

CS 540 Introduction to Artificial Intelligence Statistics & Linear Algebra Review

Yingyu Liang
University of Wisconsin-Madison
Sept 21, 2021

Based on slides by Fred Sala

Review: Bayesian Inference

Conditional Prob. & Bayes:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

- H: some class we'd like to infer from evidence
 - Need to plug in prior, likelihood, etc.
 - How to estimate?

Samples and Estimation

- Usually, we don't know the distribution (P)
 - Instead, we see a bunch of samples

- Typical statistics problem: estimate parameters from samples
 - Estimate probability P(H)
 - Estimate the mean E[X]
 - Estimate parameters $P_{\theta}(X)$

Samples and Estimation

- Typical statistics problem: estimate parameters from samples
 - Estimate probability P(H)
 - Estimate the mean E[X]
 - Estimate parameters $P_{\theta}(X)$
- Example: Bernoulli with parameter p
 - Mean E[X] is p

Examples: Sample Mean

- Bernoulli with parameter p
- See samples x_1, x_2, \ldots, x_n
 - Estimate mean with sample mean

$$\hat{\mathbb{E}}[X] = \frac{1}{n} \sum_{i=1}^{n} x_i$$

No different from counting heads

Estimation Theory

 How do we know that the sample mean is a good estimate of the true mean?

- Law of large numbers
- Central limit theorems
- Concentration inequalities

$$P(|\mathbb{E}[X] - \hat{\mathbb{E}}[X]| \ge t) \le \exp(-2nt^2)$$

Wolfram Demo

Q 2.1: You see samples of X given by [0,1,1,2,2,0,1,2]. Empirically estimate $E[X^2]$

A. 9/8

C. 1.5

- B. 15/8
- D. There aren't enough samples to estimate $E[X^2]$

Q 2.1: You see samples of X given by [0,1,1,2,2,0,1,2]. Empirically estimate $E[X^2]$

- A. 9/8
- B. 15/8
- C. 1.5
- D. There aren't enough samples to estimate $E[X^2]$

Q 2.2: You are empirically estimating P(X) for some random variable X that takes on 100 values. You see 50 samples. How many of your P(X=a) estimates might be 0?

- A. None.
- B. Between 5 and 50, exclusive.
- C. Between 50 and 100, inclusive.
- D. Between 50 and 99, inclusive.

Q 2.2: You are empirically estimating P(X) for some random variable X that takes on 100 values. You see 50 samples. How many of your P(X=a) estimates might be 0?

- A. None.
- B. Between 5 and 50, exclusive.
- C. Between 50 and 100, inclusive.
- D. Between 50 and 99, inclusive.

Linear Algebra: What is it good for?

- Everything is a function
 - Multiple inputs and outputs

- Linear functions
 - Simple, tractable
- Study of linear functions

In AI/ML Context

Building blocks for all models

- E.g., linear regression; part of neural networks

Basics: Vectors

Vectors

- Many interpretations
 - Physics: magnitude + direction

Point in a space

List of values (represents information)

Basics: **Vectors**

- Dimension
 - Number of values $x \in \mathbb{R}^d$
 - Higher dimensions: richer but more complex
- AI/ML: often use very high dimensions:
 - Ex: images!

Basics: **Matrices**

- Again, many interpretations
 - Represent linear transformations
 - Apply to a vector, get another vector
 - Also, list of vectors
- Not necessarily square $\text{Indexing!} \quad A \in \mathbb{R}^{c \times d} \qquad A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$

 - Dimensions: #rows x #columns

Basics: Transposition

- Transposes: flip rows and columns
 - Vector: standard is a column. Transpose: row
 - Matrix: go from m x n to n x m

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad x^T = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$$
$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} \quad A^T = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \\ A_{13} & A_{23} \end{bmatrix}$$

Vector **Operations**

- Addition, Scalar Multiplication
- Inner product (e.g., dot product)

$$\langle x, y \rangle := x^T y = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{vmatrix} y_1 \\ y_2 \\ y_3 \end{vmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3$$

Outer product

$$xy^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & x_{1}y_{3} \\ x_{2}y_{1} & x_{2}y_{2} & x_{2}y_{3} \\ x_{3}y_{1} & x_{3}y_{2} & x_{3}y_{3} \end{bmatrix}$$

Vector **Operations**

Inner product defines "orthogonality"

$$-\operatorname{If}\langle x,y\rangle=0$$

• Vector norms: "size"

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

Matrix & Vector Operations

- Addition, scalar multiplication
- Matrix-Vector multiply
 - linear transformation: plug in vector, get another vector
 - Each entry in Ax is the inner product of a row of A with x

$$Ax = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n \\ \vdots \\ A_{n1}x_1 + A_{n2}x_2 + \dots + A_{nn}x_n \end{bmatrix}$$

Matrix & Vector **Operations**

Ex: feedforward neural networks. Input x.

Output of layer k is

Hidden

Output of layer k: vector

Weight **matrix** for layer k:

Note: linear transformation!

Matrix & Vector Operations

Matrix multiplication

"Composition" of linear transformations

– Not commutative (in general)!

Lots of interpretations

More on Matrices: Identity

- Identity matrix:
 - Like "1"
 - Multiplying by it gets back the same matrix or vector

Rows & columns are the
 "standard basis vectors" e_i

$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

More on Matrices: Inverses

- If for A there is a B such that AB = BA = I
 - Then A is invertible/nonsingular, B is its inverse
 - Some matrices are **not** invertible!

