algorithm that can find a cut from N . In a recent work [23], the same authors further
proposed a beyond worst-case analysis model for Balanced-Cut, which is a planted
model with random edges from permutation-invariant distributions. They achieved a
constant factor approximation with respect to the cost of the planted cut when the
number of random edges is Ω(npolylog(n)).

Several recent papers have showed how to exploit the structure of perturbation
resilient instances in order to obtain better approximation guarantees (than those
possible on worst case instances) for other difficult optimization problems. These
include the game theoretic problem of finding Nash equilibria [6, 21] and the classic
traveling salesman problem [24].

In the context of objective based clustering, several recent papers have showed
how to exploit other notions of stability for overcoming the existing hardness results on
worst case instances. The ORSS stability notion of Ostrovsky, Rabani, Schulman and
Swamy [26, 3] assumes that the cost of the optimal k-means solution is small compared
to the cost of the optimal (k − 1)-means solution. The BBG (c, ε)-approximation
stability condition of Balcan, Blum and Gupta [5] assumes that every c-approximation
solution is close to the target clustering. We note that when the target clustering is the
optimal clustering for the clustering objective, (c, ε)-approximation stability implies
(c, ε)-perturbation resilience.

Awasthi, Sheffet and Blum [2] proposed a stability condition called weak-deletion
stability, and showed that it is implied by both the ORSS stability and the BBG
stability. Kumar and Kannan [19] proposed a proximity condition which assumes
that in the target clustering, most data points satisfy that they are closer to their
center than to any other center by an additive factor in the order of the maximal
standard variance of their clusters in any direction. Their results are improved by
Awasthi and Sheffet [4], which proposed a weaker version of the proximity condition
called center separation, and designed algorithms achieving stronger guarantees under
this weaker condition. These notions are not directly comparable to the perturbation
resilience property.

2. Notation and Preliminaries. In a clustering instance, we are given a set
S of n points in a finite metric space, and we denote d : S × S → R≥0 as the
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distance function. Φ denotes the objective function over a partition of S into k <
n clusters which we want to optimize over the metric, that is, Φ assigns a score
to every clustering. The optimal clustering with respect to Φ is denoted as C =
{C1, C2, . . . , Ck}, and its cost is denoted as OPT . The core concept we study in this
paper is the perturbation resilience notion introduced by [13]. Formally:

Definition 2.1. A clustering instance (S, d) is α-perturbation resilient to a given
objective Φ if for any function d′ : S×S → R≥0 such that ∀p, q ∈ S, d(p, q) ≤ d′(p, q) ≤
αd(p, q), there is a unique optimal clustering C′ for Φ under d′ and this clustering is
equal to the optimal clustering C for Φ under d.

Note that in the definition, d′ need not be a metric. Also note that the definition
depends on the objective. In this paper, we focus on the center-based and min-
sum objectives. For the center-based objectives, we consider separable center-based
objectives defined by [3].

Definition 2.2. A clustering objective is center-based if the optimal solution
can be defined by k points c1, · · · , ck in the metric space called centers such that every
data point is assigned to its nearest center. Such a clustering objective is separable if
it furthermore satisfies the following two conditions:

(1) The objective function value of a given clustering is either a (weighted) sum
or the maximum of the individual cluster scores.

(2) Given a proposed single cluster, its score can be computed in polynomial time.

One particular center-based objective is the k-median objective. We partition
S into k disjoint subsets P = {P1, P2, . . . , Pk} and assign a set of centers p =

{p1, p2, . . . , pk} ⊆ S for the subsets. The objective is Φ(P,p) =
∑k
i=1

∑
p∈Pi

d(p, pi).
The centers in the optimal clustering are denoted as c = {c1, . . . , ck}. Clearly, in
an optimal solution, each point is assigned to its nearest center. In such cases, the
objective is denoted as Φ(c).

For the min-sum objective, we partition S into k disjoint subsets denoted as
P = {P1, P2, . . . , Pk}, and the goal is to minimize Φ(P) =

∑k
i=1

∑
p∈Pi

∑
q∈Pi

d(p, q).
Note that we sometimes denote Φ as ΦS in the case where the distinction is necessary,
such as in Section 4.3.

In Section 4 we consider a generalization of perturbation resilience where we
allow a small difference between the original optimum and the new optimum after
perturbation. Formally:

Definition 2.3. Let C be the optimal k-clustering and C′ be another k-clustering
of a set of n points. We say C′ is ε-close to C if minσ∈Sk

∑k
i=1 |Ci \C ′σ(i)| ≤ εn, where

σ is a matching between indices of clusters of C′ and those of C.

Definition 2.4. A clustering instance (S, d) is (α, ε)-perturbation resilient to
a given objective Φ if for any function d′ : S × S → R≥0 s.t. ∀p, q ∈ S, d(p, q) ≤
d′(p, q) ≤ αd(p, q), the optimal clustering C′ for Φ under d′ is ε-close to the optimal
clustering C for Φ under d.

For simplicity, we assume εn is an integer and assume that mini |Ci| is known
(otherwise, we can simply search over the n possible different values).

For A,B ⊆ S and a distance function d, we define ds(A,B) :=
∑
p∈A,q∈B d(p, q),

ds(p,B) := ds({p}, B), and ds(p, q) := ds({p}, {q}). Also, we define da(A,B) :=
ds(A,B)/(|A||B|) and da(p,B) := da({p}, B) for nonempty A and B.

3. α-Perturbation Resilience for Center-based Objectives. In this section
we show that, for α ≥ 1 +

√
2, if the clustering instance is α-perturbation resilient for

center-based objectives, then we can in polynomial time find the optimal clustering.



6 M. F. BALCAN, AND Y. LIANG

This improves on the α ≥ 3 bound of [3] and stands in sharp contrast to the NP-
Hardness results on worst-case instances. Our algorithm succeeds for an even weaker
property, the α-center proximity, introduced in [3].

Definition 3.1. A clustering instance (S, d) satisfies the α-center proximity
property if for any optimal cluster Ci ∈ C with center ci, Cj ∈ C(j 6= i) with center
cj, any point p ∈ Ci satisfies αd(p, ci) < d(p, cj).

Lemma 3.2. Any clustering instance that is α-perturbation resilient to center-
based objectives also satisfies the α-center proximity.

The proof follows easily by constructing a specific perturbation that blows up all
the pairwise distances within cluster Ci by a factor of α. By α-perturbation resilience,
the optimal clustering remains the same after this perturbation. This then implies
the desired result. The full proof appears in [3]. In the remainder of this section,
we prove our results for α-center proximity, but because it is a weaker condition, our
upper bounds also hold for α-perturbation resilience.

We begin with some key properties of α-center proximity instances.

Lemma 3.3. For any points p ∈ Ci and q ∈ Cj(j 6= i) in the optimal clustering
of an α-center proximity instance, we have

(1) d(ci, q) >
α(α−1)
α+1 d(ci, p),

(2) d(p, q) > (α− 1) max{d(p, ci), d(q, cj)}.
Consequently, when α ≥ 1 +

√
2, we have

(1) d(ci, q) > d(ci, p),
(2) d(p, q) > d(p, ci).

Proof. (1) Lemma 3.2 gives us that d(q, ci) > αd(q, cj). By the triangle inequality,
we have d(ci, cj) ≤ d(q, cj)+d(q, ci) < (1+1/α)d(q, ci). On the other hand, d(p, cj) >
αd(p, ci) and therefore d(ci, cj) ≥ d(p, cj)−d(p, ci) > (α−1)d(p, ci). Combining these
inequalities, we get (1).

(2) The proof first appears in [3], and we include it for completeness. Without
loss of generality, we can assume that d(p, ci) ≥ d(q, cj). By the triangle inequality
we have d(p, q) ≥ d(p, cj) − d(q, cj). From Lemma 3.2 we have d(p, cj) > αd(p, ci).
Hence d(p, q) > αd(p, ci)− d(q, cj) ≥ (α− 1)d(p, ci) ≥ (α− 1)d(q, cj).

Lemma 3.3 implies for any optimal cluster Ci, the ball of radius maxp∈Ci
d(ci, p)

around the center ci contains only points from Ci, and moreover, points inside the
ball are each closer to the center than to any point outside the ball. Inspired by
this structural property, we define the notion of closure distance between two sets
as the radius of the minimum ball that covers the sets and has some margin from
points outside the ball. We show that any (strict) subset of an optimal cluster has
smaller closure distance to another subset in the same cluster than to any subset of
other clusters or to unions of other clusters. Using this, we will be able to define
an appropriate linkage procedure that, when applied to the data, produces a tree on
subsets that will all be laminar with respect to the clusters in the optimal solution.
This will then allow us to extract the optimal solution using dynamic programming
applied to the tree.

We now define the notion of closure distance and then present our algorithm for
α-center proximity instances (Algorithm 1). Let B(p, r) := {q : d(q, p) ≤ r} denote
the ball around p with radius r.

Definition 3.4. The closure distance dS(A,A′) between two disjoint nonempty
subsets A and A′ of point set S is the minimum d ≥ 0 such that there is a point
c ∈ A ∪A′ satisfying the following requirements:

(1) coverage: the ball B(c, d) covers A and A′, that is, A ∪A′ ⊆ B(c, d);
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(2) margin: points inside B(c, d) are closer to the center c than to points outside,
that is, ∀p ∈ B(c, d), q 6∈ B(c, d), we have d(c, p) < d(p, q).

c

A A′

d

c

p
q

Fig. 1: Illustration for the closure distance.

Note that dS(A,A′) = dS(A′, A) ≤ maxp,q∈S d(p, q) for any A and A′. Further-
more, it can be computed in polynomial time.

Algorithm 1 Center-based objectives, α-perturbation resilience

Input: Data set S, distance function d(·, ·) on S.
1: Begin with n singleton clusters.
2: Repeat till only one cluster remains:

merge clusters C,C ′ which minimize dS(C,C ′).
3: Let T be the tree with single points as leaves and internal nodes corresponding

to the merges performed.
4: Run dynamic programming on T to get the minimum cost pruning C̃.

Output: Clustering C̃.

Theorem 3.5. For (1 +
√

2)-center proximity instances, Algorithm 1 outputs the
optimal clustering in polynomial time.

The proof follows immediately from the following key property of the Phase 1 of
Algorithm 1. The details of dynamic programming are presented in Appendix A, and
an efficient implementation of the algorithm is presented in Appendix B.

Theorem 3.6. For (1 +
√

2)-center proximity instances, Algorithm 1 constructs
a binary tree T such that the optimal clustering is a pruning of this tree.

Proof. We prove correctness by induction. In particular, assume that our current
clustering is laminar with respect to the optimal clustering. That is, for each cluster A
in our current clustering and each C in the optimal clustering, we have either A ⊆ C,
or C ⊆ A, or A ∩ C = ∅. This is clearly true at the start. To prove that the merge
steps keep the laminarity, we need to show the following: if A is a strict subset of an
optimal cluster Ci, A

′ is a subset of another optimal cluster or the union of one or
more other clusters, then there exists B from Ci \A, such that dS(A,B) < dS(A,A′).

We first prove that there is a cluster B ⊆ Ci \ A in the current cluster list such
that dS(A,B) ≤ d̃ := maxp∈Ci d(ci, p). There are two cases. First, if ci 6∈ A, then
define B to be the cluster in the current cluster list that contains ci. By induction,
B ⊆ Ci and thus B ⊆ Ci \ A. Then we have dS(B,A) ≤ d̃ since there is ci ∈ B, and
(1) for any p ∈ A ∪ B, d(ci, p) ≤ d̃, (2) for any p ∈ S satisfying d(ci, p) ≤ d̃, and any
q ∈ S satisfying d(ci, q) > d̃, by Lemma 3.3 we know p ∈ Ci and q 6∈ Ci, and thus
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d(ci, p) < d(p, q). In the second case when ci ∈ A, we pick any B ⊆ Ci \ A and a
similar argument gives dS(A,B) ≤ d̃.

case 1: c ∈ A case 2: c ∈ A′

B

A

ci
A′

c

p

cj

q B

A

ci
A′

c

p

cj
q

Fig. 2: Comparing d̃ and dS(A,A′) in closure linkage.

As a second step, we need to show that d̃ < d̂ := dS(A,A′). There are two
cases: the center for dS(A,A′) is in A or in A′. See Figure 2 for an illustration.

In the first case, there is a point c ∈ A such that c and d̂ satisfy the requirements
of the closure distance. Pick a point q ∈ A′, and define Cj to be the cluster in

the optimal clustering that contains q. As d(c, q) ≤ d̂, and by Lemma 3.3 we have

d(cj , q) < d(c, q), then d(cj , c) ≤ d̂ (otherwise it violates the second requirement of

closure distance). Suppose p = arg maxp′∈Ci d(ci, p
′). Then we have d̃ = d(p, ci) <

d(p, cj)/α ≤ (d̃+d(ci, c)+d(c, cj))/α where the first inequality comes from Lemma 3.2
and the second from the triangle inequality. Since d(ci, c) < d(c, cj)/α, we can combine

the above inequalities and compare d̃ and d(c, cj), and when α ≥ 1 +
√

2 we have

d̃ < d(c, cj) ≤ d̂.

Now consider the second case, when there is a point c ∈ A′ such that c and d̂
satisfy the requirements in the definition of the closure distance. Select an arbitrary
point q ∈ A. We have d̂ ≥ d(c, q) from the first requirement, and d(c, q) > d(ci, q) by

Lemma 3.3. Then from the second requirement of closure distance d(ci, c) ≤ d̂. And

by Lemma 3.3, d̃ = d(ci, p) < d(ci, c), we have d̃ < d(ci, c) ≤ d̂.

Note 3.1. Our factor of α = 1+
√

2 beats the NP-hardness lower bound of α = 3
of [3] for center-proximity instances. The reason is that the lower bound of [3] requires
the addition of Steiner points that can act as centers but are not part of the data to
be clustered (though the upper bound of [3] does not allow such Steiner points). One
can also show a lower bound for center-proximity instances without Steiner points.
In particular for any ε > 0, the problem of solving (2− ε)-center proximity k-median
instances is NP-hard [10]. There is also a low bound for perturbation resilience.
Balcan, Haghtalab and White [8] recently showed that there is no polynomial time
algorithm for k-center instances under (2−ε)-perturbation resilience, unless NP= RP.
They also showed that closure linkage solves k-center instances under 2-perturbation
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resilience in polynomial time.
Note 3.2. The first condition in our definition of closure distance is similar

to the minimax linkage criteria [11]. More precisely, our closure distance definition
has two conditions: coverage condition and margin condition. If the margin condition
is removed from the definition, then the closure distance reduces to the minimax
linkage distance. For our purposes however, the margin condition is crucial — in
particular, we can provably argue that when the center promixity condition is satisfied
Algorithm 1 produces a tree such that the optimal clustering is a pruning of the tree
(Theorem 3.5).

4. (α, ε)-Perturbation Resilience for the k-Median Objective. In this sec-
tion we consider a natural relaxation of the α-perturbation resilience, the (α, ε)-
perturbation resilience property, that requires the optimum after perturbation of
up to a multiplicative factor α to be ε-close to the original (one should think of ε
as sub-constant). We show that if the instance is (α, ε)-perturbation resilient with
α > 2 +

√
3, then we can in polynomial time output a clustering that provides a

(1 + 5ε/ρ)-approximation to the optimum, where ρ is the fraction of the points in the
smallest cluster. Thus this improves over the best worst-case approximation guar-
antees known [20] when ε ≤

√
3ρ/5 and also beats the lower bound of (1 + 1/e) on

the best approximation achievable on worst case instances for the metric k-median
objective [17, 18] when ε ≤ ρ/(5e).

The key idea is to understand and leverage the structure implied by (α, ε)-
perturbation resilience. We show that perturbation resilience implies that there exists
only a small fraction of points that are bad in the sense that their distance to their
own center is not α times smaller than their distance to any other centers in the
optimal solution. We then use this bounded number of bad points in our clustering
algorithm.

4.1. Structure of (α, ε)-Perturbation Resilience. Throughout this section
we will assume that |Ci| is sufficiently large compared to εn, since for interesting
practical clustering instances, one would expect that a large fraction of a optimal
cluster will remain the same after small perturbation. The exact bound will be stated
explicitly in our main theorems. For now we can simply assume |Ci| > 2εn for all i.

To understand the structure of (α, ε)-perturbation resilience, we need to consider
the difference between the optimal clustering C under d and the optimal clustering C′
under a perturbation d′, defined as minσ∈Sk

∑k
i=1 |Ci\C ′σ(i)|. Since

∑k
i=1 |Ci\C ′σ(i)| ≤

εn by assumption, we clearly have separately for each i that |Ci \ C ′σ(i)| ≤ εn. Since

|Ci| > 2εn this implies that C ′σ(i) is the unique cluster in C′ such that |Ci ∩ C ′σ(i)| >
1
2 |Ci|. Without loss of generality, let us index C′ so that σ is the identity. We denote
by c′i the center of C ′i.

In the following we introduce the notions of bad points and good points, and then
show that under perturbation resilience we do not have too many bad points.

Definition 4.1. Define bad points for k-median to be those that are not α times
closer to its own center than to any other center in the optimal clustering. That is,

B := ∪iBi, Bi := {p ∈ Ci : ∃j 6= i, αd(ci, p) ≥ d(cj , p)}.

The other points G := S \B are called good points. Let Gi := G∩Ci denote the good
points in cluster Ci.

Theorem 4.2. Suppose the clustering instance is (α, ε)-perturbation resilient and

mini |Ci| > 6
(
α+1
α−1

)
(εn+ α+ 1). Then |B| ≤ εn.
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Intuition. Assume for contradiction that |B| > εn. The main idea is to select a
subset of (εn + 1) bad points and then construct a specific perturbation so that in
the new optimal clustering these (and only these) selected bad points move to new
clusters, leading to a clustering that is ε far from the original optimal clustering. This
is contradictory to the (α, ε)-perturbation resilience property, and thus there are at
most εn bad points.

The selected bad points and the perturbation are defined as follows. Select an
arbitrary subset B̂ of (εn + 1) bad points from B, and let B̂i = B̂ ∩ Ci denote the
selected bad points in Ci. Let c(p) denote the second nearest center for p ∈ B̂i and
the nearest center for p ∈ Ci \ B̂i. That is, for any 1 ≤ i ≤ k and any p ∈ Ci, let

c(p) =

{
cj where j = arg minj′ 6=i d(p, cj′) if p ∈ B̂i
ci if p ∈ Ci \ B̂i.

The perturbation blows up all distances by a factor of α except for those distances
between p and c(p). Formally,

d′(p, q) =

{
d(p, q) if p = c(q), or q = c(p),
αd(p, q) otherwise.

The key challenge in showing the contradiction is to show that c′i = ci for all
i, that is, the optimal centers do not change after the perturbation. Once this is
shown it is then immediate that in the optimum clustering under d′ each point p
is assigned to the center c(p), and thus the selected bad points B̂ will move from
their original optimal clusters and all others will not. So the distance between the
new clustering and the original clustering is |B̂| > εn, which is contradictory to the
(α, ε)-perturbation resilience property.

C ′i Ci

Ai Mi

(a) Notations Ai and Mi

C ′i Ci

Wi

Vi B̂i

(b) Notations Wi and Vi

Fig. 3: Different types of points. (a) Ai = C ′i \Ci,Mi = Ci \C ′i. (b) Wi = (Ci ∩C ′i) \
B̂i, Vi = (Ci ∩ C ′i) \ B̂i. As a result, Ci = Wi ∪ Vi ∪Mi and C ′i = Wi ∪ Vi ∪Ai.

It will now be convenient to define a few quantities. Let Ai = C ′i \ Ci (the
points added when switching from Ci to C ′i), Mi = Ci \ C ′i (the points removed),

Wi = (Ci ∩ C ′i) \ B̂i (the common points excluding selected bad points), and Vi =

(Ci ∩ C ′i) ∩ B̂i (the selected bad points in common). So, Ci = Wi ∪ Vi ∪Mi and
C ′i = Wi ∪ Vi ∪ Ai. See Figure 3. Note that |Ai| ≤ εn, |Mi| ≤ εn, and |Vi| ≤ εn + 1,
with the bulk of the points in Wi.

