CS 540 Introduction to Atrtificial Intelligence
Game |

Yingyu Liang
University of Wisconsin-Madison
Nov 23, 2021

Based on slides by Fred Sala

Outline

* Intro to game theory
— Characterize games by various properties

* Sequential games
— Game trees, game-theoretic/minimax value, minimax algo

* Improving our search
— Using heuristics

So Far in The Course ase o f

We looked at techniques:

* Unsupervised: See data, do something with
it. Unstructured.

* Supervised: Train a model to make m

Victor Powell

predictions. More structure. _
— Training: as taking actions to get a reward &?A

* Games: Much more structure.

Let’s begin with the relation between Games and what we have learned so far.

We are going to see there are more structure in games. For example, the way we
collect the data.

More General Model

Suppose we have an agent interacting with the world

oo N
‘\TL:'/ Actions
/ \ - Observations
Agent

* Agent receives a reward based on state of the world
— Goal: maximize reward / utility ($55)
— Note: now data consists of actions & observations
— Setup for decision theory, reinforcement learning, planning

Reward: can be viewed as the negation of the loss. Note that different from
supervised learning, here previous actions can have an impact on the world and
affect the actions and observations later on. That is, the agent has some influence on
the world.

Games: Multiple Agents

Games setup: multiple agents

o0)
00) T T s
@ ., — ¥
7 5 > A
\\]
: ‘\\ Player 3
Player 1 (-)
— Now: interactions between agents /
— Still want to maximize utility Player 2

— Strategic decision making.

We further model the interactions between multiple agents. We assume that each
player/agent has its own reward function and wants to maximize that. However, the
reward function of any player depends on all the actions of all the players and the
world. So the reward function captures the interaction.

What's the different between the world and a player? Players are rational or selfish or
strategic. They want to maximize their own rewards. The world is not strategic:

though its state can affect the rewards but it doesn’t have or want to maximize its
own reward.

Modeling Games: Properties

Let’s work through properties of games

* Number of agents/players

» State & action spaces: discrete or continuous
* Finite or infinite

* Deterministic or random

* Sum: zero or positive or negative
* Sequential or simultaneous

We consider a few aspects of games. Then we can divide the various kinds of games
to different categories. Then we can focus on one category, build theoretical
frameworks, design methods and build systems that can solve the game.

We will go over these properties one by one. Some of them are simple and self-
explaining, some of them need more explanation.

Property 1: Number of players

Pretty clear idea: 1 or more players
* Usually interested in 2 2 players
* Typically a finite number of players

Property 2: Discrete or Continuous

Let’s work through properties of games

* Recall the world. It is in a particular state, from a set of states
* Similarly, the actions the player takes are from an action space
* How big are these spaces? Finite, countable, uncountable?

Property 3: Finite or Infinite

Let’s work through properties of games

* Most real-world games finite
* Lots of single-turn games; end immediately
— Ex: rock/paper/scissors

* Other games’ rules (state & action spaces) enforce
termination
— Ex: chess under FIDE rules ends in at most 8848 moves

* Infinite example: pick integers. First player to play a 5 loses

“Finite or infinite” refers to the turns of playing the game.

Property 4: Deterministic or Random

Let’s work through properties of games
* |sthere chance in the game?

* Note: randomness enters in different ways
as
2 N
o
’9

10

Property 5: Sums

Let’s work through properties of games
* Sum: zero or positive or negative

* Zero sum: for one player to win, the other has to lose
— No “value” created

Blue

Red A 8 C

-30 10 -20
30 -10 20

10 -20 20
-10 20 -20

* Can have other types of games: positive sum, negative sum.
— Example: prisoner’s dilemma

The sum refers to the sum of the rewards of all the players.

In many games with two players, if one player wins, the other loses. We use zero-sum
to model such games. That is, the reward of one player is the negation of the reward
for the other player.

We can have other types of games with positive or negative sum of rewards. For

example, prisoner’s dilemma is a famous game with negative sum. We will get to that
latter.

