Clustering Perturbation Resilient k-Median Instances

Problem Setup

 \triangleright k-Median Clustering: Given a set of n points in metric space, find centers $\mathbf{x} = \{x_1, \ldots, x_k\}$ to minimize $\sum_{p \in P} \min_i d(p, c_i)$.

 \triangleright New Direction: exploit additional stability properties of the data α -perturbation of d: a function d' s.t. $\forall p, q \in S, d'(p,q) \in [1,\alpha]d(p,q)$

Definition. [Bilu-Linial, ICS10; Awasthi-Blum-Sheffet, IPL12] An instance is α -perturbation resilient if the optimal clustering under α perturbation of the distance is unique and equal to the original optimal clustering.

Definition. [Balcan-Liang, ICALP12] An instance is (α, ϵ) -perturbation resilient, if the optimal clustering under any α -perturbation of distance can be obtained by moving at most ϵ fraction of the points in the original optimal clustering.

Our Results

Efficient algorithm for (α, ϵ) -PR k-median instances

- produces $(1 + O(\epsilon/\rho)$ -approx for $\alpha > 4$, where $\rho = \min_i |C_i|/n$
- improve over the bound $\alpha > 2 + \sqrt{7}$ in [Balcan-Liang, ICALP12]

Sublinear time algorithm for constructing implicit clustering

- produces $2(1 + O(\epsilon/\rho))$ -approx for $\alpha > 4$
- running time logarithmic in #points

Algorithms

- \triangleright Algorithm 1 ((1 + $O(\epsilon/\rho)$ -approx algorithm)
 - 1. Generate a list of blobs as described above
 - 2. Use existing robust linkage algo to link them into a tree
 - 3. Use dynamic programming to get the lowest cost pruning

▷ Algorithm 2 (Sublinear time algorithm)

- 1. Sample points from the original data
- 2. Run Algorithm 1 on the sample

Maria-Florina Balcan and Yingyu Liang

Structure Property of (α, ϵ) -PR k-Median

▷ Bounds on #bad points [Balcan-Liang, ICALP12] **Theorem.** Assume $\min_i |C_i| = \Omega(\epsilon n)$. Except for $\leq \epsilon n$ bad points, any other good point is α times closer to its own center than to other centers.

▷ Neighbors of good points

Lemma. When $\alpha > 4$, for any good points $p_1, p_2 \in G_i, q \in G_j (j \neq i)$, we have $d(p_1, p_2) < d(p_1, q)$.

Generating Blobs

\triangleright Algorithm

- 1. Initialize $t = \min_i |C_i|$
- t nearest neighbors
- 4. Pull out sufficiently large blobs

\triangleright Intuition

Algo: Build graph H based on F