The intuition for the proof that c′i = ci is the following. Assume for contradiction
that c′i 6= ci. First, d(ci, c

′
i) cannot be too large compared to the average distance
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between ci and Wi, else by the triangle inequality ds(c
′
i,Wi) would also be large,

violating the fact that d′s(c
′
i, C
′
i) ≤ d′s(ci, C

′
i); see Claim 4.3. On the other hand, if

d(ci, c
′
i) is small then by the triangle inequality ds(c

′
i,Wi) ≈ ds(ci,Wi). Since distances

between c′i and Wi are blown up by a factor of α in moving from d to d′ but distances
between ci and Wi are not, d′s(c

′
i,Wi) will be significantly larger than d′s(ci,Wi), which

will also violate the fact that d′s(c
′
i, C
′
i) ≤ d′s(ci, C ′i); see Claim 4.4.

Proof of Theorem 4.2. We now present the formal proof. Before proving the two
key claims mentioned in the intuition, we begin with two convenient claims. The first
convenient claim shows that c′i 6= cj for j 6= i. The second convenient claim shows the
relation of d′s and ds on Ai.

Claim 4.1. If mini |Ci| > ( 2
α−1 + 3)εn+ 1, then c′i 6= cj(∀j 6= i).

Proof. Assume for contradiction that c′i = cj . We first need to show c′j 6= cl(∀l).
Clearly, c′j 6= cj , since otherwise, moving all the points in C ′j to C ′i will not increase the
cost, which violates (α, ε)-perturbation resilience. We also know that c′j 6= cl(l 6= j)
since otherwise, there is p ∈ Wj , d(cl, p) = d(c′j , p) ≤ d′(c′j , p) < d′(c′i, p) = d(cj , p),
which contradicts the fact that p ∈ Cj .

Now we can apply the intuition described above to show that c′i = cj and c′j 6=
cl(∀l) lead to an contradiction. Note that points in Wj ∪ Vj = Cj ∩ C ′j are closer
to c′j than to c′i = cj under d′. Then back to d, for any p ∈ Wj , since c′j 6= cl(∀l),
αd(c′j , p) = d′(c′j , p) ≤ d′(c′i, p) = d(cj , p), resulting in ds(c

′
j ,Wj) ≤ ds(cj ,Wj)/α.

Similarly, for any p ∈ Vj , αd(c′j , p) = d′(c′j , p) ≤ d′(c′i, p) = αd(cj , p), resulting in
ds(c

′
j , Vj) ≤ ds(cj , Vj). These facts have two consequences.
First, since points in Wj are α time closer to c′j than to cj , the distance between

c′j and cj is small:

d(c′j , cj) ≤
d(c′j ,Wj)

|Wj |
+
ds(cj ,Wj)

|Wj |
≤ (1 +

1

α
)ds(cj ,Wj).(4.1)

Second, since cj is the optimal center for Cj = Wj ∪ Vj ∪Mj , it should save a
lot of cost on Mj compared to c′j , which suggests that cj and c′j would be far apart.
Formally,

ds(c
′
j , Cj) = ds(c

′
j ,Wj ∪ Vj ∪Mj) ≥ ds(cj , Cj) = ds(cj ,Wj ∪ Vj ∪Mj).

Since ds(c
′
j ,Wj) ≤ ds(cj ,Wj)/α and ds(c

′
j , Vj) ≤ ds(cj , Vj), we have

ds(c
′
j ,Mj)− ds(cj ,Mj) ≥ ds(cj ,Wj)−

1

α
ds(cj ,Wj),

|Mj |ds(c′j , cj) ≥ (1− 1

α
)ds(cj ,Wj).(4.2)

When |Cj | > ( 2
α−1 + 3)εn+ 1, we have (1− 1/α)|Wj | > (1 + 1/α)|Mj |. Then In-

equalities 4.2 and 4.1 lead to d(cj , c
′
j) = 0. This means cj = c′j which is a contradiction

to the assumptions.
Claim 4.2. Suppose mini |Ci| > ( 2

α−1 + 3)εn+ 1. If ci 6= c′i, then we have
(1) d′s(c

′
i, Ai) ≥ αds(c′i, Ai \ {c(c′i)}),

(2) d′s(ci, Ai) ≤ αds(ci, Ai \ {c(c′i)}) + α(1 + α)d(c′i, ci).
Proof. These translations from d′ to d can be verified by the definition of d′. In

most cases, d′(·, ·) = αd(·, ·); the only exceptions are the distances between p and c(p).
The detailed verification is presented below.
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(1) Since c′i 6= ci, and by Claim 4.1, we know c′i 6= cj(∀j). So we only need to
check if c(c′i) ∈ Ai. We have

d′s(c
′
i, Ai) ≥ d′s(c′i, Ai \ {c(c′i)}) = αds(c

′
i, Ai \ {c(c′i)}).

(2) If c(c′i) 6∈ Ai, then the inequality is trivial. If c(c′i) ∈ Ai, then

d′s(ci, Ai) = d′s(ci, Ai \ {c(c′i)}) + d′(ci, c(c
′
i)) ≤ αds(ci, Ai \ {c(c′i)}) + αd(ci, c(c

′
i)).

We have d(ci, c(c
′
i)) ≤ d(ci, c

′
i) + d(c′i, c(c

′
i)). If c′i is a selected bad point, then

d(c′i, c(c
′
i)) ≤ αd(c′i, ci). Otherwise, c(c′i) is the nearest center for c′i, then d(c′i, c(c

′
i)) ≤

d(c′i, ci). In any case, the inequality for d′s(ci, Ai) follows.
We are now ready to present the complete proofs of the two key claims.

Claim 4.3. For each i, d(ci, c
′
i) ≤ 3

(
α+1
α

) ds(ci,Wi)
|Ci| .

Proof. The key idea is that since d′s(c
′
i, C
′
i) ≤ d′s(ci, C

′
i) and C ′i \Wi is small, it

must be the case that d′s(c
′
i,Wi) is not too much larger than d′s(ci,Wi). Now, since

distances between ci and Wi remain the same in moving from d to d′ but distances
between c′i and Wi are blown up by a factor of α (except for the distance between c′i
and ci itself), this means that αds(c

′
i,Wi) − ds(ci,Wi) must be small. This is then

used together with the triangle inequality to get an upper bound on d(ci, c
′
i). We

provide the formal proof below.
First, if c′i = ci the claim is trivially true so assume c′i 6= ci. We begin with the

fact that d′s(c
′
i, C
′
i) ≤ d′s(ci, C

′
i) and then break C ′i into its three components Wi, Vi,

and Ai. We move the Wi terms to one side and move the rest of the terms to the
other side, resulting in

d′s(c
′
i,Wi)− d′s(ci,Wi) ≤ d′s(ci, Ai)− d′s(c′i, Ai) + d′s(ci, Vi)− d′s(c′i, Vi).(4.3)

Beginning with the right-hand side of (4.3), by the triangle inequality we have
ds(ci, Vi) ≤ ds(c

′
i, Vi) + |Vi|d(ci, c

′
i). Thus, d′s(ci, Vi) ≤ d′s(c

′
i, Vi) + α|Vi|d(ci, c

′
i). Simi-

larly, by Claim 4.2 we have d′s(ci, Ai) ≤ d′s(c
′
i, Ai) + α|Ai|d(ci, c

′
i) + α(α + 1)d(ci, c

′
i).

So, the right-hand side of (4.3) is at most α(|Vi|+ |Ai|+ α+ 1)d(ci, c
′
i). Now, exam-

ining the left-hand side, this quantity is at least αds(c
′
i,Wi \ {c(c′i)})− ds(ci,Wi). So,

we have

αds(c
′
i,Wi \ {c(c′i)})− ds(ci,Wi) ≤ α(|Vi|+ |Ai|+ α+ 1)d(ci, c

′
i).(4.4)

Using the fact that by the triangle inequality, α(|Wi| − 1)d(ci, c
′
i) ≤ αds(c

′
i,Wi \

{c(c′i)}) + αds(ci,Wi \ {c(c′i)}), and subtracting (α+ 1)ds(ci,Wi) from both sides, we
get

αds(ci, c
′
i)(|Wi| − 1)− (α+ 1)ds(ci,Wi) ≤ αds(c′i,W \{c(c′i)})− ds(ci,Wi).(4.5)

Combining (4.4) and (4.5) we have:

αd(ci, c
′
i)(|Wi| − 1)− (α+ 1)ds(ci,Wi) ≤ αd(ci, c

′
i) (|Vi|+ |Ai|+ α+ 1)

which implies the desired result when |Ci| > 5εn+ 2α+ 6.

Claim 4.4. For each i, if c′i 6= ci then d(ci, c
′
i) ≥

(
α−1
2α

) d(ci,Wi)
εn+α+1 .

Proof. Assume c′i 6= ci and let di = d(ci, c
′
i). We will begin with the fact that

ds(ci, Ci) ≤ ds(c
′
i, Ci), and then proceed to compare ds(ci, C

′
i) and ds(c

′
i, C
′
i), and

finally compare d′s(ci, C
′
i) and d′s(c

′
i, C
′
i), which will give the desired bound.
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First, since ds(ci, Ci) ≤ ds(c
′
i, Ci) and the difference between C ′i and Ci is small,

ds(ci, C
′
i) cannot be much larger than ds(c

′
i, C
′
i). Specifically, by (α, ε)-perturbation

resilience, |Ai| ≤ εn and |Mi| ≤ εn. We have by the triangle inequality

ds(ci, Ai) ≤ ds(c′i, Ai) + (εn)di,(4.6)

ds(ci,Mi) ≥ ds(c′i,Mi)− (εn)di.(4.7)

So, ds(ci, C
′
i) ≤ ds(c′i, C ′i) + 2(εn)di.

Now, we turn to compare d′s(ci, C
′
i) and d′s(c

′
i, C
′
i). We begin with Ai. By

Claim 4.2 we have

d′s(ci, Ai) ≤ d′s(c′i, Ai) + αεndi + α(α+ 1)di.(4.8)

On Ci \Mi, the cost of ci is smaller than that of c′i. Specifically, from (4.7) we have:

ds(ci, Ci \Mi) ≤ ds(c′i, Ci \Mi) + (εn)di.

so

αds(ci, Ci \Mi) ≤ αds(c′i, Ci \Mi) + α(εn)di

≤ d′s(c′i, Ci \Mi) + (α− 1)di + α(εn)di(4.9)

where the second step is from the following fact: d′s(c
′
i, Ci \Mi) = αds(c

′
i, Ci \Mi) if

c(c′i) 6= ci, else d′s(c
′
i, Ci \Mi) = αds(c

′
i, Ci \Mi)− (α− 1)di. Now, the left-hand side

above equals d′s(ci, Ci \Mi) + (α− 1)ds(ci,Wi) because distances between ci and Wi

are not blown up by a factor of α.
Adding up (4.8) and (4.9) means that we get a contradiction if (α−1)ds(ci,Wi) >

(2αεn + α(α + 1) + α − 1)di. In other words, if our savings in using ci as center is

greater than our extra cost. Therefore, di ≥
(
α−1
2α

) ds(ci,Wi)
εn+α+1 as desired.

Combining the upper bound of Claim 4.3 with the lower bound of Claim 4.4
when c′i 6= ci, we get a contradiction for sufficiently large |Ci| as given in the theorem
statement, yielding c′i = ci.

M
α+1 + 1 αM

α+1 − 1

|G1| = 1−2ε
2 n |G2| = 1−2ε

2 n|B| = εn

Fig. 4: An example showing the optimality of the bound on the number of bad points.

Note 4.1. The bound in Theorem 4.2 is optimal in the sense that for any α > 1
and 0 < ε < 1/5, we can easily construct an (α, ε)-perturbation resilient 2-median
instance which has εn bad points.

The instance is shown in Figure 4. It has 3 groups of points: G1, G2, and B.
Both G1 and G2 have (1− ε)n/2 points, and B has εn points. Let M be a sufficiently



14 M. F. BALCAN, AND Y. LIANG

large constant, say, M > n2/ε. The distances within the same group are 1, while
those between the points in G1 and G2 are M , those between the points in B and G1

are M
α+1 + 1, and those between the points in B and G2 are αM

α+1 − 1. The instance
satisfies the triangle inequality, which can be verified by a case analysis. The optimal
clustering before perturbation has one center in G1 and the other in G2. Then B are
trivially bad points, and thus we have εn bad points in this instance.

Now we show that the instance is (α, ε)-perturbation resilient. To prove that the
optimal clustering after perturbation C′ is ε-close to the original optimal clustering,
it suffices to show that C′ has one center from G1 ∪ B and the other center from
G2. Assume for contradiction that this is not true. If both centers come from G2,

the cost of points in G1 is (1−ε)n
2 M . On the other hand, the optimal cost before

perturbation is (1− ε)n−2+ εn( M
α+1 +1), so the optimal cost after perturbation is no

more than α((1− ε)n− 2 + εn( M
α+1 + 1)). But this is smaller than (1−ε)n

2 M , which is
a contradiction. Similarly, we get a contradiction if both centers come from G1 ∪B.

4.2. Approximation Bound. Now, we consider the problem of approximating
the cost of the optimum clustering. We can see that after removing the bad points,
the optimal clusters are far apart from each other. In order to get rid of the influence
of the bad points, we generate a list of blobs, which form a partition of the data
points, and each of which contains only good points from one optimal cluster. Then
we construct a tree on the list of blobs with a pruning that assigns all good points
correctly. We will show that this pruning has low cost, so the lowest cost pruning of
the tree is a good approximation. The details are described in Algorithm 2.

A key step is to generate the list of almost “pure” blobs, which is described in
Algorithm 3. Suppose for any i and any good point p ∈ Gi, its γ|Gi| nearest neighbors
contain no good points outside Ci. Also suppose the algorithm knows the value of γ.
Informally, the algorithm maintains a threshold t. At each threshold, for each point
p that has not been added to the list, the algorithm checks its γt nearest neighbors
Nγt(p). It constructs a graph Ft by connecting any two points that have sufficiently
many common neighbors. It then builds another graph Ht by connecting any two
points that have sufficiently many common neighbors in Ft, and adds sufficiently
large components in Ht to the list. Finally, for each remaining point p, it checks if
most of p’s neighbors are in the list and if there are blobs containing a significant
amount of p’s neighbors. If so, it inserts p into such a blob with the smallest median
distance. Then the threshold is increased and the above steps are repeated.

The intuition behind Algorithm 3 is as follows. As mentioned above, the algorithm
works when for any i and any good point p ∈ Gi, the γ|Gi| nearest neighbors of p
contain no good points outside Ci (γ = 1 for the k-median instances considered in
this section, as shown in Lemma 4.3; γ = 4

5 for the min-sum instances considered in
Section 6, as shown in Claim 6.3). Without loss of generality, assume |C1| ≤ |C2| ≤
· · · ≤ |Ck|. When t ≤ |C1|, good points in different clusters do not have most neighbors
in common and thus are not connected in Ft. However, they may be connected by a
path of bad points. So we further build the graph Ht to disconnect such paths, which
ensures that the blobs added into the list contain only good points from one optimal
cluster. The final insert step (Step 6) makes sure that when t = |C1|, all remaining
good points in C1 will be added to the list and will not affect the construction of
blobs from other optimal clusters. We can show by induction that, at the end of
the iteration t = |Ci|, all good points in Cj(j ≤ i) are added to the list. When t is
large enough, any remaining bad points are inserted into the list, so the points are
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Algorithm 2 k-median, (α, ε) perturbation resilience

Input: Data set S, distance function d(·, ·) on S, mini |Ci|, ε > 0
1: Run Algorithm 3 to generate a list L of blobs with parameters uB = εn, γ = 1.
2: Run the robust linkage procedure in [7] to get a cluster tree T .
3: Run dynamic programming on T to get the minimum cost pruning C̃ and its

centers c̃.
Output: Clustering C̃ and its centers c̃.

Algorithm 3 Generating interesting blobs

Input: Data set S, distance function d(·, ·) on S, the size of the smallest optimal
cluster mini |Ci|, the upper bound on the number of bad points uB , a parameter
γ ∈ [4/5, 1]

1: Let Nr(p) denote the r nearest neighbors of p in S.
2: Let L = ∅, AS = S. Let the initial threshold t = mini |Ci|.
3: Construct a graph Ft by connecting p, q ∈ AS if
|Nγt(p) ∩Nγt(q)| > (2γ − 1)t− 2uB .

4: Construct a graph Ht by connecting points p, q ∈ AS if p, q share more than uB
neighbors in Ft.

5: Add to L all the components C of Ht with |C| ≥ 1
2 mini |Ci| and remove them

from AS .
6: For each point p ∈ AS , check if most of Nγt(p) are in L and if there exists C ∈ L

containing a significant number of points in Nγt(p). More precisely, check if
(1) |Nγt(p) \ L| ≤ 1

2 mini |Ci|+ 2uB ;
(2) Lp 6= ∅ where Lp = {C ∈ L : |C ∩Nγt(p)| ≥ (γ − 3

5 )|C|}.
If so, assign p to the blob in Lp of smallest median distance, remove p from AS .

7: While |AS | > 0, increase t by 1 and go to Step 3.
Output: The list L.

partitioned into a list of almost pure blobs. The formal guarantee for Algorithm 3 is
stated in Lemma 4.4.

Another key step is to construct a tree on these blobs. Since good points are
closer to good points in the same optimal cluster than to those in other clusters
(Lemma 4.3), there exist algorithms that can build a tree with a pruning that assigns
all good points correctly. In particular, we can use the robust linkage procedure
in [7], which repeatedly merges the two blobs C,C ′ with the maximum score(C,C ′)
defined as follows. For each p ∈ C, sort the other blobs in decreasing order of the
median distance between p and points in the blob, and let rank(p, C ′) denote the
rank of C ′. Then define rank(C,C ′) = medianx∈C [rank(x,C ′)] and score(C,C ′) =
min[rank(C,C ′), rank(C ′, C)]. Intuitively, for any blobs A,A′ from the same optimal
cluster and D from a different cluster, good points in A always rank A′ later than D
in the sorted list, so rank(A,A′) > rank(A,D). Similarly, rank(A′, A) > rank(A′, D),
and thus score(A′, A) > score(A,D). This means the algorithm will always merge
blobs from the same cluster before merging them with blobs outside, so there is a
pruning that assigns all good points correctly.

In the following, we prove that Algorithm 2 outputs a good approximation. We
first prove a key property of the good points in (α, ε)-perturbation resilience instances
in Lemma 4.3 and show in Lemma 4.4 that the property ensures the success of Algo-
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rithm 3, and then prove a property of the bad points in Lemma 4.5. Finally, we use
these lemmas to prove the approximation bound in Theorem 4.6.

Lemma 4.3 (Theorem 8 in [10], Lemma 2.6 in [3]). When α > 2 +
√

3, for any
good points p1, p2 ∈ Gi, q ∈ Gj(j 6= i), we have d(p1, p2) < d(p1, q). Consequently, for
any good point p ∈ Gi, all its |Gi| nearest neighbors belong to Ci ∪B.

Proof. The following proof is implicit in [3] and we include it for completeness.
We rephrase it slightly so that it is more intuitive. By the triangle inequality and the
definition of good points,

d(p2, p1) + d(p1, q) + d(q, cj) ≥ d(p2, cj) > αd(p2, ci) ≥ α(d(p1, p2)− d(p1, ci)).

Rearranging terms leads to

d(p1, q) + d(q, cj) + αd(p1, ci) > (α− 1)d(p1, p2).(4.10)

Now, to compare d(p1, q) and d(p1, p2), we need to get rid of the extra terms d(q, cj)
and d(p1, ci). By the same proof in Lemma 3.3(2),

d(p1, q) > (α− 1)d(p1, ci), and d(p1, q) > (α− 1)d(q, cj).

Plugging these into (4.10), we have(
1 +

1

α− 1
+

α

α− 1

)
d(p1, q) > (α− 1)d(p1, p2).