11

Property 6: Sequential or Simultaneous

Let’s work through properties of games

* Sequential or simultaneous

* Simultaneous: all players take action at the same
time

* Sequential: take turns

* Simultaneous: players do not have information
of others’ moves. Ex: RPS (rock paper scissors)

* Sequential: may or may not have perfect
information (knowledge of all moves so far)

In sequential games, the players take turns to make a move. For example, Chess.

In simultaneous games, all players make moves at the same time, like Rock Paper
Scissors. Because the players are simultaneously making moves, they do not have

information about others’ moves.

In sequential games, the players may have perfect information, knowing all moves of
all players up to now. For example, in Chess. There are also games, when the players
may not have all the information, for example, in most poker games.

12

Examples

Let’s apply this to examples:

1. Chess: 2-player, discrete, finite,
deterministic, zero-sum, sequential
(perfect information)

2. RPS: 2-player, discrete, finite,
deterministic, zero-sum, simultaneous

3. Mario Kart: 4-player, continuous, infinite
(?), random, zero-sum, simultaneous

13

Another Example: Prisoner’s Dilemma

Famous example from the ‘50s.

Two prisoners A & B. Can choose to betray the other or not.

— A and B both betray, each of them serves two years in prison
— One betrays, the other doesn’t: betrayer free, other three years
— Both do not betray: one year each

Properties: 2-player, discrete, finite,
deterministic, negative-sum, simultaneous

14

Why Do These Properties Matter?

Categorize games in different groups

* Can focus on
understanding/analyzing/“solving”
particular groups

* Abstract away details and see common
patterns

* Understand how to produce a “good”
overall outcome

————

15

How Does it Connect To Learning?

Obviously, learn how to play effectively

Also: suppose the players don’t know something
* Ex: the reward / utility function is not known
* Common for real-world situations

— How do we choose actions?
* Model the reward function and learn it
— Try out actions and observe the rewards

For now, we will first consider the game theory, where we know the definition of the
game, and try to build systems to solve them.

Later in reinforcement learning lectures, we are going to consider the case there are
some unknown aspects of the game, and we will try to learn these unknown aspects
by trying out actions and observing the rewards, so that we can solve the game.

16

Break & Quiz

Q 1.1: Which of these are zero-sum games?
(i) Rock, Paper, Scissors
(ii) Prisoner’s Dilemma

A. Neither

B. (i) but not (ii)
C. (ii) but not (i)
D. Both

17

Break & Quiz

Q 1.1: Which of these are zero-sum games?
(i) Rock, Paper, Scissors
(ii) Prisoner’s Dilemma

A. Neither

B. (i) but not (ii)
C. (ii) but not (i)
D. Both

18

Break & Quiz

Q 1.1: Which of these are zero-sum games?
(i) Rock, Paper, Scissors
(ii) Prisoner’s Dilemma

A. Neither (Rock, Paper, Scissors is, clearly)

B. (i) but not (ii)

C. (ii) but not (i) (Rock, Paper, Scissors is, clearly)

D. Both (Prisoner’s Dilemma is not, recall the normal form matrix)

19

Break & Quiz

Q 1.2: Which of these is false?

A. Monopoly is not deterministic.

C. Chess doesn’t have perfect information.
D. Prisoner’s dilemma is a simultaneous game.

B. A game can be sequential but not have perfect information.

20

Break & Quiz

Q 1.2: Which of these is false?

A. Monopoly is not deterministic.

C. Chess doesn’t have perfect information.
D. Prisoner’s dilemma is a simultaneous game.

B. A game can be sequential but not have perfect information.

21

Break & Quiz

Q 1.2: Which of these is false?

