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Review: Bayesian Inference

• Conditional Prob. & Bayes: 

• H: some class we’d like to infer from evidence
– Need to plug in prior, likelihood, etc.
– How to estimate?



Samples and Estimation
• Usually, we don’t know the distribution (P)

– Instead, we see a bunch of samples

• Typical statistics problem: estimate 
parameters from samples
– Estimate probability P(H)
– Estimate the mean 
– Estimate parameters



Samples and Estimation
• Typical statistics problem: estimate 

parameters from samples
– Estimate probability P(H)
– Estimate the mean 
– Estimate parameters

• Example: Bernoulli with parameter p
– Mean           is p



Examples: Sample Mean

• Bernoulli with parameter p
• See samples 

– Estimate mean with sample mean

– No different from counting heads



Estimation Theory

• How do we know that the sample mean is a good 
estimate of the true mean?
– Law of large numbers
– Central limit theorems
– Concentration inequalities

Wolfram Demo



Linear Algebra: What is it good for?

• Everything is a function
– Multiple inputs and outputs

• Linear functions
– Simple, tractable

• Study of linear functions



In AI/ML Context

Building blocks for all models
- E.g., linear regression; part of neural networks 

Stanford CS231nHieu Tran



Basics: Vectors

Vectors
• Many interpretations 

– Physics: magnitude + direction

– Point in a space

– List of values (represents information)



• Dimension
– Number of values
– Higher dimensions: richer but more complex

• AI/ML: often use very high dimensions: 
– Ex: images!

Basics: Vectors

Cezanne Camacho



Basics: Matrices

• Again, many interpretations
– Represent linear transformations
– Apply to a vector, get another vector
– Also, list of vectors

• Not necessarily square
– Indexing!
– Dimensions: #rows x #columns



Basics: Transposition

• Transposes: flip rows and columns
– Vector: standard is a column. Transpose: row
– Matrix: go from m x n to n x m



Vector Operations

– Addition, Scalar Multiplication
– Inner product (e.g., dot product)

– Outer product



• Inner product defines “orthogonality”
– If 

• Vector norms: “size”

Vector Operations



Matrix & Vector Operations

• Addition, scalar multiplication
• Matrix-Vector multiply

– linear transformation: plug in vector, get another vector
– Each entry in Ax is the inner product of a row of A with x



Matrix & Vector Operations

Ex: feedforward neural networks. Input x. 
• Output of layer k is 

Output of layer k-1: vector

Weight matrix for layer k: 
Note: linear transformation!

Output of layer k: vector

nonlinearity

Wikipedia



Matrix & Vector Operations

• Matrix multiplication
– “Composition” of linear transformations
– Not commutative (in general)!

– Lots of interpretations

Wikipedia



More on Matrices: Identity

• Identity matrix:
– Like “1”
– Multiplying by it gets back the 

same matrix or vector

– Rows & columns are the 
“standard basis vectors” 



More on Matrices: Inverses

• If for A there is a B such that
– Then A is invertible/nonsingular, B is its inverse
– Some matrices are not invertible!

– Usual notation: 



Eigenvalues & Eigenvectors

• For a square matrix A, solutions to
– v (nonzero) is a vector: eigenvector
– is a scalar: eigenvalue

– Intuition: A is a linear transformation;
– Can stretch/rotate vectors;
– E-vectors: only stretched (by e-vals)

Wikipedia



Dimensionality Reduction

• Vectors used to store features
– Lots of data -> lots of features!

• Document classification
– Each doc: thousands of words, etc.

• Netflix surveys: 480189 users x 17770 movies



Dimensionality Reduction

Ex: MEG Brain Imaging: 120 locations x 500 time points 
x 20 objects
• Or any image



Dimensionality Reduction

Reduce dimensions
• Why? 

– Lots of features redundant 
– Storage & computation costs

• Goal: take                                          for   
– But, minimize information loss

CreativeBloq



Compression

Examples: 3D to 2D

Andrew Ng



Principal Components Analysis (PCA)

• A type of dimensionality reduction approach
– For when data is approximately lower dimensional



Principal Components Analysis (PCA)

• Goal: find axes of a subspace
– Will project to this subspace; want to preserve data



Principal Components Analysis (PCA)

• From 2D to 1D:
– Find a                       so that we maximize “variability”
– IE, 

– New representations are along this vector (1D!)



Principal Components Analysis (PCA)

• From d dimensions to r dimensions:
– Sequentially get
– Orthogonal!
– Still maximize “variability”
– The vectors are the principal components

Victor Powell



PCA Setup

• Inputs
– Data: 
– Can arrange into 

– Centered!
• Outputs

– Principal components
– Orthogonal!

Victor Powell



PCA Goals

• Want directions/components (unit vectors) so that
– Projecting data maximizes variance
– What’s variance of the projections? 

• Do this recursively
– Get orthogonal directions



PCA First Step

• First component,

• Same as getting



PCA Recursion

• Once we have k-1 components, next?

• Then do the same thing Deflation



PCA Interpretations

• The v’s are eigenvectors of XTX (Gram matrix)
– Show via Rayleigh quotient

• XTX (proportional to) sample covariance matrix
– When data is 0 mean!
– I.e., PCA is eigendecomposition of sample covariance

• Nested subspaces span(v1), span(v1,v2),…,



Lots of Variations

• PCA, Kernel PCA, ICA, CCA
– Unsupervised techniques to extract structure from high 

dimensional dataset

• Uses:
– Visualization
– Efficiency
– Noise removal
– Downstream machine learning use

STHDA



Application: Image Compression

• Start with image; divide into 12x12 patches

– I.E., 144-D vector

– Original image:



Application: Image Compression

• 6 most important components (as an image)
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Application: Image Compression

• Project to 6D, 

Compressed Original
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