So when α > 2 +
√

3, d(p1, q) > d(p1, p2).
Lemma 4.4. Suppose the number of bad points is bounded by uB, and for any i

and any good point p ∈ Gi, all its γ|Gi| nearest neighbors in S are from Ci ∪ B. If
mini |Ci| > 30uB, then Algorithm 3 generates a list L of blobs each of size at least
1
2 mini |Ci| such that:

(1) The blobs in L form a partition of S.
(2) Each blob in L contains good points from only one optimal cluster.
Proof. Without loss of generality, assume |C1| ≤ |C2| ≤ · · · ≤ |Ck|. We prove the

following two claims by induction on i ≤ k:
(1) For any t ≤ |Gi|, any blob in the list L only contains good points from only

one optimal cluster; all blobs have size at least 1
2 mini |Ci|.

(2) At the beginning of the iteration t = |Gi| + 1, any good point p ∈ Gj , j ≤ i
has already been assigned to a blob in the list that contains good points only
from Cj .

The first two claims imply that each blob in the list contains good points from
only one optimal cluster. Moreover, at the beginning of the iteration t = |Gk| + 1,
all good points have been assigned to one of the blobs in L, so there are only bad
points left, the number of which is smaller than 1

2 mini |Ci|. These remaining points
will eventually be assigned to the blobs before γt > n, so the blobs form a partition
of S.

The claims are clearly both true initially. We show now that as long as t ≤ |G1|,
the graphs Ft and Ht have the following properties.

• No good point pi in cluster Ci is connected in Ft to a good point pj in a
different cluster Cj . By assumption, pi has no neighbors outside Ci ∪B and
pj has no neighbors outside Cj∪B, so they share at most uB < (2γ−1)t−2uB
neighbors.
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B

G1 G2 G3

Fig. 5: A high level illustration of the graph Ft.

• No point q is connected in Ft to both a good point pi in Ci and a good point
pj in a different cluster Cj . If q is connected to pi, then |Nγt(pi) ∩Nγt(q)| >
(2γ−1)t−2uB . Since pi has no neighbors outside Ci∪B, Nγt(q) contains more
than (2γ−1)t−3uB ≥ γt/2 points from Gi. Similarly, if q is connected to pj ,
then Nγt(q) contains more than γt/2 points from Gj , which is contradictory.
Thus, the graph Ft looks like the illustration in Figure 5.

• All the components in Ht of size at least 1
2 mini |Ci| will only contain good

points from one optimal cluster. As there are at most uB bad points, any two
points connected in Ht must be connected in Ft to at least one good point.
Then by the above two properties, points on a path in Ht must be connected
in Ft to good points in the same cluster, so there is no path connecting good
points from different clusters.

We can use the three properties to argue the first claim: as long as t ≤ |G1|,
each blob in L contains good points from at most one optimal cluster. This is true at
the beginning and by the third property, for any t ≤ |G1|, anytime we insert a whole
new blob in the list in Step 5, that blob must contain point from at most one optimal
cluster. We now argue that this property is never violated as we assign points to blobs
already in the list in Step 6. Suppose a good point p ∈ Ci is inserted into C ∈ L.
Then C ∈ Lp, which means |Nγt(p) ∩ C| ≥ |C|/5 > uB . So Nγt(p) ∩ C contains at
least one good point, which must be from Ci since Nγt(p) contains no good points
outside Ci. Then by induction C must contain only good points from Ci, and thus
adding p to C does not violate the first claim.

We now show the second claim: after the iteration t = |G1|, all the good points
in C1 have already been assigned to a blob in the list that only contains good points
from C1. There are two cases. First, if at the beginning of the iteration t = |G1|,
there are still at least 1

2 mini |Ci| points from the good point set G1 that do not belong
to blobs in the list. Any such good point has all γ|G1| neighbors in C1 ∪ B. Then
any two such good points share at least 2γ|G1| − |C1 ∪ B| ≥ (2γ − 1)|G1| − |B| ≥
(2γ − 1)t− 2uB neighbors. So they will connect to each other in Ft and then in Ht,
and thus we will add one blob to L containing all these points. Second, it could be
that at the beginning of the iteration t = |G1|, all but less than 1

2 mini |Ci| good
points in G1 have been assigned to a blob in the list. Denote the points that have
not yet been assigned as E. Any point p ∈ E has no neighbors outside C1 ∪ B.
Then |Nγt(p) \ L| ≤ |E| + |B| ≤ 1

2 mini |Ci| + 2uB . Also, there exists a blob C
containing good points from C1 such that C ∈ Lp. Otherwise, Nγt(p) contains at
most (γ − 3

5 )(|C1 ∪ B|) < γ|C1| − 1
2 |C1| − 2uB points in C1 ∩ L, while it contains at

most |E| good points in C1 \L and contains no points outside C1∪B. In total, Nγt(p)
has less than γt points, which is contradictory. So Lp 6= ∅ and p will be added to the
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list in Step 6.

We then iterate the argument on the remaining set AS . The key point is that for
t ≥ |Gi|, i > 1, we have that all the good points in C1, C2, . . . , Ci have already been
assigned to blobs in L.

Lemma 4.3 and 4.4 show that Algorithm 3 with parameters uB = εn and γ =
1 produces a list of sufficiently large, almost pure blobs. Then the robust linkage
procedure in [7] can build a tree on these blobs with a pruning that assigns all good
points correctly. Now it suffices to show that this pruning is a good approximation, for
which we need to bound the cost increased by the bad points assigned incorrectly. The
following property of these bad points turns out to be useful. Intuitively, Algorithm 3
is designed such that whenever a bad point is added to a blob containing good points
from a different cluster, it must be closer to a significant number of points in that
cluster than to a significant number of points in its own cluster. Then the cost
increased by incorrectly assigning each such bad point is small, resulting in a good
approximation.

Lemma 4.5. Suppose for any good point p ∈ Gi, all its |Gi| nearest neighbors in
S are from Ci ∪ B, and mini |Ci| > 30uB. When running Algorithm 3 with γ = 1,
if a bad point q ∈ Bi is assigned to a blob C containing good points from a different
optimal clustering Cj, then there exist m = 1

5 mini |Ci| points Zi from Ci, and m
points Zj from Cj, such that d(q, Zi) ≥ d(q, Zj).

Proof. There are two cases: q is added into C in (1) Step 5 or (2) Step 6.

Case 1. There must be a path in Ht connecting q to a good point in Cj at
threshold t. For any edge (x, y) in Ht, since x, y share at least εn neighbors in Ft and
there are at most εn bad points, they share at least one good point as neighbor in
Ft. As shown in the proof of Lemma 4.4, no point can connect to good points from
different clusters, so in Ft all points on the path must connect to good points in Cj . In
particular, q is connected in Ft to a good point p ∈ Gj . Then |Nt(p)∩Nt(q)| > t−2uB .
Since p is still in AS , t ≤ |Gj |, and thus Nt(p) contains no points outside Cj ∪B. This
means that at least t− 3uB ≥ m points in Nt(q) are good points in Cj , then we can
select m points Zj from Nt(q) ∩Gj . We also have that at most 2uB points in Nt(q)
are points in Ci, so we can select m points Zi from Ci \Nt(q).

Case 2. There are three subcases when q is inserted into C at threshold t.

(1) There is no good points from Ci in the list. Since |Nt(q) \ L| ≤ 1
2 mini |Ci|+

2uB , Nt(q) contains at most this number of good points in Ci. This means at
least 1

2 mini |Ci| − 2uB > m good points in Ci are outside Nt(q), from which
we can select Zi. On the other hand, we can select Zj as follows. When
inserting q into C, we have |Nt(q) ∩ C| ≥ 2

5 |C| ≥ m + uB . Since C contains
only good points from Cj and some bad points, Nt(q) ∩ C contains at least
m good points in Cj , from which we can select Zj . Since Zj are from Nt(q)
and Zi are outside Nt(q), we have d(q, Zi) ≥ d(q, Zj).

(2) There exists C ′ ∈ L containing good points from Ci, but C ′ 6∈ Lp. This
means |B(q, t) ∩ C ′| ≤ 2

5 |C
′|, so there are at least 3

5 |C
′| ≥ m + uB points in

C ′ are outside Nt(q). At least m of these points are good points from Ci,
since C ′ contains only good points from Ci and at most uB bad points. So,
we can select Zi from them. On the other hand, we can select Zj as in the
first subcase.

(3) There exists C ′ ∈ Lp containing good points from Ci. Since q is assigned to
C rather than C ′ according to median distances, we know that at least half
of the points Z ′j from C are closer to q than at least half of the points Z ′i
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from C ′. Since there are at most uB bad points, we can select m good points
Zj from Z ′j and select m good points Zi from Z ′i. Note that Zj are all from
Gj and Zi are all from Gi, so d(q, Zi) ≥ d(q, Zj).

Therefore, the statement is true in all cases.

Theorem 4.6. If the clustering instance is (α, ε)-perturbation resilient for α >

2 +
√

3 and ε ≤ ρ/30 where ρ = mini |Ci|
n , then Algorithm 2 produces a clustering

which is (1+ 5ε
ρ )-approximation to the optimal clustering with respect to the k-median

objective in polynomial time.

Proof. By Lemma 4.3 and 4.4, Algorithm 3 partitions the points into a list of
blobs, each of which has size at least 1

2 mini |Ci| and contains only good points from
one optimal cluster. Let B′i denote the bad points that are assigned to blobs containing
good points in Ci. By Lemma 4.3, Theorem 9 in [7] can be applied to L, by which
we know that {(Ci ∩ G) ∪ B′i} is a pruning of the tree. Suppose the cost of the
optimum is OPT . We now show that this pruning, using the original centers {ci}, is
a (1 + 5ε

ρ )-approximation to OPT .

Suppose a bad point q ∈ Ci is assigned to a blob C containing good points from
a different optimal cluster Cj . By Lemma 4.5, there exist m = 1

5 mini |Ci| points Zi
from Ci, and m points Zj from Cj , such that d(q, Zi) ≥ d(q, Zj). Then the increase
in cost due to q is bounded as follows:

d(q, cj)− d(q, ci) ≤
d(q, Zj) + d(cj , Zj)

m
− d(q, Zi)− d(ci, Zi)

m

≤ 1

m
[d(cj , Zj) + d(ci, Zi)] ≤

OPT
m

.

As there are at most εn bad points and m = mini |Ci|
5 , the increase of cost is at most

εn
mOPT = 5ε

ρ OPT .

Running Time. In Algorithm 3, for each p ∈ S, we first sort all the other points
in ascending order of distances in time O(n2 log n). At each threshold t, think of a
directed t-regular graph Et, where, for each point q in the t nearest neighbors of a
point p, there is a directed edge from p to q in Et. Let AE denote the adjacency
matrix for Et, and let N = AEA

>
E . Then Npq is the number of common neighbors

between p and q, which can be used in constructing Ft. Computing N takes time
O(nω), where ω is the matrix multiplication exponent. The same method can be used
to compute the number of common neighbors in Ft and construct Ht. Since there
are O(n) thresholds, the total time for constructing Ft and Ht is O(nω+1). For the
other steps, adding a blob takes time O(n2) and inserting a point takes time O(n2).
These steps can be performed at most O(n) times, so they take O(n3) time. In total,
Algorithm 3 takes time O(nω+1). Since the robust linkage algorithm [7] takes time at
most O(nω+1), and the dynamic programming takes time O(n3) (Appendix A), the
running time of Algorithm 2 is O(nω+1).

4.3. Sublinear Time Algorithm for the k-Median Objective. Consider
a clustering instance (X, d) that is (α, ε)-perturbation resilient to k-median. For
simplicity, suppose the distances are normalized such that maxp,q d(p, q) = 1. Let
N = |X|. Let ρ = mini |Ci|/N denote the fraction of the points in the smallest cluster,
ζ = ΦX(c)/N denote the average cost of the points in the optimum clustering.

Theorem 4.7. Suppose (X, d) is (α, ε)-perturbation resilient for α > 2 +
√

3,
ε < ρ/100. Then with probability ≥ 1− δ, Algorithm 4 outputs an implicit clustering
that is 2(1 + 16ε

ρ )-approximation in time poly(log N
δ , k,

1
ε ,

1
ζ ).
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Algorithm 4 k-median, (α, ε) perturbation resilience, sublinear

Input: Data set X, distance function d(·, ·) on X, mini |Ci|.
1: Draw a sample S of size n = Θ( k

ε2ζ ln N
δ ) i.i.d. from X.

2: Run Algorithm 2 on S to obtain C̃ and c̃.
Output: The implicit clustering obtained by assigning each point in X to its nearest

neighbor in c̃.

Proof. It suffices to show that ΦS(c̃) is close to ΦS(c) where c are the optimal
centers for X. Note that Algorithm 2 builds a tree with a pruning P ′ that assigns all
good points correctly. The key is to use the cost of this pruning as a bridge for ΦS(c̃)
and ΦS(c): on one hand, ΦS(c̃) is no more than the cost of P ′ since c̃ is the centers
in the minimum cost pruning; on the other hand, the cost of P ′ is roughly bounded
by twice ΦS(c) by the triangle inequality.

Formally, recall the following notations. If we partition A into P, the cost using
centers p is denoted as ΦA(P,p). If we partition A by assigning points to nearest
centers in p, the cost is denoted as ΦA(p). We will show that the cost of the implicit
clustering ΦX(c̃) approximates the optimum ΦX(c).

First, we will prove that when n is sufficiently large, with high probability,
ΦX(c̃)/N ≈ ΦS(c̃)/n and ΦX(c)/N ≈ ΦS(c)/n. For every set of centers p, if
n = Θ( k

υ2ζ log N
δ ) where 0 < υ < 1, then by the Chernoff bound,

Pr

[∣∣∣∣ΦS(p)

n
− ΦX(p)

N

∣∣∣∣ > υ
ΦX(p)

N

]
≤ 2 exp

{
−υ

2

3

ΦX(p)

N
n

}
≤ 2 exp

{
−υ

2

3
ζn

}
≤ δ

4Nk
.

By the union bound, we have with probability at least 1− δ/4,

(1− υ)
ΦX(c̃)

N
≤ ΦS(c̃)

n
, and

ΦS(c)

n
≤ (1 + υ)

ΦX(c)

N
.

We can choose υ = ε/20, then it is sufficient to show ΦS(c̃) ≤ 2(1 + 12ε/ρ)ΦS(c).
Next, since C̃ may be different from C ∩S, we need to find a bridge for comparing

ΦS(c̃) and ΦS(c). Now, we turn to analyze Algorithm 2 on S to find such a bridge.
First, we know that X has at most εN bad points. Since n is sufficiently large,
with probability at least 1 − δ/4, S has at most 2εn bad points. Similarly, with
probability at least 1− δ/4, for any i, |Ci ∩S| > 60εn. These ensure that Algorithm 2
can successfully produce a tree with a pruning P ′ that assigns all good points in S
correctly, as shown in Theorem 4.6. Suppose in S, c′ are the optimal centers for P ′.
Then we can use ΦS(P ′, c′) as a bridge for comparing ΦS(c̃) and ΦS(c).

On one hand, ΦS(c̃) ≤ ΦS(C̃, c̃) ≤ ΦS(P ′, c′). The first inequality comes from the
fact that in ΦS(c̃) each point is assigned to its nearest center and the second comes
from that C̃ is the minimum cost pruning.

On the other hand, ΦS(P ′, c′) ≤ 2ΦS(P ′, c) ≤ 2(1 + 12ε/ρ)ΦS(c). The second
inequality comes from an argument similar to that in Theorem 4.6 and the fact that
ΦS(P ′, c) is different from ΦS(c) only on the bad points. The first inequality comes
from the triangle inequality. More precisely, for any N ′i ∈ P ′,

2|N ′i |
∑
p∈N ′i

d(p, ci) =
∑
q∈N ′i

∑
p∈N ′i

(d(p, ci) + d(q, ci))

≥
∑
p∈N ′i

∑
q∈N ′i

d(p, q) ≥
∑
p∈N ′i

∑
q∈N ′i

d(q, c′i) = |N ′i |
∑
q∈N ′i

d(q, c′i).
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This completes the proof.

Note 4.2. If we have an oracle that given a set of points C ′i finds the best
center in X for that set, then we can save a factor of 2 in the approximation factor.

5. α-Perturbation Resilience for the Min-Sum Objective. In this section
we provide an efficient algorithm for clustering α-perturbation resilient instances for
the metric min-sum k-clustering problem (Algorithm 5). Recall that ds(A,B) =∑
p∈A,q∈B d(p, q) and da(A,B) = ds(A,B)/(|A||B|).

Algorithm 5 Min-sum, α perturbation resilience

Input: Data set S, distance function d(·, ·) on S, mini |Ci|.
1: Connect each point with its 1

2 mini |Ci| nearest neighbors.
2: Initialize the clustering C′ with each connected component being a cluster.
3: Repeat until only one cluster remains in C′:

merge clusters C,C ′ in C′ which minimize da(C,C ′).
4: Let T be the tree with components as leaves and internal nodes corresponding to

the merges performed.
5: Run dynamic programming on T to get the minimum min-sum cost pruning C̃.

Output: C̃.

Theorem 5.1. For (3maxi |Ci|
mini |Ci| )-perturbation resilient instances, Algorithm 5 out-

puts the optimal min-sum k-clustering in polynomial time.

Intuition. To prove the theorem, first we show that the α-perturbation resilience
property implies the following (Claim 5.1): for any two different optimal clusters
Ci and Cj and any A ⊆ Ci, we have αds(A,Ci \ A) < ds(A,Cj). This follows
by considering the perturbation where d′(p, q) = αd(p, q) if p ∈ A, q ∈ Ci \ A and
d′(p, q) = d(p, q) otherwise, and using the fact that the optimum does not change

after the perturbation. This can be used to show that when α > 3maxi′ |Ci′ |
mini′ |Ci′ |

, we have

the following (Claim 5.2): (1) for any optimal clusters Ci and Cj and any Ai ⊆ Ci,
Aj ⊆ Cj such that min(|Ci \ Ai|, |Cj \ Aj |) > mini |Ci|/2 we have da(Ai, Aj) >
min{da(Ai, Ci \ Ai), da(Aj , Cj \ Aj)}; (2) for any point p in the optimal cluster Ci,
twice its average distance to points in Ci \ {p} is smaller than the distance to any
point in other optimal cluster Cj . Claim (2) implies that for any point p ∈ Ci its
|Ci|/2 nearest neighbors are in the same optimal cluster, so the leaves of the tree
T are laminar to the optimum clustering. Claim (1) can be used to show that the
merge steps preserve the laminarity with the optimal clustering, so the minimum cost
pruning of T will be the optimal clustering, as desired.

Proof of Theorem 5.1. We now present the formal proof of the theorem. We first
prove the key claims mentioned in the intuition.

Fact 5.1. For any nonempty sets A,C,D such that D ⊆ C we have
|D|ds(A,C) ≤ |C|ds(A,D) + |A|ds(D,C \D).

Proof. By the triangle inequality, for any p ∈ A, q ∈ C \D and z ∈ D,

ds(p, q) ≤ ds(p, z) + ds(z, q).

Summing over all p ∈ A, q ∈ C \D and z ∈ D, we have

|D|ds(A,C \D) ≤ |C \D|ds(A,D) + |A|ds(D,C \D).
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Plugging in ds(A,C \D) = ds(A,C)− ds(A,D) leads to the statement.
Claim 5.1. Suppose the clustering instance is α-perturbation resilient to the min-

sum objective. For any two different optimal clusters Ci and Cj and any A ⊆ Ci, we
have αds(A,Ci \A) < ds(A,Cj).

Proof. We consider a specific perturbation and use the fact that the optimum
does not change after the perturbation. The perturbed metric is defined as:

d′(p, q) =

{
αd(p, q) if p ∈ A, q ∈ Ci \A or q ∈ A, p ∈ Ci \A,
d(p, q) otherwise.

