

CS 540 Introduction to Artificial Intelligence Linear Models & Linear Regression

Yingyu Liang
University of Wisconsin-Madison
Oct 12, 2021

Based on slides by Fred Sala

Outline

- Unsupervised Learning: Density Estimation
 - Kernel density estimation: high-level intro
- Supervised Learning & Linear Models
 - Parameterized model, model classes, linear models, train vs. test
- Linear Regression
 - Least squares, normal equations, residuals, logistic regression

Short Intro to Density Estimation

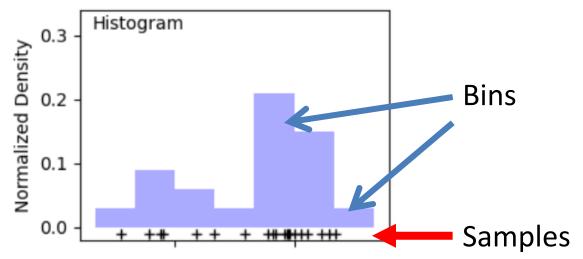
Goal: given samples x_1 , ..., x_n from some distribution P, estimate P.

- Compute statistics (mean, variance)
- Generate samples from P
- Run inference

Zach Monge

Simplest Idea: Histograms

Goal: given samples x_1 , ..., x_n from some distribution P, estimate P.



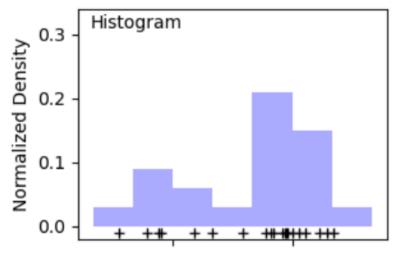
Define bins; count # of samples in each bin, normalize

Simplest Idea: Histograms

Goal: given samples x_1 , ..., x_n from some distribution P, estimate P.

Downsides:

- i) High-dimensions: most bins empty
- ii) Not continuous
- iii) How to choose bins?



Kernel Density Estimation

Goal: given samples x_1 , ..., x_n from some distribution P, estimate P.

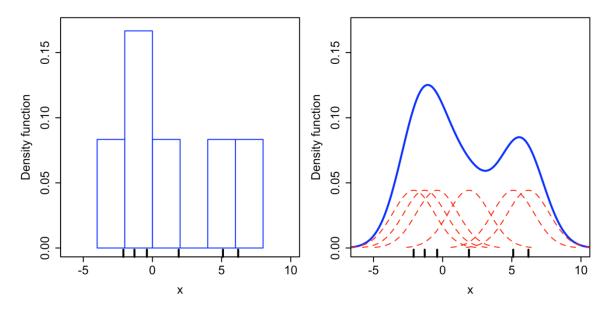
Idea: represent density as combination of "kernels"

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$
 Center at each point Kernel function: often Gaussian Width parameter

Kernel Density Estimation

Idea: represent density as combination of kernels

"Smooth" out the histogram



Back to Supervised Learning

Supervised learning:

- Make predictions, classify data, perform regression
- Dataset: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

• Goal: find function $f: X \to Y$ to predict label on **new** data

Back to Supervised Learning

How do we know a function f is good?

- Intuitively: "matches" the dataset $f(x_i) \approx y_i$
- More concrete: pick a **loss function** to measure this: $\ell(f(x), y)$
- Training loss/empirical loss/empirical risk

$$\frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$

Loss / Cost / Objective Function

Find a f that minimizes the loss on the training data (ERM)

Loss Functions

What should the loss look like?

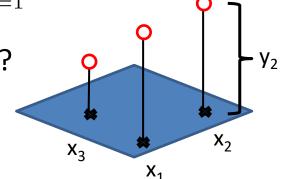
- If $f(x_i) \approx y_i$, should be small (0 if equal!)
- For classification: 0/1 loss $\ell(f(x), y) = {}_{1}{}\{f(x_i) \neq y_i\}$
- For regression, square loss $\ell(f(x), y) = (f(x_i) y_i)^2$

Others too! We'll see more.

Functions/Models

The function f is usually called a model

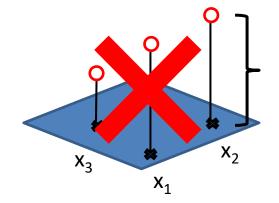
- Which possible functions should we consider?
- One option: all functions
 - Not a good choice. Consider $f(x) = \sum {\bf 1}\{x = x_i\}y_i$
 - Training loss: zero. Can't do better!
 - How will it do on x not in the training set?



Functions/Models

Don't want all functions

- Instead, pick a specific class
- Parametrize it by weights/parameters
- Example: linear models



$$f(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d = \theta_0 + x^T \theta$$

Weights/ Parameters

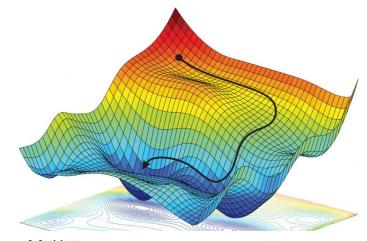
Training The Model

- Parametrize it by weights/parameters
- Minimize the loss

Best
$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$
 parameters = best function f Linear model class f
$$= \frac{1}{n} \sum_{i=1}^{n} \ell(\theta_0 + x_i^T \theta, y_i)$$
 Square loss
$$= \frac{1}{n} \sum_{i=1}^{n} (\theta_0 + x_i^T \theta - y_i)^2$$

How Do We Minimize?

