O R AT e N R T e e U}
S T R Y P s S

........

CS 540 Introduction to Artificial Intelligence
Game ll

Yingyu Liang
University of Wisconsin-Madison
Nov 30, 2021

Based on slides by Fred Sala

Outline

* Review of game theory basics

— Properties, sequential games
* Speeding up sequential game search
— Heuristics, pruning, random search

* Simultaneous Games

— Normal form, strategies, dominance, Nash equilibrium

Review of Games: Multiple Agents

Games setup: multiple agents

RCEN

Player 3
Player 1 @
— Now: interactions between agents %
— Still want to maximize utility Player 2

— Strategic decision making.

Review of Games: Properties

Let’s work through properties of games
* Number of agents/players

* State & action spaces: discrete or continuous
* Finite or infinite

* Deterministic or random

* Sum: zero or positive or negative
e Sequential or simultaneous

Sequential Games

Games with multiple moves

* Represent with a tree
* Find strategies: perform search over the tree

II-Nim: Example Sequential Game

2 piles of sticks, each with 2 sticks.

Each player takes one or more sticks from pile
Take last stick: lose -

Two players: Max and Min

If Max wins, the score is +1; otherwise -1
Min’s score is —Max’s

Use Max’s as the score of the game

Two players:

Game tree for II-Nim

Max and Min (}n) Max\
Il Min (- i) Min\
(- ii) Max (i i) Max (- i) Max (- i) Max (- -) Max
/ \ 1
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
-1 -1 1

(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim
Two players:

Max and Min y Max\

/(I) Mm\ (- i7 Min\
(- ii) Max (i i) Max (- i) Max (- i) Max 21_) Max
(-_i) Min <-h‘" (- i) "D (- o) Min (- -) Min
1 1 1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:
Max and Min

(}”) Max\

(- ii) Min

N

(- -) Max

+1

) - i) 'V'Q
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
+1 -1 +1 -1 -1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:
Max and Min (i ii) Max

/(;}i) Max\ (i i) Max (- i) Max (- i) Max (_1_) Max
+1 -1 -1 +

(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min

+1 -1 +1 -1 1

(- -) Max (- -) Max

+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:
Max and Min

(i ii) Min (- ii) Min
/(_41” Max\ (i) Max (- i) Max (- i) Max (_1_) Max
+1 -1 -1 +
(_ I) Min (_ _) Min (_ I) Min (_ _) Min (_ _) Min
+1 -1 +1 -1 1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

Two players:
Max and Min

/f;ﬂll) Max
(_ I) Min (
+1 -1
(- -) Max (- -) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Minimax Algorithm

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if (s is a terminal state)
then return (terminal value of s)

else
a :=—infinity
for each s’ in Succ(s)
a := max(a, Min-value(s’))
return o

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state)
then return (terminal value of s)
else
B :=infinity
for each s’ in Succs(s)
B :=min(B, Max-value(s’))

return

Time complexity?
° O(bm)
Space complexity?
e O(bm)

Minimax algorithm in execution

max a=-oo<S>
oS (@
- GEDFOEO®

min C1500)Ca00)

Minimax algorithm in execution

max

min

max

min

Minimax algorithm in execution

max a=-oo@
max (2000 Caoo DCazo)z (6]

min C1500)Ca00)

The execution on the
terminal nodes is omitted.

Minimax algorithm in execution

max OF-OO@
max o000 Caoo)Ca20 0 Go) (6

min C1500)Ca00)

Minimax algorithm in execution

max a=100 @

'

min B=100 m B
max (600 Caoo Dz D) (8
min @ ﬂb

Minimax algorithm in execution

max a=100 @

'

min m B B=+w0
max Ca60) Cao0 DCa20 0D (8
min @ ﬂb

Minimax algorithm in execution

mflx a 100(?
min S
m GOEOGEDO (S

nin >

W
L)
I
—
N
o

Minimax algorithm in execution

mflx a 100(?
min S
m GOEOGEDOC (S

nin E> T

W
kil
N
o

Minimax algorithm in execution

max a=100 @
L e S
m (GO EDOR @) -
min @ ﬂb

W
kil
N
o

Minimax algorithm in execution

max a=100 @
: '
min m B =20

m GOBOGEDC a
min ®$

Minimax algorithm in execution

o= 100

g,

Minimax algorithm in execution

o= 100

- A,

Can We Do Better?

One downside: we had to examine the entire tree

An idea to speed things up: pruning

 @Goal: want the same minimax value, but faster

* We can get rid of bad branches:
when we are sure that pruning them
doesn’t affect the minimax value

Minimax algorithm in execution

mflx a 100(?
min S
m GOEOGEDOC (S

nin E> T

W
kil
N
o

Alpha-beta pruning

function Max-Value (s,a,B)
inputs:

s: current state in game, Max about to play

a: best score éhighest) for Max along path to s

B: best score (lowest) for Min along path to s
output: min(B , best-score (for Max) available from s)

if (s is aterminal state)
then return (terminal value of s)
else for each s’ in Succ(s)
o :=max(a, Min-value(s’,a,B?)
if (o> B)thenreturn B /* alpha pruning */
return a

function Min-Value(s,a,B)
output: max(a , best-score (for Min) available from s)

if (s is aterminal state)
then return (terminal value of s)
else for each s’ in Succs(s)
B := min(B, Max-value(s’,a,B))
if (o > B) then return a /* beta pruning */
return B

Starting from the root:
Max-Value(root, -oo, +c0)

Alpha-Beta Pruning

How effective is alpha-beta pruning?