Since d′ is a valid α-perturbation of d, the optimal clustering after perturbation should
remain the same. In particular, its cost should be smaller than that of the clustering
obtained by replacing Ci and Cj with Ci \ A and A ∪ Cj . After canceling the terms
common in the two costs, we have 2d′s(A,Ci \ A) < 2d′s(A,Cj), which then leads to
αds(A,Ci \A) < ds(A,Cj).

Claim 5.2. Suppose the clustering instance is α-perturbation resilient to min-sum

for α > 3maxi′ |Ci′ |
mini′ |Ci′ |

. Then the following statements are true:

(1) For any two different optimal clusters Ci and Cj and any nonempty Ai ⊆
Ci, Aj ⊆ Cj, if |Ci \Ai| and |Cj \Aj | are larger than mini′ |Ci′ |/2, then

da(Ai, Aj) > min{da(Ai, Ci \Ai), da(Aj , Cj \Aj)}.

(2) For any point p, all its mini′ |Ci′ |/2 nearest neighbors are in the same optimal
cluster.

Proof. (1) Let Ai := Ci \Ai and Aj := Cj \Aj . By Claim 5.1 and Fact 5.1,

αds(Ai, Ai) < ds(Ai, Cj) ≤
1

|Aj |

(
|Cj |ds(Ai, Aj) + |Ai|ds(Aj , Aj)

)
,(5.1)

αds(Aj , Aj) < ds(Aj , Ci) ≤
1

|Ai|

(
|Ci|ds(Aj , Ai) + |Aj |ds(Ai, Ai)

)
.(5.2)

Divide Inequality (5.1) by |Ai|, divide Inequality (5.2) by |Aj |, add them up, and
move the d(Aj , Aj) and d(Ai, Ai) terms to the left-hand side:

(α− 1)|Aj |da(Aj , Aj) + (α− 1)|Ai|da(Ai, Ai) < (|Ci|+ |Cj |)da(Ai, Aj).

Since α, |Aj | and |Ai| are large enough, (α− 1)|Ai| > |Ci| and (α− 1)|Aj | > |Cj |. So,

|Cj |da(Aj , Aj) + |Ci|da(Ai, Ai) < (|Ci|+ |Cj |)da(Ai, Aj).

Dividing by (|Ci|+ |Cj |) we see that da(Ai, Aj) is greater than a weighted average of
da(Aj , Aj) and da(Ai, Ai) and so is certainly greater than the minimum as desired.

(2) Suppose p comes from the optimal cluster Ci. Let q = arg minp′ 6∈Ci
d(p, p′),

and suppose q ∈ Cj .
If da(p, Ci) ≥ da(q, Cj), then by Inequality (5.1),

αds(p, Ci) ≤ |Cj |d(p, q) + ds(q, Cj) = |Cj |(d(p, q) + da(q, Cj)) ≤ |Cj |(d(p, q) + da(p, Ci))

which leads to da(p, Ci) < d(p, q)/2 since α is sufficiently large.
If da(p, Ci) < da(q, Cj), then we have da(q, Cj) < d(p, q)/2 by a similar argument.
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In conclusion, we always have da(p, Ci) < d(p, q)/2. By the Markov inequality, at
least half of all points in Ci lie at distance at most d(p, q) = minp′ 6∈Ci

d(p, p′) from p.

We are now ready to use the lemmas to prove our theorem. It is sufficient to show
that in Algorithm 5:

(1) Initially each A ∈ C′ satisfies A ⊆ C for some C ∈ C;
(2) C′ is always laminar to the optimal clustering C, that is, for any A ∈ C′ and

C ∈ C, we have either A ⊆ C, or C ⊆ A, or A ∩ C = ∅.
Then the minimum cost pruning of T will be the optimal clustering, which can be
obtained by dynamic programming.

Claim 5.2(2) implies that initially each A ∈ C′ satisfies A ⊆ C for some C ∈ C.
This means that C′ is laminar initially. Then Claim 5.2(1) can be used to show
that the merge steps preserve the laminarity, so C′ is always laminar to the optimal
clustering.

More precisely, we prove the laminarity by induction. By Claim 5.2(2), C′ is
laminar initially. It is sufficient to prove that if the current clustering is laminar, then
the merge step keeps the laminiarity. Assume that our current clustering C′ is laminar
to the optimal clustering. Consider a merge of two clusters A and A′. There are two
cases when laminarity could fail to be satisfied after the merge:

(1) A and A′ are strict subsets from different optimal clusters, that is, A (
Ci, A

′ ( Cj 6= Ci;
(2) A is a strict subset of an optimal cluster Ci and A′ is the union of one or

several other optimal cluster(s).
In the first case, Ci \Ai (Cj \A′ respectively) contains at least one cluster in C′. By
construction, each cluster in C′ is of size at least mini′ |Ci′ |/2, and thus Ci \ Ai and
Cj \ A′ are of size at least mini′ |Ci′ |/2. Then by Claim 5.2(1), A and A′ cannot
be merged. In the second case, for any E that is a subset of Ci \ A in the current
clustering, we have da(A,E) ≥ da(A,A′). We know that da(A,Ci \ A) is a weighted
average of the average distances between A and the clusters that are subsets of Ci \A
in the current clustering, so da(A,Ci \ A) ≥ da(A,A′). Also, da(A,A′) is a weighted
average of the average distances between A and the optimal clusters in A′, so there
must exist an optimal cluster Cj ⊆ A′ such that da(A,Cj) ≤ da(A,A′) ≤ da(A,Ci\A).
This means

ds(A,Cj) ≤
|Cj |
|Ci \A|

ds(A,Ci \A) ≤ αds(A,Ci \A)

where the last inequality comes from α ≥ 3maxi′ |Ci′ |
mini′ |Ci′ |

and |Ci \ A| ≥ mini′ |Ci′ |/2.

This contradicts Claim 5.1. So the merge of the two clusters A and A′ will preserve
the laminarity.

Running Time. Finding the nearest neighbors for each point takes O(n log n)
time, so the step of constructing components takes O(n2 log n) time. To compute av-
erage distances between clusters, we can record the size of each cluster, and ds(C

′
i, C
′
j)

for any C ′i, C
′
j in the current clustering, and update ds(C

′
i ∪ C ′j , C ′l) = ds(C

′
i, C
′
l) +

ds(C
′
j , C

′
l) for any other cluster C ′l when merging C ′i and C ′j . So the merge steps take

O(n3) time. As dynamic programming takes O(n3) time, we can find the optimum
clustering in O(n3) time.

5.1. Sublinear Algorithm for the Min-Sum Objective. Here we provide
a sublinear algorithm for a clustering instance (X, d) that is α-perturbation resilient
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to the min-sum objective. For simplicity, suppose the distances are normalized such
that maxp,q d(p, q) = 1. Let N = |X|. Let ρ = mini |Ci|/N denote the fraction of
the points in the smallest optimal cluster, and η = minj minp 6∈Cj

da(p, Cj) denote the
minimum average distance between an optimal cluster and a point outside.

Algorithm 6 Min-sum, α perturbation resilience, sublinear

Input: Data set X, distance function d(·, ·) on X, mini |Ci|.
1: Draw a sample S of size n = Θ( 1

ρη ln Nk
δ ) i.i.d. from X.

2: Run Algorithm 5 on S to obtain C̃.
Output: The implicit clustering of X obtained by assigning each point p ∈ X to

C̃i ∈ C̃ such that ds(p, C̃i) is minimized.

Our main result in this subsection is the following.

Theorem 5.2. Suppose the clustering instance (X, d) is α-perturbation resilient

to the min-sum objective where α ≥ 6maxi |Ci|
mini |Ci| . Then with probability at least 1 − δ,

Algorithm 6 outputs an implicit optimum clustering in time poly(log Nk
δ ,

1
ρ ,

1
η ).

Proof. To prove the theorem, we first show the following (Lemma 5.3): with high
probability, C′ in Algorithm 5 is always laminar to C ∩ S. The key idea is that when
the sample is sufficiently large, we have that for any p ∈ Ci and Cj(j 6= i),

3
maxi |Ci ∩ S|
mini |Ci ∩ S|

ds(p, Ci ∩ S) < ds(p, Cj ∩ S)

since ds(p,Ci∩S)
n ≈ ds(p,Ci)

N ,
ds(p,Cj∩S)

n ≈ ds(p,Cj)
N and maxi |Ci∩S|

mini |Ci∩S| ≈
maxi |Ci|
mini |Ci| . Then

C ∩S satisfies the properties for the linkage in Algorithm 5 to succeed, and thus C′ in
Algorithm 5 is always laminar to C ∩ S. Then C ∩ S is a pruning of the tree.

Then we show that C ∩ S is actually the minimum cost pruning C̃ (Lemma 5.4).
The key idea is that any other pruning of the same size must join some clusters in
C∩S and at the same time split some other clusters. Since the clusters in C∩S are far
apart, joining different clusters in it will increase the cost significantly, while splitting
clusters will only save a small amount. So any other pruning must have larger cost
than C ∩ S. It immediately follows from the two lemmas that the implicit clustering
obtained is the optimum clustering C.

We now present the proofs of the lemmas that imply the correctness of the theo-
rem.

Lemma 5.3. Suppose the clustering instance is α-perturbation resilient to the

min-sum objective for α ≥ 6maxi |Ci|
mini |Ci| . When n = O( 1

ρη ln Nk
δ ), with probability at least

1− δ, C′ in Algorithm 5 is always laminar to C ∩ S.

Proof. The intuition is that on X, for any i 6= j, any p ∈ Ci, we have αds(p, Ci) <
ds(p, Cj). When n is sufficiently large, we can show ds(p, Ci∩S) ≈ n

N ds(p, Ci) for any

i and maxi′ |Ci′∩S|
mini′ |Ci′∩S|

≈ maxi′ |Ci′ |
mini′ |Ci′ |

, and thus we have a similar claim for S. Then C′ in

Algorithm 5 is always laminar to C ∩ S.

First, since n = O( 1
ρη ln Nk

δ ), by the Chernoff bound we have

Pr

[∣∣∣∣ |Ci ∩ S|n
− |Ci|

N

∣∣∣∣ ≥ υ |Ci|N
]
≤ 2 exp

{
− 2υ2

2 + υ

|Ci|
N

n

}
≤ 2 exp{− 2υ2

2 + υ
ρn} ≤ δ

4k
.
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Set υ = 1/20. By the union bound, with probability at least 1−δ/4, for any 1 ≤ i ≤ k,(
1− 1

20

)
n

N
|Ci| ≤ |Ci ∩ S| ≤

(
1 +

1

20

)
n

N
|Ci|.(5.3)

Similarly, with probability at least 1− δ/4, for any i 6= j and p ∈ Ci,

ds(p, Cj ∩ S) ≥
(

1− 1

20

)
n

N
ds(p, Cj).(5.4)

Now, fix any i and p ∈ Ci. We have

Pr

[
ds(p, Ci ∩ S)

n
− ds(p, Ci)

N
≥ υds(p, Ci)

N

]
≤ exp

{
− 2υ2

2 + υ

ds(p, Ci)

N
n

}
.

Let υ =
minj 6=i ds(p,Cj)

10ds(p,Ci)
. Since υ ≥ 1/10,

Pr

[
ds(p, Ci ∩ S)

n
− ds(p, Ci)

N
≥ minj 6=i ds(p, Cj)

10N

]
≤ exp

{
−2υ

21

ds(p, Ci)

N
n

}
≤ exp

{
− 2

210

minj 6=i ds(p, Cj)

N
n

}
≤ exp

{
− 2

210
min
j 6=i

da(p, Cj)ρn

}
≤ δ

4Nk
.

By the union bound, with probability at least 1− δ/4, for any j 6= i and p ∈ Ci,

ds(p, Ci ∩ S) ≤ n

N
ds(p, Ci) +

n

10N
ds(p, Cj).(5.5)

Now, by (5.3), we have maxi′ |Ci′ ∩ S| ≤ (1 + υ) nN maxi′ |Ci′ |, mini′ |Ci′ ∩ S| ≥
(1−υ) nN mini′ |Ci′ |. Combining these bounds with (5.4) and (5.5), we have that with
probability at least 1− δ, for any i 6= j and any p ∈ Ci,

3
maxi′ |Ci′ ∩ S|
mini′ |Ci′ ∩ S|

ds(p, Ci ∩ S) < ds(p, Cj ∩ S),(5.6)

which guarantees that Algorithm 5 will successfully outputs C ∩ S. More precisely,
the proof of Theorem 5.1 only depends on Claim 5.1: for any two different optimal
clusters Ci and Cj and any A ⊆ Ci, we have αds(A,Ci \ A) < ds(A,Cj), where

α ≥ 3maxi′ |Ci′ |
mini′ |Ci′ |

. (5.6) implies that for any two different optimal clusters Ci and Cj

and any A ⊆ Ci, we have 3maxi′ |Ci′∩S|
mini′ |Ci′∩S|

ds(A, (Ci ∩S) \A) < ds(A,Cj ∩S). Therefore,

the same argument for Theorem 5.1 can be used to show that Algorithm 5 successfully
outputs C ∩ S.

Lemma 5.4. Suppose the clustering instance is α-perturbation resilient to the

min-sum objective for α ≥ 6maxi |Ci|
mini |Ci| . When n = O( 1

ρη ln Nk
δ ), with probability at least

1− δ, C ∩S is the unique minimum min-sum cost pruning of the tree in Algorithm 5.
Proof. Since the tree is laminar to C ∩ S, we know that C ∩ S is a pruning of

the tree, and any other pruning can be obtained by splitting some clusters in C ∩ S
and joining some others into unions. Intuitively, since the clusters in C ∩ S are far
apart, joining different clusters in it will increase the cost significantly, while splitting
clusters will only save a small amount. So any other pruning must have larger cost
than C∩S. This claim then implies C∩S is the minimum cost pruning. We first prove
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a similar claim for C by the α-perturbation resilience, that is, for any three different
clusters Ci, Cj , Cl ∈ C, any AX ⊆ Ci, αds(AX , Ci \AX) < ds(Cj , Cl). Then we prove
the claim for C ∩S: for any A ⊆ Ci∩S, 2ds(A,Ci∩S \A) < ds(Cj ∩S,Cl∩S). Finally
we use it to prove C ∩ S is the minimum cost pruning.

Claim 5.3. For any three different optimal clusters Ci, Cj , Cl ∈ C, any AX ⊆ Ci,
αds(AX , Ci \AX) < ds(Cj , Cl).

Proof. For any AX ⊆ Ci, we define a perturbation as follows: blow up the
distances between the points in AX and those in Ci \ AX by a factor of α, and keep
all the other pairwise distances unchanged. By the α-perturbation resilience, we know
that C is still the optimum clustering after perturbation. Therefore, it has lower cost
than the clustering obtained by replacing Ci with AX and Ci \ AX , and replacing
Cj and Cl with Cj ∪ Cl. After canceling the common terms in the costs of the two
clusterings, we have 2d′s(AX , Ci \AX) < 2d′s(Cj , Cl), which leads to the claim.

Claim 5.4. With probability at least 1−δ, for any three different optimal clusters
Ci, Cj , Cl ∈ C, and any A ⊆ Ci ∩ S,

2ds(A,Ci ∩ S \A) ≤ 2ds(Ci ∩ S,Ci ∩ S) < ds(Cj ∩ S,Cl ∩ S).

Proof. On one hand, for AX ⊆ Ci, αds(AX , Ci \ AX) < ds(Cj , Cl) by Claim 5.3.
Since

∑
AX⊆Ci

ds(AX , Ci \AX) = 2|Ci|d(Ci, Ci)/2, we have α
2 ds(Ci, Ci) < ds(Cj , Cl).

On the other hand, a similar argument as that of Lemma 5.3 shows with probability
at least 1 − δ/2, for any Ci and any p ∈ Ci, ds(p, Ci ∩ S) ≤ (1 + υ) nN ds(p, Ci) for
υ = 1/20. So

ds(Ci ∩ S,Ci ∩ S) =
∑

p∈Ci∩S
ds(p, Ci ∩ S) ≤ (1 + υ)

n

N

∑
p∈Ci∩S

ds(p, Ci)

= (1 + υ)
n

N

∑
q∈Ci

ds(Ci ∩ S, q) ≤ (1 + υ)2
n2

N2
ds(Ci, Ci).

Similarly, with probability at least 1 − δ/2, for any Cj and Cl, ds(Cj ∩ S,Cl ∩ S) ≥
(1−υ)2 n

2

N2 ds(Cj , Cl). The claim then follows by combining the three inequalities and
noting υ = 1/20.

Now, we use Claim 5.4 to prove the optimality of C ∩ S. Suppose a pruning P∗
is obtained by splitting h clusters in C ∩ S and at the same time joining some other
clusters into g unions. Specifically, for 1 ≤ i ≤ h, split Ci ∩ S into mi ≥ 2 clusters
Si,1, . . . , Si,mi

; after that, merge Ch+1 ∩ S, . . . , Ch+lg ∩ S into g unions, that is, for
1 ≤ j ≤ g and l0 = 0, merge lj − lj−1 ≥ 2 clusters Ch+lj−1+1 ∩ S, . . . , Ch+lj ∩ S into
a union Uj ; the other clusters in C ∩ S remain the same in P∗. Since the number of
clusters is still k, we have

∑
imi − h = lg − g. The cost saved by splitting clusters is∑

1≤i≤h

ds(Ci ∩ S,Ci ∩ S)−
∑

1≤i≤h

∑
1≤p≤mi

ds(Si,p, Si,p)

=
∑

1≤i≤h

∑
1≤p≤mi

ds(Si,p, Ci ∩ S \ Si,p).(5.7)

The cost increased by joining clusters is∑
1≤j≤g

ds(Uj , Uj)−
∑

1≤j≤g

∑
h+lj−1<p≤h+lj

ds(Cp ∩ S,Cp ∩ S)

=
∑

1≤j≤g

∑
h+lj−1<p 6=q≤h+lj

ds(Cp ∩ S,Cq ∩ S).(5.8)
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To prove that C ∩ S is the unique minimum cost pruning, we need to show that (5.7)
is less than (5.8). Since each term in (5.8) is twice larger than any term in (5.7), it
suffices to show that the number of the terms in (5.8) is at least half the number of
the terms in (5.7). Formally, we need to show

2
∑

1≤j≤g

(
lj − lj−1

2

)
≥
∑

1≤i≤h

mi.

We have 2
∑
j

(
lj−lj−1

2

)
=
∑
j(lj− lj−1)(lj− lj−1−1) ≥ 2

∑
j(lj− lj−1−1) = 2(lg−g),

where the inequality comes from lj− lj−1 ≥ 2. Since lg−g =
∑
imi−h, it is sufficient

to show lg − g ≥ h. This comes from lg − g =
∑
imi − h =

∑
i(mi − 1) ≥

∑
i 1 = h

since mi ≥ 2.

6. (α, ε)-Perturbation Resilience for the Min-Sum Objective. For (α, ε)-

perturbation resilient min-sum instances, we will show that if α ≥ 8maxi |Ci|
mini |Ci| , ε = Õ (ρ)

where ρ = mini |Ci|
n , there exists a polynomial time algorithm that outputs a clustering

that is both a (1+Õ(ε/ρ))-approximation and also Õ(ε)-close to the optimal clustering.
Formally,

Theorem 6.1. Suppose the instance is (α, ε)-perturbation resilient to the min-

sum objective for α > 8maxi |Ci|
mini |Ci| and ε < mini |Ci|

600n logn . There exists an algorithm that

outputs a clustering which is a
(

1 + 40εn logn
mini |Ci|

)
-approximation to the optimal clustering

in polynomial time. Furthermore, the output clustering is also (6ε log n)-close to the
optimal clustering.

Since ε = O
(

mini |Ci|
n logn

)
, the approximation factor is always O(1) and gets better if

ε gets smaller. To prove the theorem, we first derive new useful structural properties
implied by (α, ε)-perturbation resilience for min-sum, and then use them to design
our algorithm achieving the guarantees in the theorem. Throughout this section, we

assume α > 8maxi |Ci|
mini |Ci| and ε < mini |Ci|

600n logn , except for where their values are explic-

itly specified. Also, since maxi |Ci|/mini |Ci| < n we may assume without loss of
generality that α ≤ 8n.