A. Monopoly is not deterministic. (True: you roll dice.)

B. A game can be sequential but not have perfect information. (True,
like poker.)

C. Chess doesn’t have perfect information.

D. Prisoner’s dilemma is a simultaneous game. (Also true: single
round, no turns.)

22

Sequential Games

Games with multiple moves

* Represent with a tree
* Perform search over the tree

[~

Wiki

70,0

T2

T @31)

23

[I-Nim: Example Sequential Game

2 piles of sticks, each with 2 sticks.

* Each player takes one or more sticks from pile

* Take last stick: lose G

* Two players: the first player is called Max and the other Min
* |f Max wins, the score is +1; otherwise -1

* Min’s score is —Max’s

* Use Max’s as the score of the game

There are two players. They take turns to make a move. The first player makes the
first move, and then the second player makes a move, and then the first player, and
so on.

Since the two players’ scores sum up to 0, when we describe the outcome of the
game, we can just mention one player’s score. The other player’s score is just the
negation. The convention is to use the first player’s score. We just define the score of
the game to be that of the first player.

So the first player wants to maximize the score of the game: that’s why we call the

first player Max. The second player wants to maximize its own score, that is to
minimize the score of the game, so we call the second player Min.

24

Game Trajectory
(ii, ii)

25

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)

26

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)
Min takes two sticks from the other pile

(il-)

27

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)
Min takes two sticks from the other pile

(il-)
Max takes the last stick

(-I-)

Max gets score -1

28

Game tree for II-Nim

Two playerS: M J who is to move
Max and Min (iiii) ™= at this state

Max wants the largest score
Convention: scqre’ is w.r.t._the first Min wants the smallest score
layer Max. Min’s score = — Max

Two players:
Max and Min

Symmetry

(iii) = (ii i)

Game tree for II-Nim

\

i i) X |

(i ii) Min (- i) Min

Max wants the largest score
Min wants the smallest score

Two players:
Max and Min

/

Game tree for II-Nim

i i) X |

(i ii) Min

(- ii) Max

\

(- i) Min

N~

(i i) Max

(- i) Max

Max wants the largest score
Min wants the smallest score

Game tree for [I-Nim
Two players:

Max and Min (i i) Max -
P e
(- ii)) Max (i i) Max (- i) Max (- i) Max (- -) Max

+1

Max wants the largest score
Min wants the smallest score

Game tree for [I-Nim
Two players:

Max and Min (i i) Max -
/(iii) < \ - ii/) Min\
(- ii)) Max (i i) Max (- i) Max (- i) Max (- -) Max

\ +1
(- i) Min Ee) Min
-1

Max wants the largest score
Min wants the smallest score

Game tree for [I-Nim
Two players:

Max and Min (il 1)) M |
\
(i_ii) Min (- ii/) Min\
(- ii) Ma"/ (i imﬂ (- j) Max : 1_) Max
(-_i) Min (-}i" (-_i) Min
-1

Max wants the largest score
Min wants the smallest score

Game tree for [I-Nim
Two players:

Max and Min (i if) Max _
\
(i_ii) Min (- ii/) Min\
(- ii) Ma"/ (i imﬂ (- j) Max : 1_) Max
(- i) Min (1}m (- j)Min (1 _y Min

Max wants the largest score
Min wants the smallest score

Game tree for [I-Nim
Two players:

Max and Min (i iiy Max_|
\
(i_ii) Min (- ii/) Min\
(- i) Max/ (i imax (- j) Max g: 1_) Max
(- i) Min (_}in (- jyMin | [_yMin (-) Min
1 1 3

Max wants the largest score
Min wants the smallest score

Game tree for [I-Nim
Two players:

Max and Min (i i) Max -
/(iii) < \ - i7 Min\
(- ii)) Max (i i) Max (- i) Max (- i) Max (- -) Max
\ +1
(- i) Min Ee) Min (- i) Min (- -) Min (- -) Min
-1 -1 1

(i) Max
+1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:

Max and Min (ii ii) Max \
/(i i) Min __ (-_ii) Min\
(- ii)) Max (i i) Max (- i) Max (- i) Max (- -) Max
\ -
(- i) Min Ee) Min (- i) Min -) Min (- -) Min
-1 1

