Clustering Perturbation Resilient k-Median Instances

Yingyu Liang

Joint work with Maria Florina Balcan Georgia Institute of Technology

k-Median Clustering

- lacksquare Given the distances d on a set S of points
- Find centers $\{c_1, \ldots, c_k\}$ to minimize the k-median cost

$$\sum_{p \in P} \min_i d(p, c_i)$$

New Direction: Perturbation Resilience

 α -perturbation of d: $d(p,q) \leq d'(p,q) \leq \alpha d(p,q)$, for any $p,q \in S$

α -Perturbation Resilience [Bilu-Linial,ICS10]

The optimal clustering does not change after α -perturbation.

New Direction: Perturbation Resilience

 α -perturbation of d: $d(p,q) \leq d'(p,q) \leq \alpha d(p,q)$, for any $p,q \in S$

(α,ϵ) -Perturbation Resilience [Balcan-Liang, ICALP12]

The optimal clustering changes on at most ϵ fraction of points after α -perturbation.

Our Results

II Structural property of α -PR for $\alpha > 4$: except for $\epsilon |S|$ bad points, all points satisfy strict separation.

2 Approximation algorithm: produces $1+O(\epsilon/\rho)$ -approx, where $\rho=\min_i |C_i^*|/n$

Faster Algorithm

Key: structural property preserved in random sample of small size

Sublinear algorithm:

- lacktriangle perform approximation algorithm on a sample of size $\tilde{\Theta}(\frac{k}{\epsilon^2})$
- lacktriangle produces $2(1+O(\epsilon/
 ho))$ -approx
- runs in time logarithmic in #points