O R AT e N R T e e U}
S T R Y P s S

........

CS 540 Introduction to Artificial Intelligence
Game |

Yingyu Liang
University of Wisconsin-Madison
Nov 23, 2021

Based on slides by Fred Sala

Outline

* Intro to game theory
— Characterize games by various properties

e Sequential games

— Game trees, game-theoretic/minimax value, minimax algo

* Improving our search
— Using heuristics

So Far in The Course

We looked at techniques:

* Unsupervised: See data, do something with
it. Unstructured.

e Supervised: Train a model to make
predictions. More structure.
— Training: as taking actions to get a reward

 Games: Much more structure.

More General Model

Suppose we have an agent interacting with the world

() >
Actions
< .
Observations

Agent

* Agent receives a reward based on state of the world
— Goal: maximize reward / utility ($$S)
— Note: now data consists of actions & observations
— Setup for decision theory, reinforcement learning, planning

Games: Multiple Agents

Games setup: multiple agents

e—

Player 1

— Now: interactions between agents
— Still want to maximize utility

ThN

Player 3

— Strategic decision making.

Player 2

Modeling Games: Properties

Let’s work through properties of games
* Number of agents/players

* State & action spaces: discrete or continuous
* Finite or infinite

* Deterministic or random

* Sum: zero or positive or negative
e Sequential or simultaneous

Property 1: Number of players

Pretty clear idea: 1 or more players
* Usually interested in > 2 players
e Typically a finite number of players

Property 2: Discrete or Continuous

Let’s work through properties of games
* Recall the world. It is in a particular state, from a set of states
e Similarly, the actions the player takes are from an action space

* How big are these spaces? Finite, countable, uncountable?

Property 3: Finite or Infinite

Let’s work through properties of games

* Most real-world games finite
* Lots of single-turn games; end immediately
— Ex: rock/paper/scissors

 Other games’ rules (state & action spaces) enforce

termination
— Ex: chess under FIDE rules ends in at most 8848 moves

* Infinite example: pick integers. First player to play a 5 loses

Property 4: Deterministic or Random

Let’s work through properties of games

* |sthere chance in the game?
* Note: randomness enters in different ways

Property 5: Sums

Let’s work through properties of games

* Sum: zero or positive or negative
e Zero sum: for one player to win, the other has to lose

— No “value” created e
Red

A B C

-30 10 -20

1 30 -10 20

10 -20 20

2 -10 20 -20

* Can have other types of games: positive sum, negative sum.

— Example: prisoner’s dilemma

Property 6: Sequential or Simultaneous

Let’s work through properties of games

e Sequential or simultaneous

* Simultaneous: all players take action at the same
time

* Sequential: take turns

e Simultaneous: players do not have information
of others’ moves. Ex: RPS

e Sequential: may or may not have perfect
information (knowledge of all moves so far)

Examples

Let’s apply this to examples:

1. Chess: 2-player, discrete, finite,
deterministic, zero-sum, sequential
(perfect information)

2. RPS: 2-player, discrete, finite,
deterministic, zero-sum, simultaneous

3. Mario Kart: 4-player, continuous, infinite
(?), random, zero-sum, simultaneous

Another Example: Prisoner’s Dilemma

Famous example from the ‘50s.

Two prisoners A & B. Can choose to betray the other or not.

— A and B both betray, each of them serves two years in prison
— One betrays, the other doesn’t: betrayer free, other three years
— Both do not betray: one year each

Properties: 2-player, discrete, finite,
deterministic, negative-sum, simultaneous

Why Do These Properties Matter?

Categorize games in different groups

e Can focus on
understanding/analyzing/“solving”
particular groups

* Abstract away details and see common
patterns

* Understand how to produce a “good”
overall outcome

How Does it Connect To Learning?

Obviously, learn how to play effectively

Also: suppose the players don’t know something
* Ex:the reward / utility function is not known

e Common for real-world situations

— How do we choose actions?

