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Review: Bayesian Inference

* Conditional Prob. & Bayes:

P(E|H)P(H)

P(H|E) = —=p

e H:some class we’d like to infer from evidence
— Need to plug in prior, likelihood, etc.
— How to estimate?



Samples and Estimation

e Usually, we don’t know the distribution (P)
— Instead, we see a bunch of samples

* Typical statistics problem: estimate
parameters from samples
— Estimate probability P(H)
— Estimate the mean FE|[X]
— Estimate parameters P0<X)




Samples and Estimation

* Typical statistics problem: estimate
parameters from samples
— Estimate probability P(H)
— Estimate the mean FE|X]
— Estimate parameters P, (X)

 Example: Bernoulli with parameter p
— Mean E|X]| isp




Examples: Sample Mean

* Bernoulli with parameter p
e See samples T1,%2,...,Tp

— Estimate mean with sample mean
1 n
E[X] =~ z; z;
1=

— No different from counting heads




Estimation Theory

* How do we know that the sample mean is a good
estimate of the true mean?

probability of heads

— Law of large numbers

ccccccccccc

— Central limit theorems

— Concentration inequalities \

P(E[X] - B[X]| > 1) < exp(—2nt2) [\ VUl

Wolfram Demo



Break & Quiz

Q 2.1: You see samples of X given by
[0,1,1,2,2,0,1,2]. Empirically estimate E[X?]

A. 9/8
B. 15/8
C. 1.5

D. There aren’t enough samples to estimate E[X?]
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Break & Quiz

Q 2.2: You are empirically estimating P(X) for some random
variable X that takes on 100 values. You see 50 samples. How
many of your P(X=a) estimates might be 0?

None.

Between 5 and 50, exclusive.
Between 50 and 100, inclusive.
Between 50 and 99, inclusive.

o0 wp
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Linear Algebra: What is it good for?

* Everything is a function
— Multiple inputs and outputs

 Linear functions

— Simple, tractable

e Study of linear functions




In Al/ML Context

Building blocks for all models

- E.g., linear regression; part of neural networks
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Basics: Vectors

Vectors

* Many interpretations

— Physics: magnitude + direction

:4// K
— Point in a space /L S S r —

— List of values (represents information)




e Dimension

— Number of values

e Al/ML: often use very high dimensions:

— Ex: images!

Basics: Vectors

r € R

— Higher dimensions: richer but more complex

input image

Cezanne Camacho

—

car

predicted
class



Basics: Matrices

* Again, many interpretations
— Represent linear transformations
— Apply to a vector, get another vector

— Also, list of vectors -
All
. = |A
* Not necessarily square 21
— Indexing! A € Rexd _A31

— Dimensions: #rows x #columns




Basics: Transposition

* Transposes: flip rows and columns

— Vector: standard is a column. Transpose: row

— Matrix: gofrommxntonxm

CCT:[SUl X9 563]

A:[A“ Aig A13] AT
Asp Aga Ao




Vector Operations

— Addition, Scalar Multiplication
— Inner product (e.g., dot product)

T1Y1
r2Y1

L1Y2
T2Y2

r1Y3
r2Ys3

Y1
<X,y >:= ZETy = [5131 I9 563} Y2 | = T1Y1 + T2Y2 + T3Y3
Y3
— OQOuter product
o
vy’ = |z2| (11 y2 ys] =
_333_

| T3Y1

L3Y2

T3Y3



Vector Operations

* Inner product defines “orthogonality”
— If(z,y) =0

’

* Vector norms: “size’

]l = \ pILs




Matrix & Vector Operations

e Addition, scalar multiplication
* Matrix-Vector multiply

— linear transformation: plug in vector, get another vector

— Each entry in Ax is the inner product of a row of A with x

A1 + Appre + ..+ Ay, |

A21£C1 -+ AQQZCQ + ...+ Agnflfn
Ax = ,

_Anlxl + An2x2 + ... T Annxn_



Matrix & Vector Operations

Ex: feedforward neural networks. Input x.

N =
J
\ =

e QOutput of layer k is

nonlinearity \\t )
3
f(@) =Wl f* D))
b
T Output of layer k-1: vector Wikipedia

Output of layer k: vector Weight matrix for layer k:
Note: linear transformation!



Matrix & Vector Operations

e Matrix multiplication

— “Composition” of linear transformations

— Not commutative (in general)!

— Lots of interpretations

1,1

a1,2

1 2,2

3,1

3,2

4,1

4,2

Wikipedia



More on Matrices: ldentity

* |dentity matrix:
— Like “1” 10

— Multiplying by it gets back the 0 1
same matrix or vector

— Rows & columns are the -
“standard basis vectors” €;




More on Matrices: Inverses

e Iffor AthereisaBsuchthat AB=BA=1

— Then A is invertible/nonsingular, B is its inverse
— Some matrices are not invertible!