The rest of the section is organized as follows. In Section 6.1, we prove useful
properties of the (α, ε)-perturbation resilient min-sum instances. We first show that
in the optimal clustering, except for a few bad points, all the other points are good in
the sense that they are much closer to their own clusters than to any other clusters.
Furthermore, we show that there exist a subset of points we call potentially good
points which can act as a proxy for the good points in the clustering tasks. Given
these properties, we design an algorithm in Section 6.2. We first construct a tree with
a pruning close to the optimal clustering, find that pruning, and finally adjust the
points so that the pruning becomes the desired approximation.

6.1. Structural Properties of (α, ε)-Perturbation Resilience. We describe
the high level ideas for the structural properties, and then present the formal proofs
in Section 6.1.1 and Section 6.1.2.

The good points and bad points for min-sum are defined as follows. Here β is
chosen to be 4

5α since we are not able to prove the bound for β = α but will be able
to when β is slightly smaller than α. Some other constant can be used instead of 4

5 .

Definition 6.2. Define bad points for min-sum to be those that are not β times



28 M. F. BALCAN, AND Y. LIANG

closer to their own clusters than to other clusters, where β = 4
5α. That is,

B := ∪iBi,where Bi := {p ∈ Ci : ∃j 6= i, d(p, Cj) ≤ βd(p, Ci)}, β :=
4

5
α.

The other points G = S \B are called good points.
We will show that when α is sufficiently large and ε is sufficiently small, the num-

ber of bad points are bounded by Õ(εn) (Theorem 6.4 in Section 6.1.1). Intuitively, if
there are more bad points, then we can construct a perturbation, so that the optimal
clustering after perturbation must move large fraction of the bad points to new clus-
ters, which will then be contradictory to the (α, ε)-perturbation resilience. Consider
a bad point p ∈ Ci and let Cj be its second nearest cluster. We try to make sure
that p will move to Cj while good points in Ci stay. That is, we try to make sure

that the optimal clustering after perturbation is {C̃i} where C̃i is the union of the
good points in Ci and the bad points that have Ci as their second nearest cluster.
So the perturbation should blow up all distances except those within C̃i(1 ≤ i ≤ k).
The proof then proceeds by considering clustering {C ′i} that are ε-close to {Ci}, and
showing that {C̃i} has smaller cost than {C ′i}.

There are some technical difficulties to be addressed. One is that we can only
show {C̃i} has smaller cost than {C ′i} when the costs of bad points are within a
constant factor from each other. Therefore, we partition the bad points according to
their costs so that there are O(log n) groups, and the bad points in the same group
have costs within a factor of 2 from each other. Another technical difficulty is that
besides bad points, there might be other points moved to new clusters in {C ′i}, so
comparing the costs of {C̃i} and {C ′i} requires bounding the costs of these points
too. We address this by partitioning the points into several types so that the costs of
points of the same type can be bounded in the same way.

Once we bound the number of bad points, it is possible to design approximation
algorithms if the influence of the few bad points can be eliminated, since the good
points in different optimal clusters are far from each other by definition, and thus can
be handled by simple algorithms (such as the variant of average linkage algorithm
used for α-perturbation resilient min-sum instances). However, it is unclear how to
compute the bad points or the good points. The key is to introduce a proxy called
potentially bad points (potentially good points respectively), which can be easily
computed. These notions are formalized as follows.

Definition 6.3.
(1) Define mB := 6ε log n.
(2) For a set A with |A| > 2mB, define the potentially bad points F (A) to be the

2mB points in A that are farthest from A. That is, F (A) ⊆ A, |F (A)| = 2mB,
and for any p ∈ F (A), q ∈ S \ F (A), d(p,A) ≥ d(q, A). The potentially good
points of A are defined to be P (A) := A \ F (A).

(3) The robust average distance dra(A1, A2) between two sets A1, A2 is defined as
the average distance between their potentially good points. Formally,

dra(A1, A2) :=
ds(P (A1), P (A2))

|P (A1)||P (A2)|
.

(4) For a cluster A, define its robust min-sum cost as drs(A) := ds(P (A), P (A)).
For a clustering C, define its robust min-sum cost as

∑
C∈C drs(C).

To show that the potentially good points can be regarded roughly as a proxy
for the good points, we show that the cost between sufficiently many good points
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in two clusters accounts for most of the cost between the two clusters (Lemma 6.6),
and that the cost between any points and the potentially good points in a cluster is
roughly bounded by the cost between these points and any sufficiently large subset
(in particular, the good points) of the cluster (Lemma 6.7). The first statement is due
to that there are just a few bad points and the good points in different clusters are far
apart. The second is due to that by definition, the potentially bad points are furthest
away from other points in the cluster, so removing other points will not change the
cost as much as removing the potentially bad points, even in the worst case.

Since the potentially good points can act as a proxy, the robust average distance
approximates the average distance between good points, and the robust min-sum cost
computed after removing the potentially bad points approximates the min-sum cost
computed after removing the actual bad points. Thus, they can be used to design
approximation algorithms using the potentially bad points as if we knew the actual
bad points, as done in Section 6.2.

6.1.1. Bounding the Number of Bad Points. Here we bound the number
of bad points by Õ(εn) when α is sufficiently large and ε is sufficiently small.

Theorem 6.4. Suppose the clustering instance is (α, ε)-perturbation resilient to

the min-sum objective for α > 4 and ε < mini |Ci|
200n . Then |B| ≤ mB = 6εn log n.

Proof. We will first show that |B| ≤ 2ηεn where η =
⌈
log

maxi maxp∈Bi
d(p,Ci)

mini minp∈Bi
d(p,Ci)

⌉
,

and then show that η ≤ 3 log n, completing the proof.
As the first step, assume for contradiction |B| > 2ηεn. We will construct a

perturbation which will eventually lead to a contradiction.
We begin by introducing some notations. Consider the following η intervals:

[2t−1v, 2tv] where v = mini minp∈Bi d(p, Ci), 1 ≤ t ≤ η. At least one of the intervals,

say [r, 2r], will contain the costs of more than 2εn bad points. Let B̂ denote an
arbitrary subset of 2εn bad points in this interval. Let B̂i = B̂∩Ci denote the selected
bad points in the optimal cluster Ci. Let Ki = Ci \ B̂i denote the other points in Ci,
and set K = ∪iKi. Denote as Di all those selected bad points whose second nearest
cluster is Ci, that is, Di = {p : ∃j such that p ∈ B̂j and i = arg min 6̀=j d(p, C`)}.
Note that by definition we have ∪iDi = B̂. Finally, let C̃i = Ki ∪Di. See Figure 6
for an illustration.

Now we are ready to construct the perturbation, which tries to make the selected
bad points move to their second nearest clusters and keep the other points in their
original clusters. That is, the perturbation favors the clustering C̃i. More precisely,
the perturbation is constructed as follows: blow up all distances by a factor of α
except those within C̃i, 1 ≤ i ≤ k. That is,

d′(p, q) =

{
d(p, q) if p ∈ C̃i, and q ∈ C̃i for some i,
αd(p, q) otherwise.

To derive a contradiction, consider the optimal clustering after perturbation, de-
noted as {C ′i}. Since there are more than εn bad points in B̂, by (α, ε)-perturbation
resilience, not all of them move to new clusters in {C ′i}, and thus {C ′i} is different
from {C̃i}. In fact, we will show that the clustering {C̃i} has a lower cost than {C ′i},
which is a contradiction. To do so, we consider the following thought experiment:
remove all points in C ′i \ C̃i so that {C ′i} becomes {C ′i ∩ C̃i}, and then add all points
in C̃i \ C ′i so that {C ′i ∩ C̃i} becomes {C̃i}. The cost saved in the first step is∑

i

d′s(C
′
i, C
′
i)−

∑
i

d′s(C
′
i ∩ C̃i, C ′i ∩ C̃i)(6.1)



30 M. F. BALCAN, AND Y. LIANG

and the cost added in the second step is∑
i

d′s(C̃i, C̃i)−
∑
i

d′s(C
′
i ∩ C̃i, C ′i ∩ C̃i).(6.2)

We will show that (6.1) is larger than (6.2), leading to the contradiction.

Ci C̃i

B̂i Ki Di

Fig. 6: Perturbation construction.

Ci C̃i

C ′i

Ui

Vi Wi

Ũi

Ṽi
W̃i

Fig. 7: Different types of points.

To bound the costs, we first divide the points into different types. See Figure 7
for an illustration. First, we need to move out C ′i \ C̃i from each C ′i. These points can
be divided into three types:

(1) Ui = C ′i ∩ B̂i are the selected bad points in Ci that need to be moved out.

(2) Vi = (C ′i \ C̃i) ∩ (∪j 6=iB̂j) = (C ′i \Di) ∩ (∪j 6=iB̂j) = (B̂ \ B̂i) ∩ (C ′i \Di) are
the selected bad points that are from other optimal clusters. They are in C ′i
but their second nearest cluster is not Ci.

(3) Wi = (C ′i \ C̃i) ∩ (∪j 6=iKj) = ∪j 6=i(Kj ∩ C ′i) are points that are from Kj for

some j 6= i and are in C ′i. But they are not from Ki and thus are not in C̃i.
Second, we need to move in C̃i \ C ′i for each C̃i. Similarly, these points can also be
divided into three types:

(1) W̃i = Ki \ C ′i = ∪j 6=i(Ki ∩ C ′j) are those points in Ki and in C ′j for some
j 6= i. This means that they are points in ∪jWj . More specifically, we have

∪iW̃i = ∪jWj .

(2) Ṽi = (Di \ C ′i) ∩
(
∪` 6=j(B̂` ∩ C ′j)

)
are part of the selected bad points whose

second nearest cluster is Ci but not in C ′i. They are originally in B̂` for some
` but are in C ′j for some j 6= `. In other words, they are points from Vj for

some j, and we have ∪iṼi = ∪jVj . Formally,

Ṽi = (Di \ C ′i) ∩
(
∪j((B̂ \ B̂j) ∩ C ′j)

)
= ∪j 6=i

(
(B̂ \ B̂j) ∩ C ′j ∩Di

)
,

∪iṼi = ∪j
(

(B̂ \ B̂j) ∩ C ′j ∩ (∪i 6=jDi)
)

= ∪j
(

(B̂ \ B̂j) ∩ C ′j \Dj

)
= ∪jVj .

(3) Ũi = (Di \C ′i)∩
(
∪j(B̂j ∩ C ′j)

)
are also part of the selected bad points whose

second nearest cluster is Ci. They are originally in B̂j for some j and are
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also in C ′j . In other words, they are points from Uj for some j, and we have

∪iŨi = ∪jUj .
In summary, C ′i and C̃i are partitioned into four parts respectively:

C ′i = (C ′i ∩ C̃i) ∪ Ui ∪ Vi ∪Wi, C̃i = (C ′i ∩ C̃i) ∪ Ũi ∪ Ṽi ∪ W̃i.

These different types of points have the following relations:

∪iŨi = ∪jUj , ∪i Ṽi = ∪jVj , ∪i W̃i = ∪jWj .

We now consider the costs saved and added when moving these points for all
clusters i. Suppose we first move out {Wi}ki=1, then {Vi}ki=1, and finally {Ui}ki=1.
The cost saved by moving out {Wi}ki=1 is defined as

∆W :=
∑
i

d′s(C
′
i, C
′
i)−

∑
i

d′s(C
′
i \Wi, C

′
i \Wi) ≥ 2

∑
i

d′s(Wi, C
′
i ∩ Ci).(6.3)

The cost saved by moving out {Vi}ki=1 is

∆V :=
∑
i

d′s(C
′
i \Wi, C

′
i \Wi)−

∑
i

d′s(C
′
i \Wi \ Vi, C ′i \Wi \ Vi)

≥ 2
∑
i

d′s(Vi, C
′
i ∩ Ci).(6.4)

The cost saved by moving out {Ui}ki=1 is

∆U :=
∑
i

d′s(C
′
i \Wi \ Vi, C ′i \Wi \ Vi)−

∑
i

d′s(C
′
i ∩ Ci, C ′i ∩ Ci)

≥ 2
∑
i

d′s(Ui, C
′
i ∩Ki).(6.5)

Next, we move in {W̃i}ki=1, then {Ṽi}ki=1, and finally {Ũi}ki=1. The cost added by
moving in {W̃i}ki=1 is

∆W̃ :=
∑
i

d′s(W̃i ∪ (C ′i ∩ C̃i), W̃i ∪ (C ′i ∩ C̃i))−
∑
i

d′s(C
′
i ∩ C̃i, C ′i ∩ C̃i)

≤ 2
∑
i

d′s(W̃i, W̃i ∪ (C ′i ∩ C̃i)).(6.6)

The cost added by moving in {Ṽi}ki=1 is

∆Ṽ :=
∑
i

d′s(C̃i \ Ũi, C̃i \ Ũi)−
∑
i

d′s(W̃i ∪ (C ′i ∩ C̃i), W̃i ∪ (C ′i ∩ C̃i))

≤ 2
∑
i

d′s(Ṽi, C̃i).(6.7)

The cost added by moving in {Ũi}ki=1 is

∆Ũ :=
∑
i

d′s(C̃i, C̃i)−
∑
i

d′s(C̃i \ Ũi, C̃i \ Ũi) ≤ 2
∑
i

d′s(Ũi, C̃i).(6.8)
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Clearly,

(∆W + ∆V + ∆U )− (∆W̃ + ∆Ṽ + ∆Ũ ) =
∑
i

d′s(C
′
i, C
′
i)−

∑
i

d′s(C̃i, C̃i).

We are now ready to show that the cost saved (∆W + ∆V + ∆U ) is greater than
the cost added (∆W̃ + ∆Ṽ + ∆Ũ ), which leads to the contradiction

∑
i d
′
s(C
′
i, C
′
i) >∑

i d
′
s(C̃i, C̃i). The high level idea is that a significant amount of cost is saved by

moving Ui to the correct clusters, while the costs added are generally small since
the number of points moved is bounded by 3εn and the cost of the selected bad
points moved is bounded by 2r. Formally, we have the following claim, whose proof
is presented in Appendix C.1.

Claim 6.1. The costs saved and added by moving out {Ui}ki=1, {Vi}ki=1 and
{Wi}ki=1, and then moving in {W̃i}ki=1, {Ṽi}ki=1 and {Ũi}ki=1 satisfy:

(1) ∆U −∆Ũ ≥ 2
∑
i

d′s(Ui, C
′
i ∩Ki)− 2

∑
i

d′s(Ũi, C̃i)

≥ 3

10
α
∑
i

ds(Ui, Ci)−
2α

100

∑
i

ds(Wi, Ci)−
8α+ 16

100
rεn,

(2) ∆V −∆Ṽ ≥ 2
∑
i

d′s(Vi, C
′
i ∩ Ci)− 2

∑
i

d′s(Ṽi, C̃i)

≥ 99

50
(α− 2)

∑
i

ds(Vi, Ci)−
2α

100

∑
i

ds(Wi, Ci)−
4α+ 8β

100
rεn,

(3)∆W −∆W̃ ≥ 2
∑
i

d′s(Wi, C
′
i ∩ Ci)− 2

∑
i

d′s(W̃i, W̃i ∪ (C ′i ∩ C̃i))

≥ 98

50
(α− 2)

∑
i

ds(Wi, Ci)−
4α+ 4β

100
rεn.

After adding up all the inequalities in the claim, the right-hand side is a lower
bound on d′s(C

′
i, C
′
i) > d′s(C̃i, C̃i), which we now show must be positive when α > 4

and β ≤ 4
5α. The terms about ds(Wi, Ci) and ds(Vi, Ci) are non-negative, so it suffices

to show that

3

10
α
∑
i

ds(Ui, Ci)−
8α+ 16

100
rεn− 4α+ 8β

100
rεn− 4α+ 4β

100
rεn > 0.

Since 30α > 16α + 12β + 16, what remains is to show
∑
i ds(Ui, Ci) ≥ rεn. First,

ds(p, Ci) ≥ r for any p ∈ Ui. Second, | ∪i Ui| ≥ εn since there are 2εn selected
bad points but no more than εn of them move from their original clusters in {Ci}
to a different cluster in {C ′i}. Then we have

∑
i ds(Ui, Ci) ≥

∑
i r|Ui| = r

∑
i |Ui| ≥

rεn. Hence, the difference between the cost saved and the cost added is positive.
This means the cost of {C̃i} is smaller than the cost of {C ′i}, which contradicts the
assumption that {C ′i} is the optimal clustering under d′. Therefore, there can be at
most 2ηεn bad points.

Finally, it suffices to show that η ≤ 3 log n. Suppose p1 is the point that achieves
maxi maxp∈Bi

ds(p, Ci) and p2 is the point that achieves mini minp∈Bi
ds(p, Ci). With-

out loss of generality, suppose p1 ∈ C1 and p2 ∈ C2. By the definition of bad
points, there exists Ci 6= C2 such that ds(p2, Ci) ≤ βds(p2, C2). If Ci 6= C1, we
have ds(p1, C1) ≤ ds(C2, Ci), since otherwise we can get lower cost by splitting



CLUSTERING UNDER PERTURBATION RESILIENCE 33

C1 into p1 and C1 \ {p1} while merging C2 and Ci. If Ci = C1, we also have
ds(p1, C1) ≤ ds(C2, Ci), since otherwise we can get lower cost by splitting C1 into
p1 and C1 \ {p1} and then merging C2 and C1 \ {p1}. In both cases, we have

ds(p1, C1) ≤ ds(C2, Ci) ≤ |Ci|ds(p2, C2) + |C2|ds(p2, Ci)
≤ |Ci|ds(p2, C2) + β|C2|ds(p2, C2)

≤ 8n2ds(p2, C2)

where the last inequality follows from β ≤ 8n. Then we have η ≤ 3 log n.

6.1.2. Properties of Good Points and Potentially Good Points. Since
there are just a few bad points and the good points in different clusters are far apart,
the cost between sufficiently large subsets of their good points accounts for most of
the cost between the two clusters. This means that we would be able to approximate
the min-sum cost of all points by the min-sum cost only on the good points, if we
knew the good points (Lemma 6.6). To prove Lemma 6.6, we will need the triangle
inequality for the average distance, and also a technical lemma which shows that good
points are much closer to its own cluster than to good points in any other cluster.

Fact 6.1. For any nonempty sets A,B and C, we have da(A,B) ≤ da(A,C) +

da(C,B), and thus ds(A,B) ≤ |B||C|ds(A,C) + |A|
|C|ds(C,B).

Proof. It follows from

|C|
∑
a∈A

∑
b∈B

d(a, b) =
∑
a∈A

∑
b∈B

∑
c∈C

d(a, b) ≤
∑
a∈A

∑
b∈B

∑
c∈C

(d(a, c) + d(c, b))

= |B|
∑
a∈A

∑
c∈C

d(a, c) + |A|
∑
b∈B

∑
c∈C

d(c, b).

Lemma 6.5. For any nonempty A ⊆ Gi, B ⊆ Gj , j 6= i, we have

da(A,Ci) ≤ γji da(A,B),where γji =
|Cj |

(β − 1/β)|Ci|
+

1

β2 − 1
.

Consequently, if α > 8maxi |Ci|
mini |Ci| , we have da(A,Ci) ≤ 11

50 da(A,B).

Proof. For any p ∈ A, we have βds(p, Ci) < ds(p, Cj). By Fact 6.1,

βds(A,Ci) < ds(A,Cj) ≤
|Cj |
|B|

ds(A,B) +
|A|
|B|

ds(Cj , B)

βds(B,Cj) < ds(B,Ci) ≤
|Ci|
|A|

ds(B,A) +
|B|
|A|

ds(Ci, A).

Plug the second inequality into the first inequality, then the lemma follows.
We are now ready to prove Lemma 6.6.