 Model the reward function and learn it
— Try out actions and observe the rewards

Sequential Games

Games with multiple moves

* Represent with a tree
 Perform search over the tree

II-Nim: Example Sequential Game

2 piles of sticks, each with 2 sticks.

Each player takes one or more sticks from pile
Take last stick: lose -

Two players: Max and Min

If Max wins, the score is +1; otherwise -1
Min’s score is —Max’s

Use Max’s as the score of the game

Game Trajectory
(ii, ii)

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)

Min takes two sticks from the other pile

(ir_)

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)

Min takes two sticks from the other pile

(ir_)
Max takes the last stick

(_I_)

Max gets score -1

Game tree for II-Nim

Two players: who 1s to move
Max and Min (i i) MAX—T——" 4i this state |

Max wants the largest score
Convention: score 1s w.r.t. _the first Min wants the smallest score
layer Max. Min’s score = — Max

Game tree for [I-Nim
Two players:

Max and Min (}“) Max\

Symmetry .y Min _ iy Min
(iif) = (ii 1) i -

Max wants the largest score
Min wants the smallest score

Game tree for [I-Nim
Two players:

Max and Min (}“) Max\

i i Min (_ “) Min

(_ ”) Max (I I) Max (_ I) Max

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim
Two players:

Max and Min (}n) Max\

Il Min (- ii) Min

T~

(- ii) Max (i i) Max (- i) Max (- i) Max (- -) Max

+1

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim
Two players:

Max and Min (}n) Max\

Il Min (- ii) Min

T~

(- ii) Max (i i) Max (- i) Max (- i) Max (- -) Max

N "

(_ I) Min (_ _) Min
-1

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim
Two players:

Max and Min (}n) Max\

Il Min (- i) Min\
}I) Max\ (i) Max (- i) Max (- i) Max (_1_) Max
+
(- iyMn [Min | [j)Min

-1

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim
Two players:

Max and Min (}n) Max\

Il Min (- i) Min\
} ! Max\ LA (i) Max | [(--) Max
+1
_ = Min _ \ Min _ = Min _ y Min
(-_i) (- -) (- i) (1)
-1 -

Max wants the largest score
Min wants the smallest score

Two players:

Game tree for II-Nim

Max and Min (}n) Max\
Il Min (- i) Min\
(- ii) Max (i i) Max (- i) Max (- i) Max (- -) Max
/ \ 1
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
-1 -1 1

Max wants the largest score
Min wants the smallest score

Two players:

Game tree for II-Nim

Max and Min (}n) Max\
Il Min (- i) Min\
(- ii) Max (i i) Max (- i) Max (- i) Max (- -) Max
/ \ 1
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
-1 -1 1

(- -) Max
+1 Max wants the largest score

Min wants the smallest score

Two players:

Game tree for II-Nim

Max and Min (}n) Max\
Il Min (- i) Min\
(- ii) Max (i i) Max (- i) Max (- i) Max (- -) Max
/ \ 1
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
-1 -1 1

(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Minimax Value

Also called game-theoretic value.

e Score of terminal node if both players play optimally.

* Computed bottom up; basically search

()
&
(q0)
o]0]
@
o
&
q0)
X
()]
S
O
G
2
-
)
Q
)
0p)
IS
o+
Q
—
[]

Two players:

Game tree for II-Nim

Max and Min (}n) Max\
Il Min (- i) Min\
(- ii) Max (i i) Max (- i) Max (- i) Max (- -) Max
/ \ 1
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
-1 -1 1

(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim
Two players:

Max and Min y Max\

/(I) Mm\ (- i7 Min\
(- ii) Max (i i) Max (- i) Max (- i) Max 21_) Max
(-_i) Min <-h‘" (- i) "D (- o) Min (- -) Min
1 1 1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:
Max and Min

(}”) Max\

(- ii) Min

N

(- -) Max

+1

) - i) 'V'Q
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
+1 -1 +1 -1 -1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:
Max and Min (i ii) Max