(=is) Max (c5) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Minimax Value

Also called game-theoretic value.
* Score of terminal node if both players play optimally.
 Computed bottom up; basically search

* Let’s see this for example game

Game tree for II-Nim

Two players:

Max and Min (ii ii) Max \
/(i i) Min __ (-_ii) Min\
(- ii)) Max (i i) Max (- i) Max (- i) Max (- -) Max
\ -
(- i) Min Ee) Min (- i) Min -) Min (- -) Min
-1 1

(=is) Max (c5) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:

Max and Min y MK \
/(i i) Min\\ (-_ii) Min\
(- ii)) Max (i i) Max (- i) Max (- i) Max (- -) Max
+1
(- pMin [} (. .)Min QM_Q _ _yMin (- -)Min
-1 1

(=is) Max (c5) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:

Max and Min (i i) Max -
(i iy (-_ii) Min\
(- ii)) Max (i i) Max (- i) Max (-) Max) (- -) Max
+1

(- i) Min Es) Min (- i) Min (- -) Min (- -) Min
+1 -1 +1 ol -1
(- -) Max 3 Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:

Max and Min (il 1)) M |
—
(i_ii) Min ((- ii) Min
(- ii)) Max (i i) Max (- i) Max (- i) Max (- -) Max
+1 -1 -1 +1

(- i) Min Es) Min (- i) Min (- -) Min (- -) Min
+1 -1 +1 ol -1
(=is) Max (c5) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:

Max and Min (il 1) M. |
(i_ii) Min (- ji) Min
/ \\ -1 / \
(- ii)) Max (i i) Max (- i) Max (- i) Max (- -) Max
+1 -1 -1 +1

(- i) Min Ee) Min (- i) Min (- -) Min (- -) Min
+1 -1 +1 il -1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:
Max and Min

\

(i ii) Min (- i) Min
TN~ TS
(- ii) Max\ (|1|) Max (:l i) Max (:l i) Max (_1_) Max
+ - = +

(- i) Min Ee) Min (- i) Min (- -) Min (- -) Min
+1 -1 +1 -1 -1
(=) Max (_ _) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for lI-Nim
Two players:
Max and Min i i) S |
(i ii) Min The first player always loses, if the
/“r second nlays optimally!
(- ii)) Max (i i) Max (- i) Max (- i) Max (- -) Max
+1 -1 -1 +1
(- i) Min Ee) Min (- i) Min (- -) Min (- -) Min
+1 -1 +1 -1 -1
(=) Max (_ _) Max
+1 +1 Max wants the largest score
Min wants the smallest score

Interesting conclusion: the first play will always lose if the second player plays optimally. From the rule of the game we don’t immediately see who will win. However, with
the game tree and the game-theoretical value, we can obtain the highly non-trivial conclusion that the first play will always lose if the second player plays optimally.

Two other important implications:
1. We can compute the game-theoretical values easily from bottom up.
2. Once we have the values of the children of a current state, then we know which is the best action. That is, to play the game, all we need is to compute the values of

the current state.

Our Approach So Far
We find the minimax value/strategy bottom up

Minimax value: score of terminal node when both players play
optimally

— Max’s turn, take max of children
— Min’s turn, take min of children

* Can implement this as depth-first search: minimax algorithm

The bottom-up approach needs to have the entire tree. This requires too large space

complexity. We can then use the DFS idea to address this, which leads to the minimax
algo.

29

Minimax Algorithm

function Max-Value(s) Time compIeXIty?
inputs: o O(bm)

s: current state in game, Max about to play .
output: best-score (for Max) available from s Space com pleXIty?

if (s is a terminal state) ° O(bm)

then return (terminal value of s)

else

a :=—infinity

for each s’ in Succ(s)
o :=max(a, Min-value(s’))
return a

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state)
then return (terminal value of s)
else
B := infinity
for each s’ in Succs(s)
B :=min(B, Max-value(s’))

return

The minimax algorithm replaces the bottom-up computation with recursion.