* Depends on the order of successors!
— Best case, the #of nodes to search is O(b™/2)

— Happens when each player's best move is the leftmost child.
— The worst case is no pruning at all.

* In DeepBlue, the average branching factor was about 6
with alpha-beta instead of 35-40 without.

Minimax With Heuristics

Note that long games are yield huge computation

* To deal with this: limit d for the search depth
* Q: What to do at depth d, but no termination yet?

— A: Use a heuristic evaluation function e(x)

function MINIMAX(z, d) returns an estimate of x’s utility value
inputs: x, current state in game
d, an upper bound on the search depth

if = is a terminal state then return Max’s payoff at =
else if ¢ = (then return ¢(x)
else if it is Max’s move at x then

return max{MINIMAX(y,d—1) : y is a child of x}
else return min{ MINIMAX(y,d—1) : y is a child of x}

Credit: Dana Nau

Heuristic Evaluation Functions

* e(x) often a weighted sum of features (like our linear models)
e(x) = wifi(z) + wafol@) + ... + wy fulz)

* Chess example: f(x) = difference between number of white
and black, with i ranging over piece types.
— Set weights according to piece importance

— E.g., 1(# white pawns - # black pawns) + 3(#white knights - # black
knights)

Going Further

 Monte Carlo tree search (MCTS)
— Uses random sampling of the search space
— Choose some children (heuristics to figure out #)
— Record results, use for future play

bbbbbbbbbbbbbbbbbbbbbbbb

— Self-play e e e e
| e |leee || %% eo°°
i Y e o o i i

(]

® AI p h a G O a n d Ot h e r b ig re S u |tS ! The agent (Black) learns to capture walls and corners in the early game

Another Example: Prisoner’s Dilemma

Famous example from the ‘50s.

Two prisoners A & B. Can choose to betray the other or not.

— A and B both betray, each of them serves two years in prison
— One betrays, the other doesn’t: betrayer free, other three years
— Both do not betray: one year each

Properties: 2-player, discrete, finite,
deterministic, negative-sum, simultaneous

Simultaneous Games

The players make moves simultaneously
* Can express reward with a simple diagram
e Ex: for prisoner’s dilemma

Player 2
Stay silent Betray
Player 1
Stay silent -1, -1 -3,0

Betray 0, -3 -2, -2

Normal Form

Mathematical description of simult. games. Has:

* n players{1,2,...,n}

* Playeristrategy a.from A. All: a =(a,, a,, ..., a,)
* Player i gets rewards u;(a) for any outcome

— Note: reward depends on other players!

» Setting: all of these spaces, rewards are known

Example of Normal Form

Ex: Prisoner’s Dilemma

Player 2
Stay silent Betray
Player 1
Stay silent -1, -1 -3,0
Betray 0, -3 -2, -2

e 2 players, 2 actions: yields 2x2 matrix
» Strategies: {Stay silent, betray} (i.e, binary)
 Rewards: {0,-1,-2,-3}

Dominant Strategies

Let’s analyze such games. Some strategies are better

* Dominant strategy: if a; better than a; regardless of what
other players do, a; is dominant

e |.e,
ui(ag,a_;) > ui(a;, a_;)Va, # a; and Va_;

t

All of the other entries
of a excluding i

 Don’t always exist!

Dominant Strategies Example

Back to Prisoner’s Dilemma
 Examine all the entries: betray dominates
* Check:

Player 2
Stay silent Betray
Player 1
Stay silent -1, -1 -3,0
Betray 0, -3 -2, -2

* Note: normal form helps locate dominant/dominated
strategies.

Equilibrium

a* is an equilibrium if all the players do not have an
incentive to unilaterally deviate

’U,Z'(CL;F,CI,*_,I:) Z ui(aiya*_i> va'i = AZ
* All players dominant strategies -> equilibrium

 Converse doesn’t hold (don’t need dominant
strategies to get an equilibrium)

Pure and Mixed Strategies

So far, all our strategies are deterministic: “pure”

* Take a particular action, no randomness

Can also randomize actions: “mixed”

* Assign probabilities x; to each action

ri(a;), where Z zi(a;) = 1,x;(a;) >0
a; EA;

* Note: have to now consider expected rewards

Nash Equilibrium

Consider the mixed strategy x* = (x,*, ..., x,,*)
* Thisis a Nash equilibrium if

wi(x;,x" ;) > u,—(:z:if’zr*l—) Va; € A\AI.W c{l1,2,...,n}
Better than doing Space of
anything else, probability
“best response” distributions

* Intuition: nobody can increase expected reward by
changing only their own strategy. A type of solution!

Properties of Nash Equilibrium
Major result: (Nash 1951)

* Every finite game has at least one Nash equilibrium

— But not necessarily pure (i.e., deterministic strategy)
* Could be more than one!
e Searching for Nash equilibria: computationally hard!
Example: rock/paper/scissors has // o
(1/3, 1/3, 1/3) as a mixed strategy NE. / 3 .;

Summary

* Review of game theory basics

— Properties, sequential games
* Speeding up sequential game search
— Heuristics, pruning, random search

* Simultaneous Games

— Normal form, strategies, dominance, Nash equilibrium

Acknowledgements: Developed from materials by Yingyu Liang
(University of Wisconsin), James Skrentny (University of

Wisconsin), inspired by Haifeng Xu (UVA) and Dana Nau
(University of Maryland).