Lemma 6.6. Suppose α > 8maxi |Ci|
mini |Ci| and Wi ⊆ Gi,Wj ⊆ Gj. When |Ci| ≥

50|Ci \Wi| and |Cj | ≥ 50|Cj \Wj |, we have ds(Ci, Cj) ≤ 3
2ds(Wi,Wj).

Proof. By Fact 6.1 and Lemma 6.5, we have

da(Ci, Cj) ≤ da(Ci,Wi) + da(Wi,Wj) + da(Wj , Cj) ≤ (
11

50
+ 1 +

11

50
)da(Wi,Wj)

which leads to ds(Ci, Cj) ≤ 36
25
|Ci||Cj |
|Wi||Wj |ds(Wi,Wj) ≤ 3

2ds(Wi,Wj).
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Fig. 8: Notations in Lemma 6.7.

Now we turn to analyze the potentially good points. A key property of the
potentially good points is the following: for any point p and any sufficiently large set
A, the cost between p and the potentially good points in A is roughly bounded by the
cost between p and any sufficiently large subset H of A. See Lemma 6.7 for details. A
specific case is when H is the actual good points in A. In this case, the property says
that the cost between p and the potentially good points is roughly bounded by the
cost between p and the actual good points. This means that in suitable situations,
we can regard potentially good points as actual good points.

Lemma 6.7. Suppose H ⊆ A such that |A \ H| ≤ mB. Let F = F (A), P =
P (A), H̄ = A \H. Let W = H ∩P, V = H̄ ∩F,X = F ∩H,Y = H̄ ∩P . See Figure 8

for an illustration. If |A| ≥ 20mB, then for any p, ds(p, P ) ≤ |W |+|Y ||W |−|X|ds(p,H).

Proof. Since ds(p,H) = ds(p,X) + ds(p,W ) and ds(p, P ) = ds(p, Y ) + ds(p,W ),
the lemma is true if Y = ∅. Otherwise, we need to compare ds(p,X) and ds(p, Y ). By
the triangle inequality, we have

da(W,X) ≤ da(W,p) + da(p,X), da(p, Y ) ≤ da(p,W ) + da(W,Y )

which then lead to

ds(p,X) ≥ ds(W,X)

|W |
− |X|
|W |

ds(p,W ), ds(p, Y ) ≤ ds(W,Y )

|W |
+
|Y |
|W |

ds(p,W ).

From these bounds on ds(p,X) and ds(p, Y ), we have

ds(p,H) ≥ ds(W,X)

|W |
+
|W | − |X|
|W |

ds(p,W ), ds(p, P ) ≤ ds(W,Y )

|W |
+
|W |+ |Y |
|W |

ds(p,W ).

The lemma then follows from these two inequalities and the following claim.
Claim 6.2. ds(X,W ) ≥ ds(Y,W ∪ Y ).
Proof. The claim is true if Y = ∅. Otherwise, by the definition of the potentially

bad points F = F (A), we have da(X,A) ≥ da(Y,A). By definition,

|A|da(X,A) = |W |da(X,W ) + |V |da(X,V )(6.9)

+|Y |da(X,Y ) + |X|da(X,X),

|A|da(Y,A) = |W ∪ Y |da(Y,W ∪ Y ) + |V |da(Y, V ) + |X|da(Y,X).(6.10)

To compare ds(X,W ) and ds(Y,W ∪ Y ), we need to bound the other terms in (6.9)
and (6.10). By Fact 6.1,

da(X,V ) ≤ da(X,W ) + da(W,Y ) + da(Y, V ),
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Algorithm 7 Robust Average Linkage

Input: Data set S, distance function d(·, ·) on S, mini |Ci|, ε > 0.
1: Use Algorithm 3 with uB = 6εn log n and γ = 4

5 to get a list L0 of blobs.
2: Initialize the clustering L with each blob being a cluster.
3: Repeat till only one cluster remains:

merge clusters C,C ′ which minimize dra(C,C ′).
4: Let T be the tree with blobs as leaves and internal nodes corresponding to the

merges performed.
Output: The tree T .

da(X,Y ) ≤ da(X,W ) + da(Y,W ), da(X,X) ≤ 2da(X,W ).

Now we plug these into (6.9), and then plug (6.9) and (6.10) into da(X,A) ≥ da(Y,A).
Since ds(W,Y ) ≤ ds(Y,W ∪ Y ) and da(Y,X) ≥ 0, we have

(
|W | − |Y | − |V |

)
ds(Y,W ∪ Y ) ≤

(
|W |+ 2|X|+ |Y |+ |V |

) |Y |
|X|

ds(X,W ).

Since |X ∪ V | = |F | = 2mB and |Y ∪ V | = |A \H| ≤ mB , we have |Y ||X| ≤ 1/2. Then

the lemma follows from the fact that |A| ≥ 20mB , |F | = 2mB and |A \H| ≤ mB .
This then completes the proof of Lemma 6.7.

6.2. Approximation Bound. In this subsection, we design an approximation
algorithm and prove our final result Theorem 6.1 by utilizing the properties of the
(α, ε)-perturbation resilience.

First, note that we can generate a list of sufficiently large almost “pure” blobs us-
ing Algorithm 3. However, unlike for (α, ε)-perturbation resilient k-median instances,
it is not guaranteed that the robust linkage procedure in [7] can link these blobs into
a tree so that a pruning of the tree assigns all but bad points correctly. Fortunately,
since the potentially good points can act as a proxy for the good points, we can pre-
tend there are only good points. Since the average linkage succeeds in this case (as
shown for the α-perturbation resilient instances), one would expect that the same
idea can be applied. Indeed, we apply the idea but using the robust average distance
instead of the average distance. As described in Algorithm 7, we first use Algorithm 3
to generate a list of blobs, and then use a robust version of average linkage to link
them into a tree: repeatedly merge the two blobs with the minimum robust average
distance.

After building the tree, one would like to find the pruning that assigns all but bad
points correctly. Suppose we can remove the actual bad points and compute the cost
between the good points. Since the good points from different clusters are far apart,
the good point cost increased by joining different clusters in C′ is larger than that
saved by splitting clusters in C′ (Lemma 6.11). Then any other pruning has larger
cost than C′. Unfortunately, we do not know the actual good points. Therefore, we
consider the potentially good points and compute the robust min-sum cost. We show
that the pruning is in fact the pruning with the minimum robust min-sum cost, so
that it can be computed in polynomial time by dynamic programming.

However, this pruning may not be a good approximation. For example, consider
an instance consisting of two unbalanced clusters. Assume that there is only one
bad point, belonging to the small cluster. Further assume the distances between the
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Algorithm 8 Getting a good approximation

Input: A clustering C′ = {C ′1, . . . , C ′k}, where Gi ⊆ C ′i ⊆ Ci ∪B.
1: for each point p do
2: Associate p to the index i such that ds(p, P (C ′i)) is minimized.
3: end for
4: Let C ′′i be the set of points associated to the index i.

Output: The clustering C′′ = {C ′′1 , . . . , C ′′k }.

Algorithm 9 Min-sum, (α, ε) perturbation resilience

Input: Data set S, distance function d(·, ·) on S, mini |Ci|, ε > 0.
1: Run Algorithm 7 to get a tree T .
2: Find the pruning C′ with the minimum robust min-sum cost in the tree T by

dynamic programming.
3: Run Algorithm 8 to get the final clustering C′′.

Output: The clustering C′′ = {C ′′1 , . . . , C ′′k }.

good points in each cluster are negligible, then assigning the bad point incorrectly

to the large cluster will lead to an Ω
(

maxi |Ci|
mini |Ci|

)
-approximation. So the pruning C′

may not be a constant approximation. Notice that the bad point causing trouble in
this example can actually be identified: it is closer to its own optimal cluster than
to its cluster in C′. Then by reassigning the points in C′, a better approximation
can be computed. It turns out that the reassignment is useful beyond this particular
example, and can be used to compute a good approximation for general perturbation
resilient instances. The details are described in Algorithm 8.

All these combined together lead to our final algorithm for (α, ε)-perturbation
resilient min-sum instances, summarized in Algorithm 9.

The rest of the subsection presents the formal proofs. In Section 6.2.1, we show
that Algorithm 7 outputs a tree with a pruning that assigns all but bad points cor-
rectly. In Section 6.2.2, we show that this pruning can be found in polynomial time
by dynamic programming. In Section 6.2.3, we show Algorithm 8 computes a good
approximation, completing the proof of Theorem 6.1.

6.2.1. Constructing A Tree with A Pruning Close to the Optimum. We
now present our guarantee of Algorithm 7.

Lemma 6.8. The tree output in Algorithm 7 has a pruning C′ that assigns all
good points correctly.

Proof. To analyze the algorithm, we begin with the following property of good
points. When combined with the property of Algorithm 3 (Lemma 4.4), it immediately
shows that each blob in the list L0 has size at least 1

2 mini |Ci|, and contains good
points from only one optimal cluster.

Claim 6.3. For any p ∈ Gi, all its 4|Ci|
5 nearest neighbors belong to Ci ∪B.

Proof. We need to show that for any j 6= i and any good point q ∈ Gj , d(p, q) is
sufficiently large compared to da(p, Ci). Intuitively, p is much farther away from Cj
than from Ci, that is, βds(p, Ci) ≤ ds(p, Cj). It suffices to bound ds(p, Cj) by d(p, q)
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and ds(p, Ci). By the triangle inequality,

ds(p, Cj) ≤ |Cj |d(p, q) + ds(q, Cj)

ds(q, Cj) ≤
1

β
ds(q, Ci) ≤

|Ci|
β
d(p, q) +

1

β
ds(p, Ci).

Combining these inequalities, we have (β − 1
β )ds(p, Ci) ≤ (|Cj | + |Ci|

β )d(p, q). When

α > 8maxi |Ci|
mini |Ci| , 5da(p, Ci) < d(p, q), which then leads to the conclusion.

It now suffices to prove by induction that the clustering L ∩G is always laminar
to C ∩ G. It is true at the beginning by the property of Algorithm 3. Assume for
contradiction that the laminarity is first violated after merging A and D. There are
two cases:

(1) A and D are strict subsets of different optimal clusters;
(2) A is a strict subset of Gi while D is the union of the good points in several

optimal clusters.
We have the following statements for the two cases respectively. By these two

statements, we should first merge A with A′ rather than withD, which is contradictory
and completes the proof.

Claim 6.4.
(1) Suppose A ∈ L, A ∩ G ( Gi, and D ∈ L, D ∩ G ( Gj(j 6= i). Then there

exists A′ 6= A in L such that A′ ∩G ( Gi and dra(A,A′) < dra(A,D).
(2) Suppose A ∈ L, A∩G ( Gi, and D ∈ L, D∩G is the union of good points in

several optimal clusters. Then there exists A′ 6= A in L such that A′∩G ( Gi
and dra(A,A′) < dra(A,D).

Proof. (1) It follows from the following three statements:
(a) da(A ∩G,A′ ∩G) < 1

2da(A ∩G,D ∩G);
(b) dra(A,A′) ≤ 7

5da(A ∩G,A′ ∩G);
(c) 9

10da(A ∩G,D ∩G) ≤ dra(A,D).
We now prove the statements respectively.
(a) For simplicity, let GA = A ∩G,GD = D ∩G. From Lemma 6.5, we have

da(GA, Ci) ≤ γji da(GA, GD),where γji =
|Cj |

(β − 1/β)|Ci|
+

1

β2 − 1
.

Since ds(GA, Gi \GA) ≤ ds(GA, Ci), we have

da(GA, Gi \GA) ≤ |Ci|
|Gi \GA|

da(GA, Ci) ≤ γji
|Ci|

|Gi \GA|
da(GA, GD) ≤ 1

2
da(GA, GD)

where the last step follows from α ≥ 6maxi |Ci|
mini |Ci| +2, |Gi\A| is at least 1

2 mini |Ci|−mB .

(b) By Lemma 6.7 and the fact that |A| ≥ 1
2 mini |Ci|, |A′| ≥ 1

2 mini |Ci| and
mini |Ci| > 100mB , we have

ds(P (A), P (A′)) ≤ 10

9
ds(P (A), A′ ∩G) ≤ 100

81
ds(A ∩G,A′ ∩G).

Then the claim follows from the fact that |P (A)| ≥ 48
50 |A|, |P (A′)| ≥ 48

50 |A
′|.

(c) For simplicity, let GA = A ∩ G,GD = D ∩ G. Divide GA into two parts:
WA = GA ∩ P (A) and XA = GA ∩ F (A). Define WD and XD similarly. See Figure 9
for an illustration.
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Fig. 9: Illustration of the notations in Claim 6.4.

To show ds(GA, GD) ≤ O(1)ds(P (A), P (D)), it suffices to show ds(GA, GD) ≤
O(1)ds(WA,WD). Since

ds(GA, GD) = ds(WA,WD) + ds(GA, XD) + ds(GD, XA)− d(XA, XD)

≤ ds(WA,WD) + ds(GA, XD) + ds(GD, XA),

we only need to bound ds(GA, XD) and ds(GD, XA). By Fact 6.1 and Lemma 6.5 we
have

da(GA, XD) ≤ da(GA, GD) + da(GD, XD) ≤ (1 +
11

50
)da(GA, GD).

Since |XD| ≤ 2mB and |D| ≥ 1
2 mini |Ci| ≥ 50mB , we have

ds(GA, XD) ≤ 61

50

|XD|
|GD|

ds(GA, GD) ≤ 1

20
ds(GA, GD).

Similarly, ds(GD, XA) ≤ 1
20ds(GA, GD). Therefore,

ds(GA, GD) = ds(WA,WD) + ds(GA, XD) + ds(GD, XA)− ds(XD, XA)

≤ ds(WA,WD) + ds(GA, XD) + ds(GD, XA)

≤ ds(WA,WD) +
ds(GA, GD)

10

which leads to 9
10ds(GA, GD) ≤ ds(WA,WD) ≤ ds(P (A), P (D)). Then the claim

follows from the fact that |GA| ≥ |P (A)|, |GD| ≥ |P (D)|.
(2) The proof idea is similar to that for Claim 6.4.(1). The only difference is the

proof for

da(A ∩G,A′ ∩G) <
1

2
da(A ∩G,D ∩G).

Since D ∩G = ∪j∈IDGj , it suffices to show that

da(A ∩G,A′ ∩G) <
1

2
da(A ∩G,Gj)

for any j ∈ ID, which can be proved by the same argument as in Claim 6.4.(1).
Applying the claim completes the proof of Lemma 6.8.
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6.2.2. Getting A Pruning Close to the Optimal Clustering. We now
show that the pruning C′ that assigns all good points correctly is the pruning with
the minimum robust min-sum cost.

Lemma 6.9. Suppose the pruning C′ = {C ′1, . . . , C ′k} in tree T assigns all good
points correctly. Then C′ is the minimum robust min-sum cost pruning in the tree.

Proof. Computing the robust min-sum cost will eliminate the effect of the bad
points and work as if we knew the actual good points: the robust min-sum cost saved
by splitting a node is at most the good point cost saved (Claim 6.5), and the robust
min-sum cost increased by merging two nodes is of the same order as the good point
cost increased (Claim 6.6 and Corollary 6.10).

Claim 6.5. If |C ′i| ≥ 20mB, then drs(C
′
i) ≤ ds(Gi, Gi).

Proof. The claim follows from Claim 6.2 (See Figure 8 for an illustration of
the notations) by setting A = C ′i and H = Gi. In particular, we have drs(A) =
ds(P, P ) ≤ ds(W,W ) + 2ds(Y,W ∪ Y ) and ds(H,H) ≥ ds(W,W ) + 2ds(X,W ). By
Claim 6.2, ds(Y,W ∪ Y ) ≤ ds(X,W ), which completes the proof.

Wj

Wi

Xi

Xj

Y
V

C = C ′i
⋃
C ′j

P

F

Gj

Gi

Ḡ

Fig. 10: Notations in Claim 6.6.

Claim 6.6. For t ∈ {i, j}, |Ct| ≥ 100mB, and C ′t contains all good points in
Ct but no good points in other optimal clusters. Then drs(C

′
i ∪ C ′j) − ds(Gi, Gi) −

ds(Gj , Gj) ≥ ( 4
3 −

4
β )ds(Gi, Gj).

Proof. Let C = C ′i∪C ′j , F = F (C), P = P (C), and G = Gi∪Gj , Ḡ = C\G. Define

Wi = Gi∩P,Xi = Gi∩F ; define Wj , Xj similarly. Also, define Y = P ∩Ḡ, V = F ∩Ḡ.
See Figure 10. Then the left-hand side of the statement is

ds(P, P )− ds(Gi, Gi)− ds(Gj , Gj)
≥ 2(ds(Wi,Wj)− ds(Xi, Gi)− ds(Xj , Gj)).(6.11)

By Lemma 6.6, we have ds(Ci, Cj) ≤ 3
2ds(Wi,Wj). By the definition of good points,

ds(Xi, Ci) + ds(Xj , Cj) ≤
ds(Xi, Cj) + ds(Xj , Ci)

β
≤ 2

β
ds(Ci, Cj).

Plugging these into (6.11), we have that the left-hand side of the statement is at least
( 4
3 −

4
β )ds(Ci, Cj) ≥ ( 4

3 −
4
β )ds(Gi, Gj).

The same argument as that for Claim 6.6 leads to a corollary for the general case
when multiple clusters are merged.

Corollary 6.10. Let I ⊆ [k]. Suppose for any t ∈ I, |Ct| ≥ 100mB, and C ′t
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contains all good points in Ct but no good points in other optimal clusters. Then

drs (∪t∈IC ′t)−
∑
t∈I

ds(Gt, Gt) ≥ (
4

3
− 4

β
)
∑
s6=t∈I

ds(Gt, Gs).

Besides these claims, another key property we need is that the good points in
different optimal clusters are far apart in the sense that the good points from two
different clusters have cost much larger than those in a third cluster have, as formalized
in Lemma 6.11. The proof of this lemma is technical and not related to the other
parts of the proof, so we defer it to Appendix C.2.

Lemma 6.11. For any three different optimal clusters Ci, Cj, and Cl, and any
A ⊂ Gi, 18

5 ds(A,Gi \A) < ds(Gj , Gl). Consequently, 9
5ds(Gi, Gi) < ds(Gj , Gl).

Given the claims and Lemma 6.11, We are now ready to prove Lemma 6.9.
First, by Lemma 6.11, good points from different clusters are far apart while good

points in the same cluster are close. Second, by Claim 6.5 and Corollary 6.10, the cost
of good points can be approximated by the cost of the potentially good points (the
robust min-sum cost). We now use the above lemmas to show that C′ has minimum
robust min-sum cost, so that we can use dynamic programming on the tree to get the
pruning.

Suppose a pruning P is obtained by splitting h clusters in C′ and at the same
time joining some other clusters into g unions. Specifically, for 1 ≤ i ≤ h, split C ′i
into mi ≥ 2 clusters Si,1, . . . , Si,mi

; after that, merge C ′h+1, . . . , C
′
h+lg

into g unions,

that is, for 1 ≤ j ≤ g, l0 = 0, merge lj − lj−1 ≥ 2 clusters C ′h+lj−1+1, . . . , C
′
h+lj

into a

union Uj ; the other clusters in C′ remain the same in P. Since the number of clusters
is still k, we have

∑
imi − h = lg − g.

