i
L3

CS 540 Introduction to Artificial Intelligence
Linear Models & Linear Regression

Yingyu Liang
University of Wisconsin-Madison
Oct 12, 2021

Based on slides by Fred Sala



Outline

* Unsupervised Learning: Density Estimation

— Kernel density estimation: high-level intro

e Supervised Learning & Linear Models

— Parameterized model, model classes, linear models, train vs. test

* Linear Regression

— Least squares, normal equations, residuals, logistic
regression



Short Intro to Density Estimation

Goal: given samples x, ..., x, from some distribution P,
estimate P.

 Compute statistics (mean, variance)
* Generate samples from P |
 Run inference




Simplest Idea: Histograms

Goal: given samples x, ..., x, from some distribution P,
estimate P.
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Define bins; count # of samples in each bin, normalize



Simplest Idea: Histograms

Goal: given samples x, ..., x, from some distribution P,
estimate P.

Histogram
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Kernel Density Estimation

Goal: given samples x, ..., x, from some distribution P,
estimate P.

Idea: represent density as combination of “kernels”
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Kernel Density Estimation

Idea: represent density as combination of kernels

* “Smooth” out the histogram
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Back to Supervised Learning

Supervised learning:

 Make predictions, classify data, perform regression
» Dataset: (X1,¥1),(X2,%2);- -+ (Xns¥Un)

Features / Covariates / Input Labels / Outputs

* Goal: find function f: X — Y to predict label on new data




Back to Supervised Learning

How do we know a function fis good?

* Intuitively: “matches” the dataset f(z;) ~ y;
* More concrete: pick a loss function to measure this: /(f(z),y)

* Training loss/empirical loss/empirical risk f
1 . Loss / Cost / Objective
E Z g(f<x’b)7 yZ) Function
i=1

* Find a f that minimizes the loss on the training data (ERM)



Loss Functions

What should the loss look like?

e If f(z:;)=y , should be small (O if equal!)
* For classification: 0/1 loss /(f(z),y) = {f(zi) £ i)
* For regression, square loss 0f(2),y) = (Fla) — yi)?

Others too! We’ll see more.



Functions/Models

The function fis usually called a model
* Which possible functions should we consider?

* One option: all functions
— Not a good choice. Consider  f(z) = Zl{x = T; }Yi

n
=1

— Training loss: zero. Can’t do better!
— How will it do on x not in the training set?

—yz




Functions/Models

Don’t want all functions
* Instead, pick a specific class
* Parametrize it by weights/parameters

 Example: linear models

f(CE) — (90 -|—(91$1 -|—(92$2 —|——|—9deJd — (90 —|—IT9

Weights/ Parameters



Training The Model

* Parametrize it by weights/parameters

e Minimize the Ioss

parameters = Linear model
best function f & class f
T
— ﬁ E :6(90 +x; 0,y;)
1=1

1 < Square loss

1=1



How Do We Minimize?

* Need to solve something that looks like min g(6)
* Generic optimization problem; many algorithms
— A popular choice: stochastic gradient descent (SGD)
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Train vs Test

Now we’ve trained, have some f parametrized by 6
— Train loss is small = f predicts most x, correctly
— How does f do on points not in training set? “Generalizes!”
— To evaluate this, create a test set. Do not train on it!
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Train vs Test

Use the test set to evaluate f

— Why? Back to our “perfect” train function

— Training loss: 0. Every point matched perfectly
— How does it do on test set? Fails completely!

* Test set helps detect overfitting

— Overfitting: too focused on train points

— “Bigger” class: more prone to overfit
* Need to consider model capacity
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Linear Regression

Simplest type of regression problem.

* Inputs: <X1,y1),(X2,y2>7---»(men)
— x's are vectors, y’s are scalars.
— “Linear”: predict a linear combination

of x components + intercept C. Hansen
T
f(a:) =0y +01x1+6x0+...+0425=00+2" 0

 Want: optimal parameters



Linear Regression Setup

Problem Setup

* Goal: figure out how to minimize square loss
* Let’s organize it. Train set (X1,y1), (XQ,yz), oy (Xn,yn)

— Since f(z) =6y + w10, wrap intercept: flz) = .

— Take train data and make it a matrix/vector: X = [:1:1 To . ..

— Then, square loss is o .
=Y (0 — i) == [1XT0 -y
n = n



Finding The Optimal Parameters

1
Have our loss: EHXTQ —y|?

* Could optimize it with SGD, etc...
 No need: minimum has a solution (easy with vector calculus)

”é _ <XTX>_1XTy

Hat: indicates an

estimate 1 “Normal

H ”
Not always Equations

invertible...



How Good are the Optimal Parameters?

Now we have parameters = (X7 X)'XTy

* How good are they?
+ Predictionsare f(z;) =0Tz, = (X' X)"'XTy) z;

* Errors (“residuals”)
i — f(23)| = i — 07| = Jy; — (X7 X) 7' XTy) o

* |f datais linear, residuals are 0. Almost never the case!



Train/Test for Linear Regression?

So far, residuals measure error on train set

 Sometimes that’s all we care about (Fixed Design LR)
— Data is deterministic.
— Goal: find best linear relationship on dataset

e Or, create a test set and check (Random Design LR)
— Common: assume data is Yy = o'z + €

— The more noise, the less linear \ 0-mean
Gaussian noise



Linear Regression — Classification?

What if we want the same idea, but yisOor 1?
 Need to convert the 67z to a probability in [0,1]

1
— 1] — Logistic function
ply = 1lz) 1 + exp(—601x) «

Why does this work?
o If §7 is really big, exp(—0 ) is really small > p close to 1
* If really negative exp is huge - p closeto 0

“Logistic Regression”



