

CS 540 Introduction to Artificial Intelligence Unsupervised Learning II

Yingyu Liang
University of Wisconsin-Madison
Oct 7, 2021

Based on slides by Fred Sala

Outline

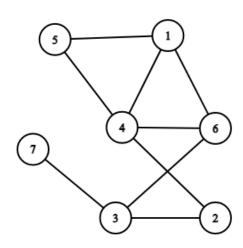
- Other Types of Clustering
 - Graph-based, cuts, spectral clustering
- Unsupervised Learning: Dim Reduction/Visualization
 - t-SNE, algorithm, example, vs. PCA
- Unsupervised Learning: Density Estimation
 - Kernel density estimation: high-level intro

Graph-Based Clustering

Graph-based/proximity-based

- Recall: Graph G = (V,E) has vertex set V, edge set E.
 - Edges can be weighted or unweighted
 - Encode similarity

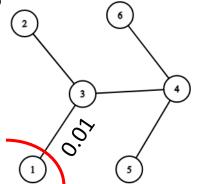
- Don't need vectors here
 - Just edges (and maybe weights)

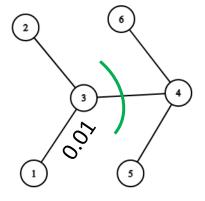


Graph-Based Clustering

Want: partition V into V₁ and V₂

- Implies a graph "cut"
- One idea: minimize the weight of the cut
 - Downside: might just cut of one node
 - Need: "balanced" cut





Partition-Based Clustering

Want: partition V into V₁ and V₂

- Just minimizing weight isn't good... want balance!
- Approaches:

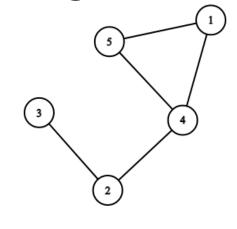
$$\overline{\text{Cut}}(V_1, V_2) = \frac{\text{Cut}(V_1, V_2)}{|V_1|} + \frac{\text{Cut}(V_1, V_2)}{|V_2|}$$

$$\operatorname{NCut}(V_1, V_2) = \frac{\operatorname{Cut}(V_1, V_2)}{\sum_{i \in V_1} d_i} + \frac{\operatorname{Cut}(V_1, V_2)}{\sum_{i \in V_2} d_i}$$
Sum of edge weights at vertex

Partition-Based Clustering

How do we compute these?

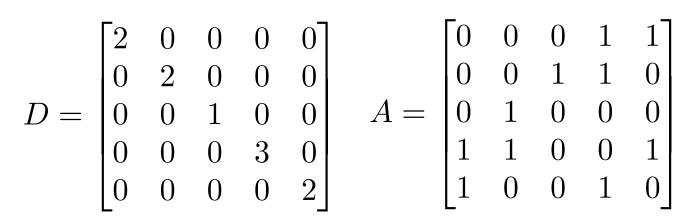
- Hard problem → heuristics
 - Greedy algorithm
 - "Spectral" approaches
- Spectral clustering approach:
 - Adjacency matrix

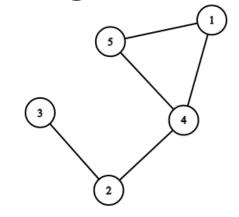


	[0	0	0	1	1
	0	0	1	1	0
=	0	1	0	0	0
	1	1	0	0	1
	1	0	0 1 0 0 0	1	0
	_				_

Partition-Based Clustering

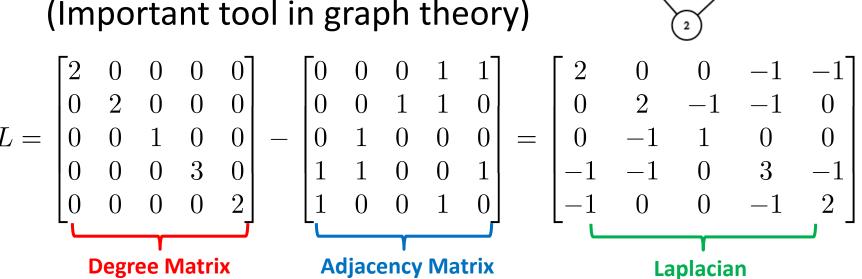
- Spectral clustering approach:
 - Adjacency matrix
 - Degree matrix





	0	0	1	1	0
=	0	1	0	0	0
	1	1	0	0	1
	1	0	0	1 0 0 1	0

- Spectral clustering approach:
 - -1. Compute Laplacian L = D A (Important tool in graph theory)

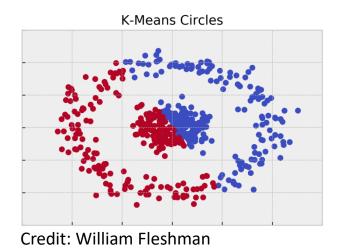


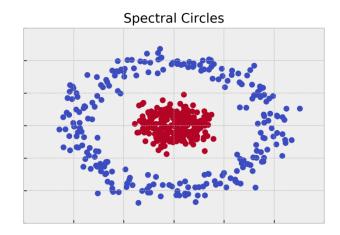
- Spectral clustering approach:
 - -1. Compute Laplacian L = D A
 - 2. Compute k smallest eigenvectors
 - 3. Set U to be the $n \times k$ matrix with $u_1, ..., u_k$ as columns. Take the n rows formed as points
 - 4. Run k-means on the representations

- Compare/contrast to PCA:
 - Use an eigendecomposition / dimensionality reduction
 - But, run on Laplacian (not covariance); use smallest eigenvectors, not largest
- Intuition: Laplacian encodes structure information
 - "Lower" eigenvectors give partitioning information

Q: Why do this?