By Claim 6.5, the cost saved by splitting the h clusters is∑
1≤i≤h

drs(C
′
i)−

∑
1≤i≤h

∑
1≤p≤mi

drs(Si,p) ≤
∑

1≤i≤h

drs(C
′
i) ≤

∑
1≤i≤h

ds(Gi, Gi).(6.12)

The cost increased by joining clusters is

∑
1≤j≤g

drs(Uj)− ∑
h+lj−1<t≤h+lj

drs(C
′
t)


≥
∑

1≤j≤g

drs(Uj)− ∑
h+lj−1<t≤h+lj

ds(Gt, Gt)


≥
∑

1≤j≤g

 ∑
h+lj−1<t6=s≤h+lj

(
4

3
− 4

β
)ds(Gt, Gs)

(6.13)

where the first inequality follows from Claim 6.5, and the second inequality follows
from Corollary 6.10. To prove C′ is the minimum cost pruning, we need to show that
the saved cost (6.12) is less than the increased cost (6.13). Since by Lemma 6.11,
each term in (6.13) is larger than any term in (6.12), it is sufficient to show that the
number of the terms in (6.13) is no less than the number of the terms in (6.12), that
is
∑

1≤j≤g
(
lj−lj−1

2

)
≥ h. We have

∑
j

(
lj−lj−1

2

)
= 1

2

∑
j(lj − lj−1)(lj − lj−1 − 1) ≥∑

j(lj − lj−1 − 1) = lg − g, where the inequality is from lj − lj−1 ≥ 2. Since mi ≥ 2,

lg − g =
∑h
i−1mi − h ≥ h, which completes the proof.
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6.2.3. Getting a Good Approximation. We now show that Algorithm 8
outputs a good approximation. We first prove that after reassignment all good points
are still assigned correctly (Lemma 6.12), and then bound the cost.

W

XY
V

C ′i

P (C ′i)

F (C ′i)

Gi

Fig. 11: Notations in Lemma 6.12 and Claim 6.7.

Lemma 6.12. For any p ∈ Gi, any j 6= i, ds(p, P (C ′j)) > ds(p, P (C ′i)).
Proof. Let Wi = Gi ∩ P (C ′i) denote the good points that are also potentially

good points, and let Zi = Ci \Wi denote all other points in Ci. See Figure 11 for
an illustration. By Lemma 6.7, ds(p, P (C ′i)) ≈ ds(p, Ci). By the definition of good
points, βds(p, Ci) ≤ ds(p, Cj). So it suffices to show that ds(p, P (C ′j)) is not so small
compared to ds(p, Cj). Since Wj ⊆ P (C ′j), it suffices to prove that ds(p,Wj) is large
compared to ds(p, Zj).

First, by the triangle inequality, ds(p, Zj) ≤ |Zj |
|Wj |ds(p,Wj)+ 1

|Wj |ds(Zj ,Wj). Also,

ds(Zj ,Wj) ≤ ds(Cj ,Wj) ≤ 1
βds(Ci,Wj) by the definition of good points. Furthermore,

ds(Ci,Wj) ≤ |Wj |ds(p, Ci) + |Ci|ds(p,Wj). So

ds(p, Zj) ≤
(
|Zj |
|Wj |

+
|Ci|
β|Wj |

)
ds(p,Wj) +

1

β
ds(p, Ci)

≤
(
|Zj |
|Wj |

+
|Ci|
β|Wj |

)
ds(p,Wj) +

1

β2
(ds(p, Zj) + ds(p,Wj)).

Therefore, we have ds(p, Zj) ≤ 1
3ds(p,Wj), since |Zj | ≤ 4mB , |Wj | ≥ 95

100 |Cj | ≥ 95mB .
This leads to ds(p,Wj) ≥ 3

4ds(p, Cj).
Then the lemma follows from ds(p, P (C ′j)) ≥ ds(p,Wj) and

ds(p,Wj) ≥
3ds(p, Cj)

4
≥ 3βds(p, Ci)

4
≥ 3βds(p,Gi)

4
≥ 30βds(p, P (C ′i))
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where the last step follows from Lemma 6.7.
We are now ready to prove our final result.
Proof of Theorem 6.1. By Lemma 6.12, all the good points in Ci are assigned

correctly to C ′′i . Let Ai = C ′′i \Gi denote all the bad points assigned to C ′′i . The cost
of the output clustering C′′ can be written as follows.∑

i

ds(C
′′
i , C

′′
i ) =

∑
i

ds(Gi ∪Ai, Gi ∪Ai)(6.14)

=
∑
i

ds(Gi, Gi) + 2
∑
i

ds(Gi, Ai) +
∑
i

ds(Ai, Ai).
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We need to bound the last two terms.
Let r = mini |Ci|

mB
. By the triangle inequality, we have da(Ai, Ai) ≤ 2da(Ai, Gi),

leading to

ds(Ai, Ai) ≤
2|Ai|
|Gi|

ds(Ai, Gi) ≤
2mB

|Ci| −mB
ds(Ai, Gi) ≤

2

r − 5
ds(Ai, Gi).(6.15)

So it suffices to bound ds(Ai, Gi). We have the following claim for this.

Claim 6.7.
∑
i ds(Ai, Gi) ≤

r2

(r−5)2
∑
i ds(Ci, Ci)−

r2−1
(r−5)2

∑
i ds(Gi, Gi).

Proof. Let Wi = P (C ′i) ∩Gi. See Figure 11 for an illustration. By Fact 6.1,

ds(Ai, Gi) ≤
|Gi|
|Wi|

ds(Ai,Wi) +
|Ai|
|Wi|

ds(Gi,Wi)(6.16)

≤ |Gi|
|Wi|

ds(Ai, P (C ′i)) +
|Ai|
|Wi|

ds(Gi, Gi).

So it suffices to bound ds(Ai, P (C ′i)). Fix p ∈ Ai, and suppose p ∈ Cj . We have

ds(p, P (C ′i)) ≤ ds(p, P (C ′j)) ≤
|Wj |+ |Yj |
|Wj | − |Xj |

ds(p,Gj)

≤ |Cj |
|Cj | − 2|Xj | − |Yj |

ds(p,Gj) =
r

r − 5
ds(p,Gj)

where the second step follows from Lemma 6.7 and the last from |Xj | ≤ 2mB and
|Yj | ≤ mB . Then

k∑
i=1

ds(Ai, P (C ′i)) ≤
r

r − 5

∑
j

∑
p∈(∪iAi)∩Cj

ds(p,Gj) =
r

r − 5

k∑
j=1

ds(Bj , Gj)

≤ r

r − 5

k∑
j=1

(ds(Cj , Cj)− ds(Gj , Gj)).(6.17)

The claim follows from the inequalities (6.16), (6.17) and |Xi| ≤ 2mB , |Ai| ≤ mB .
The proof of correctness is completed by combining Claim 6.7, (6.14), and (6.15).
Running Time. Algorithm 3 takes time O(nω+1) (as shown in the proof of The-

orem 4.6), and the rest steps of Algorithm 7 take time O(n3). Finding the minimum
robust min-sum cost pruning in the tree output by Algorithm 7 takes time O(n3),
and Algorithm 8 takes time O(n3). So the total running time is O(nω+1).

7. Discussion and Open Questions. We advance the line of research on clus-
tering under perturbation resilience in multiple ways. For α-perturbation resilient
instances, we improve on the known guarantees for center-based objectives and give
the first analysis for min-sum. Furthermore, for k-median and min-sum, we analyze
and give the first algorithmic guarantees known for a relaxed but more challenging
condition of (α, ε)-perturbation resilience, where an ε fraction of points are allowed
to move after perturbation. We also give sublinear-time algorithms for k-median and
min-sum under perturbation resilience.

A natural direction for future investigation is to explore whether one can take
advantage of smaller perturbation factors for perturbation resilient instances in Eu-
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clidian spaces3. More broadly, it would be interesting to explore other ways in which
perturbation resilient instances behave better than worst case instances (e.g., natural
algorithms converge faster).

Another interesting direction is to design clustering algorithms under perturba-
tion resilience whose output satisfies certain privacy requirements. For example, some
stability notions can be useful for differential private analysis [25, 16]. It would be in-
teresting to explore the perturbation resilience property and design efficient clustering
algorithms that preserve differential privacy.
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Appendix A. Finding the Minimum Cost k-Cluster Pruning.

The idea of using dynamic programming to find the optimal k-clustering in a tree
of clusters is proposed in [3]. We can find the optimal clustering by examining the
entire tree of clusters produced.

First recall our setting. Suppose we have a tree whose leaves are the data points.
Each internal node of the tree represents a cluster that contains all points in the
clusters represented by its children. Also suppose that the clustering objective is
separable: (1) the objective function value of a given clustering is either a (weighted)
sum or the maximum of the individual cluster scores; (2) given a proposed single
cluster, its score can be computed in polynomial time. Our goal is to find a pruning
of the tree that has k clusters and has minimum cost.

We first consider the case when each node of the tree has at most 2 children.
Denote the cost of the optimal m-clustering of a tree node p as cost(p,m). The optimal
m-clustering of a tree node p is either the entire subtree as one cluster (m = 1), or
the minimum over all choices of m1-clustering over its left subtree and m2-clustering
over its right subtree (1 < m ≤ k), where m1,m2 are positive integers such that
m1 +m2 = m. Therefore, we can traverse the tree bottom up, recursively solving the
m-clustering problem for 1 ≤ m ≤ k for each tree node. The algorithm is presented in
Algorithm 10. Suppose that computing the cost of a cluster takes time O(t) (O(n2) for
k-median, k-means and min-sum). Since there are O(n) nodes, and on each node p,
computing cost(p, 1) takes O(t) time, computing cost(p,m)(1 < m ≤ k) takes O(k2),
in total the algorithm takes time O(nt+ nk2).

Note that when T is a multi-branch tree and not suitable for dynamic program-
ming, we need to turn it into a 2-branch tree T ′ as follows. For each node with more
than 2 children, for example, the node R with children R1, R2, . . . , Rt(t > 2), we
first merge R1 and R2 into one node, then merge this node with R3; repeat until we
merge all nodes R1, R2, · · · , Rt into R. In this way, we get a 2-branch tree T ′ and
can run dynamic programming on it. Note that each pruning in T has a correspond-
ing pruning in T ′, so the minimum cost pruning of T ′ has no greater cost than the
minimum cost pruning of T . Also note that when the cost function is center-based,
such as k-median, the algorithm essentially computes a center for the node p when
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computing cost(p, 1). So it can output the centers together with the pruning.

Algorithm 10 Dynamic Programming in Tree of Clusters

Input: A tree of clusters T on a data set S, distance function d(·, ·) on S, k.
1: Traverse T bottom up.
2: for each node R ∈ T do
3: Calculate cost(R, 1). For 1 < m ≤ k, calculate cost(R,m) as follows.
4: if R is a leaf then
5: cost(R,m) = cost(R, 1).
6: else
7: cost(R,m) = min{cost(R1,m1) + cost(R2,m2)}, where R1, R2 are R’s chil-

dren, m1 +m2 = m, and the minimum is taken over all possible R1, R2,m1,
and m2.

8: end if
9: end for

10: Traverse backwards to get the k-clustering C that achieves cost(r, k) where r is
the root.

Output: The k-clustering C.

Appendix B. An Efficient Implementation of Algorithm 1.

Here we show an efficient implementation of Algorithm 1, namely Algorithm 11.
This implementation takes time only O(n3).

Note that at each merge step in Algorithm 1, we only need to find the two clusters
with the minimum closure distance. So we hope to compute the minimum closure
distance without computing all the distances between any two current clusters. First
we notice the following facts.

Fact B.1. In the execution of Algorithm 1, if d is the minimum closure distance
for the current clustering, then

(1) there exist c, p ∈ S such that d = d(c, p);
(2) d is no less than the minimum closure distances in previous clusterings.

Proof. For the first claim, let c be the center of the ball in the definition of closure
distance, and p be the farthest point from the center in the ball, then d = d(c, p).
The second claim comes from the fact that the clusters in the current clustering are
supersets of those in previous clusterings.

Fact B.1 implies that we can check in ascending order the pairwise distances no
less than the minimum closure distance in the last clustering, and determine if the
checked pairwise distance is the minimum closure distance in the current clustering.
More specifically, suppose we have some black-box method for checking if a pairwise
distance is the minimum closure distance in the current clustering, we can perform
the closure linkage as follows: sort the pairwise distances in a list in ascending order;
start from the first distance in the list; check if the current distance is the minimum
closure distance in the current clustering; if it is, merge clusters covered by the ball
defined by the checked distance; continue to check the next distance in the list. So
it is sufficient to design a method to determine if a pairwise distance is the minimum
closure distance in the current clustering. Our method is based on the following facts.

Fact B.2. In Algorithm 1, if d(c, p) is the minimum closure distance for the
current clustering, then

(1) at least 2 clusters intersect B(c, d(c, p));
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Algorithm 11 Efficient Implementation of Algorithm 1

Input: Data set S, distance function d(·, ·) on S.
1: Sort all the pairwise distances in ascending order.
2: for each p ∈ S and 1 ≤ i ≤ n do
3: Compute Lp, χ(p, i) according to Definition B.1. Then compute χ∗(p, i) by

Equation (B.1).
4: end for
5: Let the current clustering be n singleton clusters.
6: for d(p, q) in ascending order do
7: Suppose q = Lpi . Check if d(p, q) satisfies the three claims in Fact B.2, where

the third claim can be checked by verifying if χ∗(p, i) = −1.
8: If so, merge all the clusters covered by B(p, d(p, q)).
9: end for

10: Construct the tree T with points as leaves and internal nodes corresponding to
the merges performed.

11: Run dynamic programming on T to get the minimum cost pruning C̃.
Output: The clustering C̃.

(2) all the clusters intersecting B(c, d(c, p)) are covered by B(c, d(c, p));
(3) for any p′ ∈ B(c, d(c, p)), q 6∈ B(c, d(c, p)), d(c, p′) < d(p′, q).

Proof. The first claim and the third claim follow from the definition. We can prove
the second claim by induction. This is trivial at the beginning. Suppose it is true up
to any previous clustering, we prove it for the current clustering C′. We need to show
that for any C ′ ∈ C′ such that C ′ ∩ B(c, d(c, p)) 6= ∅, C ′ ⊆ B(c, d(c, p)). If c ∈ C ′,
then by definition, C ′ ⊆ B(c, d(c, p)). If C ′ is a single point set {c1}, then trivially
C ′ ⊆ B(c, d(c, p)). What is left is the case when c 6∈ C ′ and C ′ is generated by merging
clusters in a previous step. Suppose when C ′ is formed, the closure distance between
those clusters is defined by c1 ∈ C ′ and p1. By induction, if c ∈ B(c1, d(c1, p1)),
c would have been merged into C ′ when C ′ is merged, which is contradictory to
c 6∈ C ′. So we have c 6∈ B(c1, d(c1, p1)), that is, d(c, c1) > d(c1, p1). Then by the
margin requirement of B(c1, d(c1, p1)), d(c, q) > d(c1, q) for any q ∈ B(c, d(c, p)) ∩ C ′.
This further leads to c1 ∈ B(c, d(c, p)), since otherwise by the margin requirement of
B(c, d(c, p)) and q ∈ B(c, d(c, p)), we would have d(c, q) < d(c1, q). So for any point
q′ ∈ C ′, since d(c1, q

′) ≤ d(c1, p1) < d(c, c1), we have q′ ∈ B(c, d(c, p)) from the margin
requirement, so C ′ ⊆ B(c, d(c, q)).

Notice if a pairwise distance satisfies the three claims, then it defines a closure
distance for the clusters covered. So if we check the pairwise distances in ascending
order, then the first one that satisfies the three claims must be the minimum closure
distance in the current clustering. So we have a method to determine if a pairwise
distance is the minimum closure distance.

However, naively checking the third claim in Fact B.2 takes O(n2), which is still
not good enough. We can refine this step since intuitively, for every c, if d(c, q)
comes after d(c, p) in the distance list, then when checking d(c, q), we can utilize the
information obtained from checking d(c, p). To do so, we introduce some notations.

Definition B.1.

(1) For every p ∈ S, define Lp = (Lp1, . . . , L
p
n) to be a sorted list of points in S,

according to their distances to p in ascending order.
(2) Define χ∗(p, i) to be the maximum j > i such that there exits s ≤ i satisfying
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d(p, Lps) ≥ d(Lps , L
p
j ); if no such point Lpj exists, let χ∗(p, i) = −1.

(3) Define χ(p, i) to be the maximum j > i such that d(p, Lpi ) ≥ d(Lpi , L
p
j ); if no

such j exists, let χ(p, i) = −1.
Intuitively, χ∗(p, i) is the index of the farthest point in Lp, which makes d(p, Lpi )

fail the third claim in Fact B.2. Then d(p, Lpi ) satisfies the third claim if and only if
χ∗(p, i) = −1, thus we turn the task of checking the claim into computing χ∗(p, i).
In order to use the information obtained when previously checking d(p, Lpi−1), we
compute χ∗(p, i) from χ∗(p, i − 1). By the definition of χ∗, χ∗(p, i) is either the
maximum j > i such that there exits s ≤ i− 1 satisfying d(p, Lps) ≥ d(Lps , L

p
j ), or the

maximum j > i there exits s = i satisfying d(p, Lps) ≥ d(Lps , L
p
j ). Then it is easy to

verify that

χ∗(p, i) =

{
χ(p, i) if χ∗(p, i− 1) = i,

max{χ∗(p, i− 1), χ(p, i)} otherwise.
(B.1)

It takes O(n) time to compute χ(p, i), thus we can compute χ∗(p, i) for all p ∈ S, 1 ≤
i ≤ n in O(n3) time. The implementation is finally summarized in Algorithm 11.

Appendix C. (α, ε)-Perturbation Resilient Min-Sum Instances.

C.1. Proofs for Bounding the Number of Bad Points for Min-Sum.
First, recall the definitions of the bad points and the perturbation constructed to
bound the number of bad points in Section 6.1.1. Assume for contradiction that |B| >
2ηεn. Consider the following η intervals: [2t−1v, 2tv] where v = mini minp∈Bi d(p, Ci)
where 1 ≤ t ≤ η. At least one of the intervals, say [r, 2r], will contain the costs
of more than 2εn bad points. Let B̂ denote an arbitrary subset of 2εn bad points
in this interval. Let B̂i = B̂ ∩ Ci denote the selected bad points in the optimal
cluster Ci. Let Ki = Ci \ B̂i denote the other points in Ci, and set K = ∪iKi.
Denote as Di all those selected bad points whose second nearest cluster is Ci, that is,
Di = {p : ∃j such that p ∈ B̂j and i = arg min` 6=j d(p, C`)}. Note that by definition

we have ∪iDi = B̂. Finally, let C̃i = Ki ∪Di. See Figure 6 for an illustration.
The perturbation is constructed as follows: blow up all distances by a factor of α

except those within C̃i, 1 ≤ i ≤ k. That is,

d′(p, q) =

{
d(p, q) if p ∈ C̃i, and q ∈ C̃i for some i,
αd(p, q) otherwise.

Let {C ′i} denote the optimal clustering after perturbation. Recall the definitions
of Ui, Vi,Wi and Ũi, Ṽi, W̃i, and see Figure 7 for an illustration. The following facts
come from their definitions.

Fact C.1. We have ∪iUi = ∪iŨi, ∪iVi = ∪iṼi and ∪iWi = ∪iW̃i. Furthermore,∑
i

ds(Ũi, Ci) ≤ β
∑
i

ds(Ui, Ci)∑
i

ds(Ṽi, Ci) ≤
∑
i

ds(Vi, Ci),∑
i

ds(W̃i, Ci) ≤
∑
i

ds(Wi, Ci).

We are ready to prove the claim needed for bounding the number of bad points.
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Claim 6.1.(1). The costs saved and added by moving {Ui, 1 ≤ i ≤ k} and {Ũi, 1 ≤
i ≤ k} satisfy

∆U −∆Ũ ≥ 2
∑
i

d′s(Ui, C
′
i ∩Ki)− 2

∑
i

d′s(Ũi, C̃i)

≥ 3

10
α
∑
i

ds(Ui, Ci)−
2α

100

∑
i

ds(Wi, Ci)−
8α+ 16

100
rεn.

Proof. Intuitively, we have that
∑
i d
′
s(Ui, C

′
i ∩Ki) ≈ α

∑
i ds(Ui, Ci). Similarly,∑

i d
′
s(Ũi, C̃i) ≈

∑
i ds(Ũi, Ci). Their difference is then roughly (α− β)

∑
i ds(Ui, Ci),

since
∑
i ds(Ũi, Ci) ≤ β

∑
i ds(Ui, Ci).