— Usual notation: 41

DO —
R =
|
DO




Eigenvalues & Eigenvectors

* For a square matrix A, solutions to AU — )\U

— v (nonzero) is a vector: eigenvector
— \is a scalar: eigenvalue

— Intuition: A is a linear transformation;
— Can stretch/rotate vectors;
— E-vectors: only stretched (by e-vals)

YJ

Ay

AX = AX

y

Wikipedia

AX



Dimensionality Reduction

* Vectors used to store features

— Lots of data -> lots of features!

Document classification

— Each doc: thousands of words, etc.

IX surveys: 480189 users x 17770 movies
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Dimensionality Reduction

Ex: MEG Brain Imaging: 120 locations x 500 time points
x 20 objects

MEGsz3 MY yEGosia

MEG0513

MEG0923

MEG0313 MEG1213

* Or any image

MEG1423

MEG1243

MEGOT32
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MEGIN2 yEgrazs MCCIH2
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Dimensionality Reduction

Reduce dimensions

e Why?
— Lots of features redundant
— Storage & computation costs

e Goal: take xERd%xERT for 7 <<d

— But, minimize information loss

bo|ganneas)



Examples: 3D to 2D
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Break & Quiz

Q 2.1: What is the inverse of 0 2
A =
_3 O_
A. 1 —3 0
P
B. _1_[0 l]
AL = 3
2 0

C. Undefined / A is not invertible



Break & Quiz

Q 2.1: What is the inverse of 0 2
A =
_3 O_
A. 1 —3 0
: 1
el

C. Undefined / A is not invertible



Break & Quiz

Q 2.2: What are the eigenvalues of A =

-1,2,4
0.5,0.2,1.0
0,2,5
. 2,5,1

o0 wp

@)




Break & Quiz

Q 2.2: What are the eigenvalues of A =

-1,2,4
0.5,0.2,1.0
0,2,5
. 2,5,1

o0 wp

@)




Break & Quiz

Q 2.3: Suppose we are given a dataset with n=10000
samples with 100-dimensional binary feature vectors. Our
storage device has a capacity of 50000 bits. What's the
lower compression ratio we can use?

A. 20X
B. 100X
C. 5X

D. 1X



Break & Quiz

Q 2.3: Suppose we are given a dataset with n=10000
samples with 100-dimensional binary feature vectors. Our
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lower compression ratio we can use?

B. 100X
C. 5X
D. 1X



Principal Components Analysis (PCA)

* Atype of dimensionality reduction approach
— For when data is approximately lower dimensional




Principal Components Analysis (PCA)

* Goal: find axes of a subspace

— Will project to this subspace; want to preserve data




Principal Components Analysis (PCA)

* From 2D to 1D:
— Finda v € R¢  so that we maximize “variability”

— |E, A

— New representations are along this vector (1D!)



Principal Components Analysis (PCA)

* From d dimensions to r dimensions:
— Sequentially get vy, v9,...,0, € RY
— Orthogonal!
— Still maximize “variability”
— The vectors are the principal compon

Victor Powell



PCA Setup

* Inputs
— Data: L1, L2y...yTp, Tj € Rd
— Can arrange into X € Rnxd
1 n
— Centered! — Z:IJZ =
n<—
* OUtPUtS = Victor Powell
— Principal components vy, v9,...,0, € Rd

— Orthogonal!



PCA Goals

* Want directions/components (unit vectors) so that
— Projecting data maximizes variance
— What’s variance of the projections? Z(wm 0)2: HX,UHQ
i=1
* Do this recursively
— Get orthogonal directions vy, vs, . .., v, € RY



PCA First Step

* First component,

* Same as getting

v1 = arg max || Xv||”
vl|=1



PCA Recursion

* Once we have k-1 components, next?

k—1
Xk = X — Z XUZ'U;-F
i=1 \
* Then do the same thing Deflation

v, = arg max || X, v||?
lvfl=1



PCA Interpretations

* The v’s are eigenvectors of XX (Gram matrix)
— Show via Rayleigh quotient

» X'X (proportional to) sample covariance matrix
— When data is 0 mean!
— |.e., PCA is eigendecomposition of sample covariance

* Nested subspaces span(vl), span(v1,v2),...,



Lots of Variations

e PCA, Kernel PCA, ICA, CCA
— Unsupervised techniques to extract structure from high
dimensional dataset

Individuals - PCA

* Uses: P
— Visualization B o N 70 W
— Efficiency S
— Noise removal R
— Downstream machine learning use .
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Application: Image Compression

e Start with image; divide into 12x12 patches
— |.E., 144-D vector

— Original image:




Application: Image Compression

* 6 most important components (as an image)
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Application: Image Compression

* Project to 6D,

Compressed



Break & Quiz

Q 3.1: What is the projection of [1 2]"onto [0 1]" ?

12]"
-11]"
00]"
.[02]

]
o0 ® >




Break & Quiz

Q 3.1: What is the projection of [1 2]"onto [0 1]" ?

« A.[12]
 B.[-11]
« C.[00]T
D. [0 2]"




Break & Quiz

Q 3.2: We wish to run PCA on 10-dimensional data in order
to produce r-dimensional representations. Which is the
most accurate?

 A.r<3
* B.r<10
e C.r<10
* D.r<20
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