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Let’s begin with the relation between Games and what we have learned so far. 

We are going to see there are more structure in games. For example, the way we 
collect the data. 
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Reward: can be viewed as the negation of the loss. Note that different from 
supervised learning, here previous actions can have an impact on the world and 
affect the actions and observations later on. That is, the agent has some influence on 
the world.  
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We further model the interactions between multiple agents. We assume that each 
player/agent has its own reward function and wants to maximize that. However, the 
reward function of any player depends on all the actions of all the players and the 
world. So the reward function captures the interaction. 

What’s the different between the world and a player? Players are rational or selfish or 
strategic. They want to maximize their own rewards. The world is not strategic: 
though its state can affect the rewards but it doesn’t have or want to maximize its 
own reward. 
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We consider a few aspects of games. Then we can divide the various kinds of games 
to different categories. Then we can focus on one category, build theoretical 
frameworks, design methods and build systems that can solve the game. 

We will go over these properties one by one. Some of them are simple and self-
explaining, some of them need more explanation.
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“Finite or infinite” refers to the turns of playing the game. 
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The sum refers to the sum of the rewards of all the players. 

In many games with two players, if one player wins, the other loses. We use zero-sum 
to model such games. That is, the reward of one player is the negation of the reward 
for the other player. 

We can have other types of games with positive or negative sum of rewards. For 
example, prisoner’s dilemma is a famous game with negative sum. We will get to that 
latter. 
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In sequential games, the players take turns to make a move. For example, Chess. 

In simultaneous games, all players make moves at the same time, like Rock Paper 
Scissors. Because the players are simultaneously making moves, they do not have 
information about others’ moves. 

In sequential games, the players may have perfect information, knowing all moves of 
all players up to now. For example, in Chess. There are also games, when the players 
may not have all the information, for example, in most poker games. 
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For now, we will first consider the game theory, where we know the definition of the 
game, and try to build systems to solve them.

Later in reinforcement learning lectures, we are going to consider the case there are 
some unknown aspects of the game, and we will try to learn these unknown aspects 
by trying out actions and observing the rewards, so that we can solve the game.
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There are two players. They take turns to make a move. The first player makes the 
first move, and then the second player makes a move, and then the first player, and 
so on. 

Since the two players’ scores sum up to 0, when we describe the outcome of the 
game, we can just mention one player’s score. The other player’s score is just the 
negation. The convention is to use the first player’s score. We just define the score of 
the game to be that of the first player. 

So the first player wants to maximize the score of the game: that’s why we call the 
first player Max. The second player wants to maximize its own score, that is to 
minimize the score of the game, so we call the second player Min. 
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Interesting conclusion: the first play will always lose if the second player plays optimally. From the  rule of the game we don’t immediately see who will win. However, with 
the game tree and the game-theoretical value, we can obtain the highly non-trivial conclusion that the first play will always lose if the second player plays optimally. 


Two other important implications:

1. We can compute the game-theoretical values easily from bottom up.

2. Once we have the values of the children of a current state, then we know  which is the best action. That is, to play the game, all we need is to compute the values  of 
the current state. 




The  bottom-up approach needs to have  the entire tree. This requires too large space 
complexity. We can then use the DFS idea to address this, which leads to the minimax 
algo. 
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The  minimax algorithm replaces the bottom-up computation with recursion. 


The key idea of recursion: we assume that smaller problems  are already solved, and we want to use the solutions for the  smaller problems to solve  the current problem. 

Here,  the smaller problems are the values of the children,  and the  current problem is the  value of the current state. 


On a state where Max is going to play:  

1. If it’s terminal then we can return the  terminal score which is the value by definition

2. If not terminal, just take the maximum of the values of the children (here we pretend that we have already solve the smaller problems of computing the values of the 
children)


This is the Max-Value function. Similar for the Min-Value  function  that computes the value  of a state where Min is  going to play. 




























The time complexity of the minimax algo is not good: exponential in m, the number 
of steps.  

We can address this  by limiting the search depth, similar to what we have done in 
iterative deepening. That is, if we want to compute the value  of a current state, we 
only go down the current state for depth d. 

The question is: what if we get to a node at depth d but it’s not a terminal state? 
What value should we return? We can just use some estimation. 
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The modified minimax:

1. We keep a depth budget count. Each time we go down one step in the recursion, we discount the depth budget by 1

2. We stop at terminal state or when we exhausted the depth budget along the search path. 




We can combine the Max-Value and  Min-Value functions into one function, since they are very similar. 




A common way to design the heuristic function: linear model,  which is a weighted 
sum of some designed features. 

The features are typically some intuitive important information about the state, like 
the difference of white and black pieces in Chess. 
The weights are set according to the importance of the features. 
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