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Outline

• Review of game theory basics
– Properties, sequential games

• Speeding up sequential game search
– Heuristics, pruning, random search

• Simultaneous Games
– Normal form, strategies, dominance, Nash equilibrium



Review of Games: Multiple Agents

Games setup: multiple agents

– Now: interactions between agents
– Still want to maximize utility
– Strategic decision making.
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Review of Games: Properties

Let’s work through properties of games
• Number of agents/players
• State & action spaces: discrete or continuous
• Finite or infinite
• Deterministic or random
• Sum: zero or positive or negative 
• Sequential or simultaneous 

Wiki



Sequential Games

Games with multiple moves 
• Represent with a tree
• Find strategies: perform search over the tree

Wiki



II-Nim: Example Sequential Game

2 piles of sticks, each with 2 sticks. 
• Each player takes one or more sticks from pile
• Take last stick: lose

• Two players: Max and Min
• If Max wins, the score is +1; otherwise -1 
• Min’s score is –Max’s
• Use Max’s as the score of the game

(ii, ii)
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Game tree for II-Nim
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The first player always loses, if the 
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Game tree for II-Nim



function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if ( s is a terminal state )
then return ( terminal value of s )
else 

α := – infinity
for each s’ in Succ(s)

α := max( α , Min-value(s’))
return α

function Min-Value(s)
output: best-score (for Min) available from s

if ( s is a terminal state )
then return ( terminal value of s)
else 

β := infinity
for each s’ in Succs(s)

β := min( β , Max-value(s’))
return β

Minimax Algorithm
Time complexity?
• O(bm)
Space complexity?
• O(bm)
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Minimax algorithm in execution
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Minimax algorithm in execution
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Minimax algorithm in execution
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Can We Do Better?

One downside: we had to examine the entire tree
An idea to speed things up: pruning
• Goal: want the same minimax value, but faster
• We can get rid of bad branches:

when we are sure that pruning them 
doesn’t affect the minimax value



Minimax algorithm in execution
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Alpha-beta pruning
function Max-Value (s,α,β)
inputs:

s: current state in game, Max about to play
α: best score (highest) for Max along path to s
β: best score (lowest) for Min along path to s

output: min(β , best-score (for Max) available from s)
if ( s is a terminal state )
then return ( terminal value of s )
else for each s’ in Succ(s)

α := max( α , Min-value(s’,α,β))
if ( α ≥ β ) then return β   /* alpha pruning */

return α
function Min-Value(s,α,β)
output: max(α , best-score (for Min) available from s )

if ( s is a terminal state )
then return ( terminal value of s)
else for each s’ in Succs(s)

β := min( β , Max-value(s’,α,β))
if (α ≥ β ) then return α   /* beta pruning */

return β

Starting from the root:
Max-Value(root, -¥, +¥)



How effective is alpha-beta pruning?

• Depends on the order of successors!
– Best case, the #of nodes to search is O(bm/2)
– Happens when each player's best move is the leftmost child.  
– The worst case is no pruning at all.

• In DeepBlue, the average branching factor was about 6 
with alpha-beta instead of 35-40 without.

Alpha-Beta Pruning



Minimax With Heuristics

Note that long games are yield huge computation
• To deal with this: limit d for the search depth
• Q: What to do at depth d, but no termination yet?

– A: Use a heuristic evaluation function e(x)

Credit: Dana Nau



Heuristic Evaluation Functions

• e(x) often a weighted sum of features (like our linear models)

• Chess example: fi(x) = difference between number of white 
and black, with i ranging over piece types.
– Set weights according to piece importance
– E.g., 1(# white pawns - # black pawns) + 3(#white knights - # black 

knights)



Going Further

• Monte Carlo tree search (MCTS)
– Uses random sampling of the search space
– Choose some children (heuristics to figure out #)
– Record results, use for future play
– Self-play

• AlphaGo and other big results!

Credit: Surag Nair



Another Example: Prisoner’s Dilemma

Famous example from the ‘50s.
Two prisoners A & B. Can choose to betray the other or not. 

– A and B both betray, each of them serves two years in prison
– One betrays, the other doesn’t: betrayer free, other three years
– Both do not betray: one year each

Properties: 2-player, discrete, finite, 
deterministic, negative-sum, simultaneous



Simultaneous Games

The players make moves simultaneously
• Can express reward with a simple diagram
• Ex: for prisoner’s dilemma

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2



Mathematical description of simult. games. Has:
• n players {1,2,…,n}
• Player i strategy ai from Ai. All: a = (a1, a2, …, an)
• Player i gets rewards ui (a) for any outcome
– Note: reward depends on other players!

• Setting: all of these spaces, rewards are known

Normal Form



Ex: Prisoner’s Dilemma

• 2 players, 2 actions: yields 2x2 matrix
• Strategies: {Stay silent, betray} (i.e, binary)
• Rewards: {0,-1,-2,-3}

Example of Normal Form

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2



Let’s analyze such games. Some strategies are better
• Dominant strategy: if ai better than ai’ regardless of what 

other players do, ai is dominant
• I.e., 

• Don’t always exist!

Dominant Strategies

All of the other entries 
of a excluding i



Back to Prisoner’s Dilemma
• Examine all the entries: betray dominates
• Check: 

• Note: normal form helps locate dominant/dominated 
strategies.

Dominant Strategies Example

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2



a* is an equilibrium if all the players do not have an 
incentive to unilaterally deviate

• All players dominant strategies ->  equilibrium
• Converse doesn’t hold (don’t need dominant 

strategies to get an equilibrium)

Equilibrium



So far, all our strategies are deterministic: “pure”
• Take a particular action, no randomness

Can also randomize actions: “mixed”
• Assign probabilities xi to each action

• Note: have to now consider expected rewards

Pure and Mixed Strategies



Consider the mixed strategy x* = (x1*, …, xn*) 
• This is a Nash equilibrium if 

• Intuition: nobody can increase expected reward by 
changing only their own strategy. A type of solution!

Nash Equilibrium

Better than doing 
anything else, 
“best response”

Space of 
probability 
distributions



Major result: (Nash 1951)
• Every finite game has at least one Nash equilibrium
– But not necessarily pure (i.e., deterministic strategy)

• Could be more than one!
• Searching for Nash equilibria: computationally hard!

Example: rock/paper/scissors has 
(1/3, 1/3, 1/3) as a mixed strategy NE.

Properties of Nash Equilibrium



Summary

• Review of game theory basics
– Properties, sequential games

• Speeding up sequential game search
– Heuristics, pruning, random search

• Simultaneous Games
– Normal form, strategies, dominance, Nash equilibrium
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