– Usual notation: A^{-1}

$$\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} = I$$

Eigenvalues & Eigenvectors

- For a square matrix A, solutions to $Av=\lambda v$
 - ν (nonzero) is a vector: eigenvector
 - $-\lambda$ is a scalar: **eigenvalue**

- Intuition: A is a linear transformation;
- Can stretch/rotate vectors;
- E-vectors: only stretched (by e-vals)

Dimensionality Reduction

- Vectors used to store features
 - Lots of data -> lots of features!
- Document classification
 - Each doc: thousands of words, etc.
- Netflix surveys: 480189 users x 17770 movies

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	?	?	1	3	?
George	?	?	3	1	2	5
Susan	4	3	1	?	5	1
Beth	4	3	?	2	4	2

Dimensionality Reduction

Ex: MEG Brain Imaging: 120 locations x 500 time points

x 20 objects

Or any image

Dimensionality Reduction

Reduce dimensions

- Why?
 - Lots of features redundant
 - Storage & computation costs

CreativeBloc

- Goal: take $x \in \mathbb{R}^d \to x \in \mathbb{R}^r$ for r << d
 - But, minimize information loss

Compression

Examples: 3D to 2D

Andrew Ng

Q 2.1: What is the inverse of

$$A = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix}$$

B. :
$$A^{-1} = \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{2} & 0 \end{bmatrix}$$

C. Undefined / A is not invertible

Q 2.1: What is the inverse of

$$A = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$$

A. :
$$A^{-1} = \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix}$$

B.:
$$A^{-1} = \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{2} & 0 \end{bmatrix}$$

C. Undefined / A is not invertible

Q 2.2: What are the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- A. -1, 2, 4
- B. 0.5, 0.2, 1.0
- C. 0, 2, 5
- D. 2, 5, 1

Q 2.2: What are the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

B. 0.5, 0.2, 1.0

C. 0, 2, 5

D. 2, 5, 1

Q 2.3: Suppose we are given a dataset with n=10000 samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?

- A. 20X
- B. 100X
- C. 5X
- D. 1X

Q 2.3: Suppose we are given a dataset with n=10000 samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?

A. 20X

- B. 100X
- C. 5X
- D. 1X

Principal Components Analysis (PCA)

- A type of dimensionality reduction approach
 - For when data is approximately lower dimensional

Principal Components Analysis (PCA)

- Goal: find axes of a subspace
 - Will project to this subspace; want to preserve data

Principal Components Analysis (PCA)

• From 2D to 1D:

- Find a $v_1 \in \mathbb{R}^d$ so that we maximize "variability"
- IE,

New representations are along this vector (1D!)

Principal Components Analysis (PCA)

- From d dimensions to r dimensions
 - Sequentially get $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$
 - Orthogonal!
 - Still maximize "variability"
 - The vectors are the principal compon

PCA Setup

Inputs

- Data: $x_1, x_2, \dots, x_n, x_i \in \mathbb{R}^d$
- Can arrange into

$$X \in \mathbb{R}^{n \times d}$$

- Centered!

$$\frac{1}{n} \sum_{i=1}^{n} x_i = 0$$

Outputs

- Principal components $v_1, v_2, \dots, v_r \in \mathbb{R}^d$
- Orthogonal!

PCA Goals

- Want directions/components (unit vectors) so that
 - Projecting data maximizes variance
 - What's variance of the projections? $\sum \langle x_i, v \rangle^2 = \|Xv\|^2$

i=1

- Do this recursively
 - Get orthogonal directions $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$

PCA First Step

• First component,

$$v_1 = \arg\max_{\|v\|=1} \sum_{i=1}^{\infty} \langle v, x_i \rangle^2$$

Same as getting

$$v_1 = \arg\max_{\|v\|=1} \|Xv\|^2$$

PCA Recursion

• Once we have *k-1* components, next?

$$\hat{X}_k = X - \sum_{i=1}^{\kappa - 1} X v_i v_i^T$$

Then do the same thing

$$v_k = \arg\max_{\|v\|=1} \|\hat{X}_k v\|^2$$

Deflation

PCA Interpretations

- The v's are eigenvectors of X^TX (Gram matrix)
 - Show via Rayleigh quotient
- X^TX (proportional to) sample covariance matrix
 - When data is 0 mean!
 - I.e., PCA is eigendecomposition of sample covariance

Nested subspaces span(v1), span(v1,v2),...,

Lots of Variations

- PCA, Kernel PCA, ICA, CCA
 - Unsupervised techniques to extract structure from high dimensional dataset
- Uses:
 - Visualization
 - Efficiency
 - Noise removal
 - Downstream machine learning use

Application: Image Compression

Start with image; divide into 12x12 patches

I.E., 144-D vector

– Original image:

Application: Image Compression

6 most important components (as an image)

Application: Image Compression

Project to 6D,

Compressed

Original

Q 3.1: What is the projection of $[1 \ 2]^T$ onto $[0 \ 1]^T$?

- A. [1 2]^T
- B. [-1 1]^T
- C. [0 0]^T
- D. [0 2]^T

Q 3.1: What is the projection of $[1 \ 2]^T$ onto $[0 \ 1]^T$?

- A. [1 2]^T
- B. [-1 1]^T
- C. [0 0]^T
- D. [0 2]^T

Q 3.2: We wish to run PCA on 10-dimensional data in order to produce *r*-dimensional representations. Which is the most accurate?

- A. *r* ≤ 3
- B. *r* < 10
- C. $r \le 10$
- D. *r* ≤ 20

Q 3.2: We wish to run PCA on 10-dimensional data in order to produce *r*-dimensional representations. Which is the most accurate?

- A. *r* ≤ 3
- B. *r* < 10
- C. $r \le 10$
- D. $r \le 20$