
1

2

Advanced search algorithms are designed for a slightly different problem form:
optimization.

Key differences:
1. Has values
2. Want the best state, do not care about the path

3

State: configuration of the board. Usually we consider a simplification as follows: we
only consider those the configurations where each column has one queen.

f(s): can be # of non-conflicting queens, or # of non-conflicting pairs of queens, and
we would like to maximize f. It can also be # of conflicting queens, and we would
like to minimize f.

4

Basic idea: iteratively move to a neighbor with a better value. greedy based on local
information.

Key question: definition of neighborhood.
1. Determines the performance of the algorithm.
2. Subtle difference from the successor function. Successors are typically defined by

constraints in the search problem. Neighbors are more of a design choice.
3. The definition is usually problem specific, and needs a careful choice.

5

A concrete example of n queens:
First check each column, find how many conflicts the queen in the column has.
Then pick the most-conflicting column.
Define the neigbhors: by moving the queen in that column to different locations in
the same column.

6

In general, neighbors are states that can be produced by a small change. The key is
“small”, and the change can be problem specific. But how small that should be?

Once we have the definition of neighbors, we can begin to formalize the algorithm:
1. Greedy to pick a neighbor
2. Stopping criteria: no improvement in the neighborhood.

7

Here is the pseudocode for the basic version of the algo.

Of course, it may not be able to solve all issues. In particular, it has the issue of local
optima.

8

Left: the global picture. We would like to maximize f(x), which is like climbing the hill.
Right: but the algorithm can only take action based on information in the
neighborhood. It doesn’t know the global picture.

9

Two challenging cases. The basic algo will just stop and return the current solution.

10

Improvement of the basic algo to try to escape local optima. (May not always be able
to escape)
1. Random restarts: very simple, and used often in practice.
2. Less greedy: allow to select not-best neighbors, e.g., can be stochastic, picking

better neighbors with higher probabilities but still having some probabilities for
picking the no-as-good neighbors.

11

Some more technical comments about the implementation.
1. May not examine the whole neighborhood. Can generate random neighbors one

by one and take it once we get a neighbor better than the current state. Or can
generate a fixed number of random neighbors, find the best neighbor and
compare to the current state.

2. Be less greedy. Like stochastic neighbors as in the previous slide

12

13

14

15

Can be viewed as a variant of hill climbing: pick neighbors stochastically. But it has a
key new idea: at the beginning, the random picking is more relaxed, allowing to pick
neighbors more randomly; in the later iterations, the random picking is more greedy,
focusing more on good neighbors. The intuition is
1) at the beginning, explore around so as not trapped in poor local optima
2) in the later iterations, begin to settle down on good locations

The selection probability is controlled by a parameter called temperature.

16

The probability is computed based on 3 parameters.
It should have the following properties: decrease with time, and decrease with the
gap.

17

A typical choice is the exponential function.
High temperature: then the probability is close to exp(-0)=1, ie, accept with high
probability
Low temperature: if the gap is not very small then the probability will be very small.
So only accept those that has value very close to the current solution. Overall the
algo looks like hill climbing.

18

19

Technical comments:
1. Quite a lot of parameters. Need to design the cooling schedule properly.
2. Can be combined with other tricks like random restart.

20

21

22

23

24

25

26

Genetic algorithms are inspired by evolution: the key idea is that the fittest can
survive.

27

A few key elements about evolution:
1. The genetic information is encoded in DNA, a sequence of four bases: each

individual can be viewed as a string of DNA code; a population is viewed as a set
of such strings.

2. There are two types of changes on the DNA in evolution: cross-over and mutation

28

Another key element in evolution is natural selection induced by competition for
resources: The DNA that fits better the environment has better chance of survival and
reproduction.
The natural selection process is repeated in generations. After multiple generations,
a large fraction of the population will be those that fit the environment.

Here we use these principles to design an optimization method. Now the states in the
state space now correspond to individuals, and the value function f corresponds to a
measurement of fitness. The larger value for f, the better the individual fit the
environment. Then we can use the evolution to maximize the value f by finding the
best fit.

29

Example:
First we need to encode the state into a string. For n Queens we can encode it as the
string of the positions of the queens in each column.
Then we keep a population, a set of individuals.

30

The genetic algorithm runs in generations, each generation has the following
operations corresponding to natural selection, crossover and mutation.
1. Compute the f value (the fitness), and then normalize them to get the probability

of reproduction. Then do natural selection: by sampling from the reproduction
probability distribution.

2. Then pair up the individuals; for each pair, pick a random location to cut each
code into two segments; then do crossover by mixing up the segments.

3. Finally do mutation: (one standard variant) for each location in each individual,
determine whether to do mutation with a small mutation probability; if yes, then
replace the original symbol with a randomly pick symbol.

Repeat this until we are satisfied with the solution or run out of time budget.

31

32

An extra example of computing the reproduction probability: normalizing the fitness
score.

33

34