- 1. No need for points or distances as input
- 2. Can handle intuitive separation (k-means can't!)

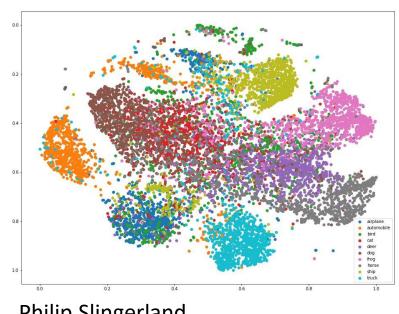




Unsupervised Learning Beyond Clustering

Data analysis, dimensionality reduction, etc

- Already talked about PCA
- Note: PCA can be used for visualization, but not specifically designed for it
- Some algorithms specifically for visualization



Philip Slingerland

Dimensionality Reduction & Visualization

Typical dataset: MNIST

- Handwritten digits 0-9
 - 60,000 images (small by ML standards)
 - 28×28 pixel (784 dimensions)
 - Standard for image experiments

Dimensionality reduction?

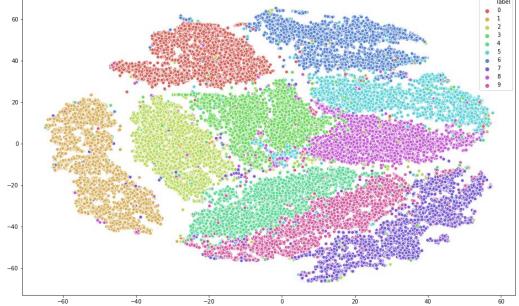
00000000000000

Visualization: **T-SNE**

Typical dataset: MNIST

- T-SNE: project data into just 2 dimensions
- Try to maintain structure

- MNIST Example
- Input: x₁, x₂, ..., x_n
- Output: 2D/3D y₁, y₂, ..., y_n



T-SNE Algorithm: Step 1

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

$$X_2$$
 X_1 X_4

Step 1:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)} \quad p_{ij} = \frac{1}{2n} (p_{j|i} + p_{i|j})$$

Intuition: probability that x_i would pick x_j as its neighbor under a Gaussian probability

T-SNE Algorithm: Step 2

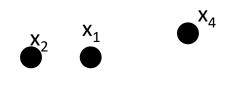
How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

$$q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq \ell} (1 + \|y_k - y_\ell\|^2)^{-1}}$$

and minimize

$$\sum_i \sum_j p_{ij} \log rac{p_{ij}}{q_{ij}}$$
 KL Divergence between p and q

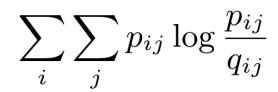


T-SNE Algorithm: Step 2

More on step 2:

- We have two distributions p, q. p is fixed
- q is a function of the y_i which we move around
- Move y_i around until the KL divergence is small
 - So we have a good representation!

 Optimizing a loss function---we'll see more in supervised learning.



KL Divergence between p and q

T-SNE Examples

Examples: (from Laurens van der Maaten)

Movies:

https://lvdmaaten.github.io/tsne/examples/netflix_tsne.jpg

T-SNE Examples

- Examples: (from Laurens van der Maaten)
- NORB:

https://lvdmaaten.github.io/tsne/examples/norb_tsne.jpg

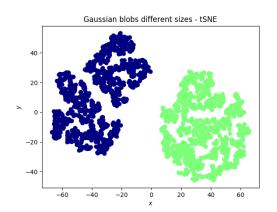
Visualization: **T-SNE**

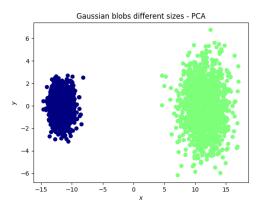
t-SNE vs PCA?

- "Local" vs "Global"
- Lose information in t-SNE
 - not a bad thing necessarily
- Downstream use

Good resource/credit:

https://www.thekerneltrip.com/statistics/tsne-vs-pca/





Short Intro to Density Estimation

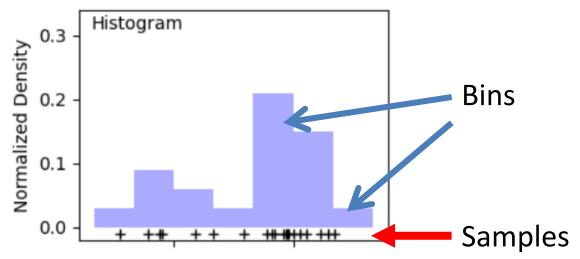
Goal: given samples x_1 , ..., x_n from some distribution P, estimate P.

- Compute statistics (mean, variance)
- Generate samples from P
- Run inference

Zach Monge

Simplest Idea: Histograms

Goal: given samples x_1 , ..., x_n from some distribution P, estimate P.



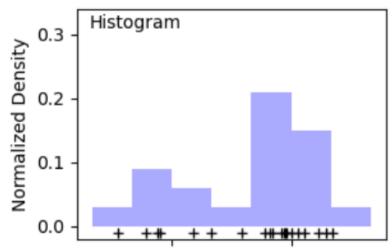
Define bins; count # of samples in each bin, normalize

Simplest Idea: Histograms

Goal: given samples x_1 , ..., x_n from some distribution P, estimate P.

Downsides:

- i) High-dimensions: most bins empty
- ii) Not continuous
- iii) How to choose bins?



Kernel Density Estimation

Goal: given samples x_1 , ..., x_n from some distribution P, estimate P.

Idea: represent density as combination of "kernels"

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$
 Center at each point Kernel function: often Gaussian Width parameter

Kernel Density Estimation

Idea: represent density as combination of kernels

"Smooth" out the histogram