Formally, we have

d′s(Ui, C
′
i ∩Ki) = αds(Ui, C

′
i ∩Ki) = αds(Ui, Ci)− αds(Ui, W̃i + B̂i),(C.1)

d′s(Ũi, C̃i) = ds(Ũi, C̃i) = ds(Ũi,Ki) + ds(Ũi, Di) ≤ ds(Ũi, Ci) + ds(Ũi, Di).(C.2)

Then it suffices to bound the approximation error ds(Ui, W̃i ∪ B̂i) and ds(Ũi, Di).
First, for ds(Ui, W̃i ∪ B̂i) we have

ds(Ui, W̃i + B̂i) ≤
|W̃i ∪ B̂i|
|Ci|

ds(Ui, Ci) +
|Ui|
|Ci|

ds(Ci, W̃i ∪ B̂i)

≤ 3

100
ds(Ui, Ci) +

1

100
ds(Ci, W̃i ∪ B̂i)

where the first inequality is by Fact 6.1, and the second is from the fact that |W̃i| ≤
εn, |B̂i| ≤ 2εn, |Ui| ≤ εn and |Ci| ≥ 100εn. For the second term on the right-hand
side, we have

∑
i ds(Ci, W̃i) ≤

∑
i ds(Wi, Ci), Furthermore, the points in B̂i has cost

at most 2r and
∑
i |B̂i| ≤ 2εn. So∑

i

ds(Ui, W̃i ∪ B̂i) ≤
3

100

∑
i

ds(Ui, Ci) +
1

100

∑
i

ds(Ci,Wi) +
4rεn

100
.

Similarly, for ds(Ũi, Di) we have

∑
i

ds(Ũi, Di) ≤
∑
i

(
|Di|
|Ci|

ds(Ũi, Ci) +
|Ũi|
|Ci|

ds(Ci, Di)

)
≤ 2β

100

∑
i

ds(Ui, Ci) +
8rεn

100
.

The claim follows by summing (C.1) and (C.2) over 1 ≤ i ≤ k and plugging in
the last two inequalities.

Claim 6.1.(2). The costs saved and added by moving {Vi, 1 ≤ i ≤ k} and {Ṽi, 1 ≤
i ≤ k} satisfy

∆V −∆Ṽ ≥ 2
∑
i

d′s(Vi, C
′
i ∩ Ci)− 2

∑
i

d′s(Ṽi, C̃i)

≥ 99

50
(α− 2)

∑
i

ds(Vi, Ci)−
2α

100

∑
i

ds(Wi, Ci)−
4α+ 8β

100
rεn.

Proof. The intuition is similar to that of Claim 6.1.(a):
∑
i d
′
s(Vi, C

′
i ∩ Ci) ≈

α
∑
i ds(Vi, Ci),

∑
i d
′
s(Ṽi, C̃i) ≈

∑
i ds(Ṽi, Ci). Since

∑
i ds(Vi, Ci) ≥

∑
i ds(Ṽi, Ci),

their difference is roughly (α− 1)
∑
i ds(Vi, Ci).
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Formally, we have

d′s(Vi, C
′
i ∩ Ci) = αds(Vi, C

′
i ∩ Ci) = αds(Vi, Ci)− αds(Vi, Ci \ C ′i),(C.3)

d′s(Ṽi, C̃i) = ds(Ṽi, C̃i) ≤ ds(Ṽi, Ci) + ds(Ṽi, Di).(C.4)

Then it suffices to bound the approximation error ds(Vi, Ci \C ′i) and ds(Ṽi, Di). First,

ds(Vi, Ci \ C ′i) ≤
|Ci \ C ′i|
|Ci|

ds(Vi, Ci) +
|Vi|
|Ci|

ds(Ci \ C ′i, Ci)

≤ 1

100
ds(Vi, Ci) +

1

100
ds(Ci \ C ′i, Ci)

where the first inequality is by Fact 6.1 and the second is from the fact that |Ci \
C ′i| ≤ εn, |Vi| ≤ εn and |Ci| ≥ 100εn. For the second term on the right-hand side,

we have ds(Ci \ C ′i, Ci) ≤ ds(W̃i, Ci) + ds(B̂i \ C ′i, Ci). Note that
∑
i ds(W̃i, Ci) ≤∑

i ds(Wi, Ci). Furthermore, the points in B̂i have cost at most 2r and
∑
i |B̂i \C ′i| ≤

εn by perturbation resilience. So∑
i

ds(Vi, Ci \ C ′i) ≤
1

100

∑
i

ds(Vi, Ci) +
1

100

∑
i

ds(Wi, Ci) +
2rεn

100
.

Similarly, for ds(Ṽi, Di) we have∑
i

ds(Ṽi, Di) ≤
∑
i

(
|Di|
|Ci|

ds(Ṽi, Ci) +
|Ṽi|
|Ci|

ds(Ci, Di)

)
≤ 2

100

∑
i

ds(Vi, Ci) +
4βrεn

100
.

The claim follows by summing (C.3) and (C.4) over 1 ≤ i ≤ k and plugging the
last two inequalities.

Claim 6.1.(3). The costs saved and added by moving {Wi, 1 ≤ i ≤ k} and
{W̃i, 1 ≤ i ≤ k} satisfy

∆W −∆W̃ ≥ 2
∑
i

d′s(Wi, C
′
i ∩ Ci)− 2

∑
i

d′s(W̃i, W̃i ∪ (C ′i ∩ C̃i))

≥ 98

50
(α− 2)

∑
i

ds(Wi, Ci)−
4α+ 4β

100
rεn.

Proof. The intuition is similar to that of Claim 6.1.(a):
∑
i d
′
s(Wi, C

′
i ∩ Ci) ≈

α
∑
i ds(Wi, Ci) and

∑
i d
′
s(W̃i, W̃i∪(C ′i∩C̃i)) ≈

∑
i ds(W̃i, Ci). Since

∑
i ds(Wi, Ci) ≥∑

i ds(W̃i, Ci), their difference is roughly (α− 1)
∑
i ds(Wi, Ci).

Formally, we have

d′s(Wi, C
′
i ∩ Ci) = αds(Wi, C

′
i ∩ Ci) = αds(Wi, Ci)− αds(Wi, Ci \ C ′i),(C.5)

d′s(W̃i, W̃i ∪ (C ′i ∩ C̃i)) = ds(W̃i, (C
′
i ∩Di) ∪ (Ci ∩ C̃i))(C.6)

≤ ds(W̃i, C
′
i ∩Di) + ds(W̃i, Ci).

Then it suffices to bound the approximation error ds(Wi, Ci \C ′i) and ds(W̃i, C
′
i∩Di).

First, for ds(Wi, Ci \ C ′i) we have

ds(Wi, Ci \ C ′i) ≤
|Ci \ C ′i|
|Ci|

ds(Wi, Ci) +
|Wi|
|Ci|

ds(Ci \ C ′i, Ci)

≤ 1

100
ds(Wi, Ci) +

1

100
ds(Ci \ C ′i, Ci)
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where the first inequality is by Fact 6.1 and the second from the fact that |Ci \
C ′i| ≤ εn, |Wi| ≤ εn and |Ci| ≥ 100εn. For the second term on the right-hand side,

we have ds(Ci \ C ′i, Ci) = ds(W̃i, Ci) + ds(B̂i \ C ′i, Ci). Note that
∑
i ds(W̃i, Ci) ≤∑

i ds(Wi, Ci). Furthermore, the points in B̂i have cost at most 2r and
∑
i |B̂i \C ′i| ≤

εn by perturbation resilience. So∑
i

ds(Wi, Ci \ C ′i) ≤
2

100

∑
i

ds(Wi, Ci) +
2rεn

100
.

Similarly, for ds(W̃i, C
′
i ∩Di) we have

∑
i

ds(W̃i, C
′
i ∩Di) ≤

∑
i

(
|C ′i ∩Di|
|Ci|

ds(W̃i, Ci) +
|W̃i|
|Ci|

ds(C
′
i ∩Di, Ci)

)

≤ 1

100

∑
i

ds(Wi, Ci) +
2βrεn

100
.

The claim follows by summing (C.5) and (C.6) over 1 ≤ i ≤ k and plugging the
last two inequalities.

C.2. Properties of Good Points in Min-Sum. A useful property of good
points is that the good points from two different clusters have cost much larger
than those in a third cluster have (Lemma 6.11). To prove this, we need to prove
Lemma C.1, which bounds the cost of the optimal clustering C′ = {C ′t} under the
perturbed distance function. Recall the definitions of the perturbation and C′ in Sec-
tion 6.1.2. The perturbation blows up all pairwise distances by a factor of α except
the intra-cluster distances in C̃, where C̃ is the clustering obtained from the optimal
clustering by splitting Ci into A and Ci \ A and merging Cj and Cl. Let C′ = {C ′i}
denote the optimal clustering under the perturbed distance function d′, where the
clusters are indexed so that C ′i corresponds to Ci and the distance between the two
clustering is

∑
i |Ci \ C ′i|.

To bound the cost of C′ = {C ′t}, we compare it to the cost of the optimal clustering
C = {Ct} before perturbation. If C′ = C, then the cost is only increased by blowing
up the distances between A and Ci \A (Claim C.1). However, the optimal clustering
may change after the perturbation, so we need to consider how much cost is saved by
the change (Claim C.2).

Intuitively, the cost saved should be small. To see this, consider a point p moved
from Cs to C ′t. Then we need to pay d′s(p, C

′
t) instead of ds(p, Cs). Note that p is in

Cs but not Ct, so ds(p, Cs) ≤ ds(p, Ct). Also, C ′t and Ct differ only on at most εn
points, then d′s(p, C

′
t) is larger or comparable to ds(p, Ct) and thus ds(p, Cs).

There are two technical details in the above description. The first is to translate
d′s(p, C

′
t) to ds(p, C

′
t). We consider two cases (as in the proof of Claim C.2). If p

is moved between Cj and Cl, then d′s(p, C
′
t) is roughly ds(p, C

′
t) since the distances

between Cj , Cl are not blown up. Otherwise, d′s(p, C
′
t) is roughly αds(p, C

′
t). Another

technical detail is to show that ds(p, C
′
t) roughly equals ds(p, Ct). Since ds(p, C

′
t) ≥

ds(p, C
′
t ∩Ct), it suffices to show that ds(p, C

′
t ∩Ct) is comparable to ds(p, Ct), where

Fact 5.1 turns out to be useful.
Lemma C.1. Suppose α > 6maxi |Ci|

mini |Ci| and mini |Ci| ≥ 100mB. We have

k∑
t=1

d′s(C
′
t, C
′
t)−

k∑
t=1

ds(Ct, Ct) ≥ 2(α− 1)ds(A,Gi \A)− 4α+ 8

100
ds(Cj , Cl).
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Ci Ĉi

Mi Ki Ai

Fig. 12: Illustration of the notations in Lemma C.1.

Proof. Let Kt = Ct ∩ C ′t, At = C ′t \ Ct,Mt = Ct \ C ′t. See Figure 12 for an
illustration. We have

k∑
t=1

d′s(C
′
t, C
′
t)−

k∑
t=1

ds(Ct, Ct)

≥
k∑
t=1

(d′s(Kt,Kt) + 2d′s(At,Kt))−
k∑
t=1

(ds(Kt,Kt) + 2ds(Mt, Ct))

=

(
k∑
t=1

d′s(Kt,Kt)−
k∑
t=1

ds(Kt,Kt)

)
+ 2

(
k∑
t=1

d′s(At,Kt)−
k∑
t=1

ds(Mt, Ct)

)
.

The first term on the right-hand side corresponds to the cost increased by blowing up
the distances within the clusters, the second term corresponds to the cost increased
by moving points away. We will bound the two terms respectively in the following
two claims, which then lead to the lemma.

Let l(p) denote the index of the optimal cluster in C that p falls in: if p ∈ Ct,
then l(p) = t. Similarly, let l′(p) denote the optimal cluster in C′ that p falls in after
perturbation: if p ∈ C ′t, then l′(p) = t.

The first term is roughly the cost increased by blowing the distances between
Ai and Ci \ Ai, which is about 2(α − 1)ds(A,Ci \ A). However, some points in Ci
may move away, so we need to exclude the cost of these points. More precisely, we
only consider good points, and also exclude the cost of the good points moved away
(Gi ∩Mi).

Claim C.1.

k∑
t=1

d′s(Kt,Kt)−
k∑
t=1

ds(Kt,Kt) ≥ 2(α− 1)

ds(A,Gi \A)−
∑

p∈Gi∩Mi

ds(p, Cl′(p))/β

 .
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Proof. By the definition of the perturbation, we have

k∑
t=1

d′s(Kt,Kt)−
k∑
t=1

ds(Kt,Kt)

≥ 2d′s(A ∩Ki, (Gi \A) ∩Ki)− 2ds(A ∩Ki, (Gi \A) ∩Ki)

≥ 2(α− 1)ds(A ∩Ki, (Gi \A) ∩Ki)

≥ 2(α− 1) (ds(A,Gi \A)− ds(A ∩Mi, Gi \A)− ds((Gi \A) ∩Mi, A))

≥ 2(α− 1) (ds(A,Gi \A)− ds(Gi ∩Mi, Ci)) .

The claim then follows from that for any p ∈ Gi ∩Mi, ds(p, Ci) ≤ 1
βds(p, Cl′(p)).

The second term is roughly the cost increased by moving points away. Consider a
point p ∈ C1 that moves to C ′2. The new cost is d′s(p, C

′
2) ≈ d′s(p, C2) = αds(p, C2), and

the old cost is ds(p, C1) ≤ ds(p, C2), so the cost increased is roughly (α− 1)ds(p, C2).
Note that C ′2 only approximately equals C2. Also, the above intuition does not hold
for points that move between Cj and Cl since the distances between them are not
blown up. These facts only decrease the bound slightly, as shown in the following
claim.

Claim C.2. Let X = (∪tAt) \ (Al ∩ Cj) \ (Aj ∩ Cl).

k∑
t=1

d′s(At,Kt)−
k∑
t=1

ds(Mt, Ct) ≥
(

98α

100
− 1

)∑
p∈X

ds(p, Cl′(p))−
2α+ 4

100
ds(Cj , Cl).

Proof. We have

k∑
t=1

d′s(At,Kt)−
k∑
t=1

ds(Mt, Ct) ≥
k∑
t=1

∑
p∈At

(
d′s(p,Kt)− ds(p, Cl(p))

)
.

Intuitively, d′s(p,Kl′(p)) should be larger or comparable to ds(p, Cl(p)). On one
hand, ds(p, Cl(p)) ≤ ds(p, Cl′(p)) since p is assigned to Cl(p) instead of Cl′(p) in the
optimal clustering under d. On the other hand, we also know that ds(p,Kl′(p)) is
comparable to ds(p, Cl′(p)) by Fact 5.1.

Before using this intuition, we first need to translate d′s(p,Kl′(p)) to ds(p,Kl′(p)).
Since the distances between Cj and Cl is not blown up, we need to consider separately
the case when p is moved between Cj and Cl. Equivalently, we divide ∪tAt into two
parts: V = (Aj ∩ Cl) ∪ (Al ∩ Cj) and X = (∪tAt) \ (Al ∩ Cj) \ (Aj ∩ Cl). Now we
consider the two parts respectively.

Case 1. Suppose p ∈ Aj ∩ Cl. By Fact 5.1, we have d′s(p,Kl′(p)) = ds(p,Kj) ≥
|Kj |
|Cj | ds(p, Cj)−

1
|Cj |ds(Mj , Cj). Since we have ds(p, Cl(p)) = ds(p, Cl) ≤ ds(p, Cj), and

ds(Mj , Cj) ≤ ds(Mj , Cl) ≤ ds(Cj , Cl),

d′s(p,Kl′(p))− ds(p, Cl(p)) ≥ −
|Mj |
|Cj |

ds(p, Cj)−
1

|Cj |
ds(Cj , Cl),∑

p∈Aj∩Cl

(
d′s(p,Kl′(p))− ds(p, Cl(p))

)
≥ −

(
|Mj |
|Cj |

+
|Aj ∩ Cl|
|Cj |

)
ds(Cj , Cl).

Since |Mj | ≤ εn, |Aj | ≤ εn, this is bounded by − 2
100ds(Cj , Cl). A similar argument

holds for Aj ∩ Cl. So∑
p∈V

[d′s(p,Kl′(p))− ds(p, Cl(p))] ≥ −
4

100
ds(Cj , Cl).(C.7)
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Case 2. For p ∈ X, we have by Fact 5.1

d′s(p,Kl′(p)) = αds(p,Kl′(p)) ≥ α
( |Kl′(p)|
|Cl′(p)|

ds(p, Cl′(p))−
1

|Cl′(p)|
ds(Ml′(p), Cl′(p))

)
.

Then for X, since ds(p, Cl(p)) ≤ ds(p, Cl′(p)) and
|Kl′(p)|
|Cl(p)|

≥ 99
100 , we have∑

p∈X

(
d′s(p,Kl′(p))− ds(p, Cl(p))

)
≥
(

99α

100
− 1

)∑
p∈X

ds(p, Cl′(p))−
∑
p∈X

α

|Cl′(p)|
ds(Ml′(p), Cl′(p)).(C.8)

Since X ⊆ ∪tAt, and |Ct| ≥ 100|At|, the second term on the right-hand side is
bounded by∑

t

α|At|
|Ct|

ds(Mt, Ct) ≤
α

100

∑
t

ds(Mt, Ct) =
α

100

∑
p∈∪tAt

ds(p, Cl(p))

=
α

100

∑
p∈V

ds(p, Cl(p)) +
∑
p∈V

ds(p, Cl(p))


≤ α

100

∑
p∈V

ds(p, Cl′(p)) + 2ds(Ci, Cj)

 .(C.9)

The claim follows from the inequalities (C.7), (C.8), and (C.9).
The proof is completed by combining the two claims.

Lemma 6.11. Suppose α > 8maxi |Ci|
mini |Ci| and ε < mini |Ci|

600n . For any three different

optimal clusters Ci, Cj, and Cl, and any A ⊂ Gi,
18
5 ds(A,Gi \ A) < ds(Gj , Gl).

Consequently, 9
5ds(Gi, Gi) < ds(Gj , Gl).

Proof. The key idea is as follows. Let C̃ denote the clustering obtained from the
optimal clustering by splitting Ci into A and Ci\A and merging Cj and Cl, that is, C̃ =
{A,Ci \A,Cj ∪Cl}∪{Ct, t 6= i, j, l}. Suppose we construct a perturbation that favors

the clustering C̃: blow up all pairwise distances by a factor of α except the intra-cluster
distances in C̃. Let C′ = {C ′i} denote the optimal clustering under the perturbed
distance function d′, where the clusters are indexed so that C ′i corresponds to Ci
and the distance between the two clustering is

∑
i |Ci \ C ′i|. By (α, ε)-perturbation

resilience, we know that C′ is different from C̃ and has no greater cost than C̃. We then
show that compared to the optimal cost under the original distances, the cost of C̃
under perturbed distances d′ is larger by at most O(ds(Cj , Cl)) = O(ds(Gj , Gl)), while
the cost of C′ under perturbed distances d′ is larger by roughly O(α)ds(A,Gi \ A).
These then lead to the first statement.

More precisely, the cost of C̃ under d′ is larger than that of C under d by at most
2ds(Cj , Cl). For C′, we have

∑k
t=1 d

′
s(C
′
t, C
′
t) −

∑k
t=1 ds(Ct, Ct) ≥ 2(α − 1)ds(A,Gi \

A)− 4α+8
100 ds(Cj , Cl) by Lemma C.1. Since C′ has smaller cost than C̃, we have

2(α− 1)ds(A,Gi \A)− 4α+ 8

100
ds(Cj , Cl) ≤ 2ds(Cj , Cl).

When α > 8maxi |Ci|
mini |Ci| , we have 27

5 ds(A,Gi \ A) ≤ ds(Cj , Cl). By Lemma 6.6, we have

ds(Cj , Cl) ≤ 3
2ds(Gj , Gl), which then leads to the first part of the lemma.
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The second part of the lemma follows from the fact that
∑
A⊆Gi

ds(A,Gi \A) =
2|Gi|

2 ds(Gi, Gi).