/(;}i) Max\ (i i) Max (- i) Max (- i) Max (_1_) Max
+1 -1 -1 +

(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min

+1 -1 +1 -1 1

(- -) Max (- -) Max

+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:
Max and Min

(i ii) Min (- ii) Min
/(_41” Max\ (i) Max (- i) Max (- i) Max (_1_) Max
+1 -1 -1 +
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
+1 -1 +1 -1 1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:

Max and Min (ii_ii) Max\
| i Min (- ii) Min
-1 / \
(- ii) Max (i i) Max (- i) Max (- i) Max (- -) Max
/ \ +1 -1 -1 +1

(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
+1 -1 +1 -1 1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:
Max and Min

/f;ﬂll) Max
(_ I) Min (
+1 -1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Our Approach So Far

We find the minimax value/strategy bottom up

* Minimax value: score of terminal node when both players play
optimally
— Max’s turn, take max of children
— Min’s turn, take min of children

 Can implement this as depth-first search: minimax algorithm

Minimax Algorithm

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if (s is a terminal state)
then return (terminal value of s)

else
a :=—infinity
for each s’ in Succ(s)
a := max(a, Min-value(s’))
return o

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state)
then return (terminal value of s)
else
B :=infinity
for each s’ in Succs(s)
B :=min(B, Max-value(s’))

return

Time complexity?
° O(bm)
Space complexity?
e O(bm)

Minimax algorithm in execution

max GLOO@

'

Minimax algorithm in execution

max

Minimax algorithm in execution

max GLOO@

'

max E G

min
The execution on the
terminal nodes is omitted.

Minimax algorithm in execution

max GLOO@

'

Minimax algorithm in execution

max a=100 @

'

Minimax algorithm in execution

max a=100 @

'

Minimax algorithm in execution

max a=100 @
!

W
L)
I
—
N
o

Minimax algorithm in execution

max a=100 @
!

W
ki
N
o

Minimax algorithm in execution

max a=100 @
!

<> 5 B
" ESEOEH @ o
ma &es

Minimax algorithm in execution

max a=100 @
!

Minimax algorithm in execution

max a=100 @
!

Minimax algorithm in execution

o= 100

g,

min

Minimax algorithm in execution

o= 100

- oy

min

Minimax With Heuristics

Note that long games are yield huge computation

* To deal with this: limit d for the search depth
* Q: What to do at depth d, but no termination yet?

— A: Use a heuristic evaluation function e(x)

Minimax with Heuristics

function Max-Value(s, d)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if (s is a terminal state or d==0)
then return (terminal/estimated value of s)

else
a :=—infinity
for each s’ in Succ(s)
a := max(a, Min-value(s’, d-1))
return a

function Min-Value(s, d)
output: best-score (for Min) available from s

if (s is a terminal state or d==0)
then return (terminal/estimated value of s)
else
B :=infinity
for each s’ in Succs(s)
B :=min(B, Max-value(s’, d-1))

return

Minimax with Heuristics

Min and Max Combined:

function MINIMAX (7, d) returns an estimate of x’s utility value
inputs: x, current state in game
d, an upper bound on the search depth

if = is a terminal state then return Max’s payoff at =
else if ¢ = (then return ¢(x)
else if it is Max’s move at x then

return max{MINIMAX(y,d—1) : y is a child of x}
else return min{MINIMAX(y,d—1) : y is a child of x}

Credit: Dana Nau

Heuristic Evaluation Functions

* e(x) often a weighted sum of features (like our linear models)
e(x) = wifi(z) + wafol@) + ... + wy fulz)

* Chess example: f(x) = difference between number of white
and black, with i ranging over piece types.
— Set weights according to piece importance

— E.g., 1(# white pawns - # black pawns) + 3(#white knights - # black
knights)

Summary

* Intro to game theory
— Characterize games by various properties

e Sequential games

— Game trees, game-theoretic/minimax value, minimax algo

* Improving our search
— Using heuristics

Acknowledgements: Developed from materials by Yingyu
Liang (University of Wisconsin), inspired by Haifeng Xu (UVA).