The key idea of recursion: we assume that smaller problems are already solved, and we want to use the solutions for the smaller problems to solve the current problem.
Here, the smaller problems are the values of the children, and the current problem is the value of the current state.

On a state where Max is going to play:
1. If it’s terminal then we can return the terminal score which is the value by definition

2. If not terminal, just take the maximum of the values of the children (here we pretend that we have already solve the smaller problems of computing the values of the
children)

This is the Max-Value function. Similar for the Min-Value function that computes the value of a state where Min is going to play.

Minimax algorithm in execution

Minimax algorithm in execution

Minimax algorithm in execution

max
min

max

The execution on the
terminal nodes is omitted.

Minimax algorithm in execution

max

min

Minimax algorithm in execution

max

min

Minimax algorithm in execution

Minimax algorithm in execution

Minimax algorithm in execution

max
min
max
min

Minimax algorithm in execution

max
min
max
min

Minimax algorithm in execution

Minimax algorithm in execution

Minimax algorithm in execution

max

min

Minimax With Heuristics

Note that long games are yield huge computation

* To deal with this: limit d for the search depth

* Q: What to do at depth d, but no termination yet?
— A: Use a heuristic evaluation function e(x)

The time complexity of the minimax algo is not good: exponential in m, the number
of steps.

We can address this by limiting the search depth, similar to what we have done in
iterative deepening. That is, if we want to compute the value of a current state, we

only go down the current state for depth d.

The question is: what if we get to a node at depth d but it’s not a terminal state?
What value should we return? We can just use some estimation.

42

Minimax with Heuristics

function Max-Value(s, d)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if (s is a terminal state or d==0)
then return (terminal/estimated value of s)

else
o :=—infinity
for each s’ in Succ(s)
a := max(a, Min-value(s’, d-1))
return o

function Min-Value(s, d)
output: best-score (for Min) available from s

if (s is a terminal state or d==0)
then return (terminal/estimated value of s)

else
B := infinity
for each s’ in Succs(s)
B :=min(B, Max-value(s’, d-1))
return B

The modified minimax:
1. We keep a depth budget count. Each time we go down one step in the recursion, we discount the depth budget by 1
2. We stop at terminal state or when we exhausted the depth budget along the search path.

Minimax with Heuristics

Min and Max Combined:

function MINIMAX(, d) returns an estimate of x’s utility value
inputs: x, current state in game
d, an upper bound on the search depth

if = is a terminal state then return Max’s payoff at 1
else if ¢ = 0 then return ¢/(x)
else if it is Max’s move at x then

return max{MINIMAX(y, d—1) : y is a child of x}
else return min{ MINIMAX(y, ¢—1) : y is a child of x}

Credit: Dana Nau

We can combine the Max-Value and Min-Value functions into one function, since they are very similar.

Heuristic Evaluation Functions

* e(x) often a weighted sum of features (like our linear models)
e(z) = wy f1(z) + wafo(z) + ... + wy fu(z)

* Chess example: f(x) = difference between number of white
and black, with i ranging over piece types.
— Set weights according to piece importance

— E.g., 1(# white pawns - # black pawns) + 3(#white knights - # black
knights)

A common way to design the heuristic function: linear model, which is a weighted
sum of some designed features.

The features are typically some intuitive important information about the state, like
the difference of white and black pieces in Chess.
The weights are set according to the importance of the features.

43

Summary

* Intro to game theory
— Characterize games by various properties

* Sequential games
— Game trees, game-theoretic/minimax value, minimax algo

* Improving our search
— Using heuristics

44

Acknowledgements: Developed from materials by Yingyu
Liang (University of Wisconsin), inspired by Haifeng Xu (UVA).

45

	CS540-Games1-WithQuizNote-first-half.pdf
	CS540-Games1-WithQuizNote-second-half.pdf