- Need to solve something that looks like $\min_{\theta} g(\theta)$
- Generic optimization problem; many algorithms
 - A popular choice: stochastic gradient descent (SGD)
 - Most algorithms iterative: find some sequence of points heading towards the optimum



M. Hutson

Train vs Test

Now we've trained, have some f parametrized by θ

- Train loss is small $\rightarrow f$ predicts most x_i correctly
- How does f do on points not in training set? "Generalizes!"
- To evaluate this, create a **test** set. Do **not** train on it!

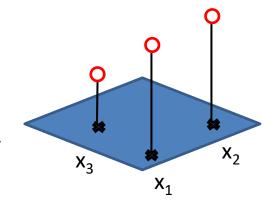
$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\dots,(\mathbf{x}_n,y_n)$$
 $(\mathbf{x}_{n+1},y_{n+1}),\dots,(\mathbf{x}_{n+p},y_{n+p})$ Training Data Test Data

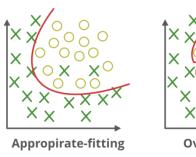
Train vs Test

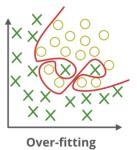
Use the test set to evaluate *f*

- Why? Back to our "perfect" train function
- Training loss: 0. Every point matched perfectly
- How does it do on test set? Fails completely!

- Overfitting: too focused on train points
- "Bigger" class: more prone to overfit
 - Need to consider model capacity





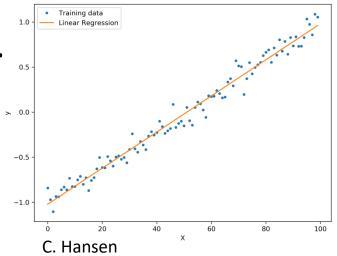


GFG

Linear Regression

Simplest type of regression problem.

- Inputs: $(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\ldots,(\mathbf{x}_n,y_n)$
 - x's are vectors, y's are scalars.
 - "Linear": predict a linear combinationof x components + intercept



$$f(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_d x_d = \theta_0 + x^T \theta$$

Want: optimal parameters

Linear Regression Setup

Problem Setup

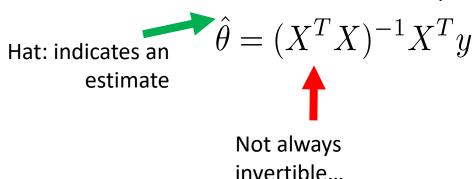
- Goal: figure out how to minimize square loss
- Let's organize it. Train set $(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\ldots,(\mathbf{x}_n,y_n)$
 - Since $f(x) = \theta_0 + x^T \theta$, wrap intercept: $f(x) = x^T \theta$
 - Take train data and make it a matrix/vector: $X = [x_1 \ x_2 \dots x_n]$
 - Then, square loss is

$$\frac{1}{n} \sum_{i=1}^{n} (x_i^T \theta - y_i)^2 = \frac{1}{n} ||X^T \theta - y||^2$$

Finding The Optimal Parameters

Have our loss:
$$\frac{1}{n} ||X^T \theta - y||^2$$

- Could optimize it with SGD, etc...
- No need: minimum has a solution (easy with vector calculus)



"Normal Equations"

How Good are the Optimal Parameters?

Now we have parameters $\hat{\theta} = (X^T X)^{-1} X^T y$

- How good are they?
- Predictions are $f(x_i) = \hat{\theta}^T x_i = ((X^T X)^{-1} X^T y)^T x_i$
- Errors ("residuals")

$$|y_i - f(x_i)| = |y_i - \hat{\theta}^T x_i| = |y_i - ((X^T X)^{-1} X^T y)^T x_i|$$

If data is linear, residuals are 0. Almost never the case!

Train/Test for Linear Regression?

So far, residuals measure error on **train** set

- Sometimes that's all we care about (Fixed Design LR)
 - Data is deterministic.
 - Goal: find best linear relationship on dataset

- Or, create a test set and check (Random Design LR)
 - Common: assume data is $y = \theta^T x + \varepsilon$
 - The more noise, the less linear

0-mean Gaussian noise

Linear Regression → Classification?

What if we want the same idea, but y is 0 or 1?

• Need to convert the $\theta^T x$ to a probability in [0,1]

$$p(y=1|x) = \frac{1}{1 + \exp(-\theta^T x)} \quad \longleftarrow \text{ Logistic function}$$

Why does this work?

- If $\theta^T x$ is really big, $\exp(-\theta^T x)$ is really small $\Rightarrow p$ close to 1
- If really negative exp is huge $\rightarrow p$ close to 0

"Logistic Regression"