
1



2



Advanced search algorithms are designed for a slightly different problem form: 
optimization. 

Key differences: 
1. Has  values
2. Want the best state, do not care about the path
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State: configuration of the board. Usually we consider a simplification as follows: we 
only consider those the configurations where each column has one queen. 

f(s): can be # of non-conflicting queens, or # of non-conflicting pairs of queens, and 
we would  like to maximize f. It can also be  # of conflicting queens, and we would  
like to minimize f.
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Basic idea: iteratively move to a neighbor with a better value. greedy based on local 
information. 

Key question: definition of neighborhood. 
1. Determines the performance of the algorithm. 
2. Subtle difference from the successor function. Successors are typically defined by 

constraints in the search problem. Neighbors are more of a design choice. 
3. The definition is usually  problem specific, and needs a careful choice. 
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A concrete example of n queens:
First check each column, find how many conflicts the queen in the column has. 
Then pick the  most-conflicting column.
Define the neigbhors: by moving the queen in that column to different locations in 
the same column. 
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In general, neighbors are states that can be produced by a small change. The key is 
“small”, and the change  can be  problem specific. But how small that should be? 

Once we  have the definition of neighbors, we can begin  to formalize the algorithm:
1. Greedy to pick a neighbor
2. Stopping criteria: no improvement in the neighborhood.
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Here  is  the  pseudocode for the basic version of the  algo.

Of course, it may not be able  to solve all issues. In particular, it has the issue of local 
optima. 
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Left: the global picture. We would like to maximize f(x), which is like climbing the hill.
Right: but the algorithm can only take action based on information in the 
neighborhood. It doesn’t know the global picture. 
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Two challenging cases. The  basic algo will just stop and return the current solution.
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Improvement of the basic algo to try to escape local optima. (May not always be able 
to escape)
1. Random  restarts: very simple, and used often in practice. 
2. Less greedy: allow to select not-best neighbors, e.g., can be stochastic, picking 

better neighbors with higher probabilities but still having some probabilities for 
picking the no-as-good neighbors. 
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Some more technical comments about the implementation.
1. May not examine the  whole neighborhood. Can generate random neighbors one  

by one and take it once we get a neighbor better than the current state. Or can 
generate a fixed number of random neighbors, find the best neighbor and 
compare to the current state.

2. Be less greedy. Like stochastic neighbors as in the previous slide
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Can be viewed as a variant of hill climbing: pick neighbors stochastically. But it has a 
key new idea: at the beginning, the random picking is more relaxed, allowing to pick 
neighbors more randomly; in the later iterations, the random picking is more greedy, 
focusing more on good neighbors. The intuition is 
1) at the beginning, explore around so as not trapped in poor local optima
2) in the later iterations, begin to settle down on good locations

The selection probability is controlled by a parameter called temperature. 
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The probability is computed based on 3 parameters. 
It should have the following properties: decrease with time, and decrease with the 
gap. 
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A typical choice is the exponential function. 
High temperature: then the probability is close to exp(-0)=1, ie, accept with high 
probability
Low temperature: if the gap is not very small then the probability will be very small.  
So only accept those that has value very close to the  current solution. Overall the 
algo looks like hill climbing. 
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Technical comments:
1. Quite a lot of parameters. Need to design the cooling schedule properly. 
2. Can be combined with other tricks like random restart. 
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Genetic algorithms are inspired by evolution: the key idea is that the fittest can 
survive. 
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A few key elements about evolution: 
1. The  genetic information is encoded in DNA, a sequence of four bases: each 

individual can be viewed as a string of DNA code; a population is viewed  as a set 
of such strings.

2. There are two types of changes on the DNA in evolution: cross-over and mutation
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Another key element in evolution is natural selection induced by competition for 
resources: The DNA that fits better the environment has better chance of survival and 
reproduction.
The  natural selection process is repeated in generations. After multiple generations, 
a large fraction of the population will be those that fit the environment.

Here we use these principles to design an optimization method. Now the states in the 
state space now correspond to individuals, and the value function f corresponds to a 
measurement of fitness. The larger value for f, the better the individual fit the 
environment. Then we can use the evolution to maximize the value f by finding the 
best fit. 

29



Example: 
First we need to encode the state into a string. For n Queens we can encode it as the 
string of the positions of the  queens  in each column. 
Then we keep a population, a set of  individuals. 
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The  genetic algorithm runs in generations, each generation has the following 
operations  corresponding to natural selection, crossover and mutation.
1. Compute the f value (the fitness), and then normalize them to get the probability 

of reproduction. Then do natural selection: by sampling from the reproduction 
probability distribution. 

2. Then pair up the individuals; for each pair, pick a random location to cut each 
code into two segments; then do crossover by mixing up the segments.

3. Finally do mutation: (one standard variant) for each location in each individual, 
determine whether to do mutation with a small mutation probability; if yes, then 
replace the original symbol with a randomly pick symbol. 

Repeat this until we are satisfied with the solution or run out of time budget. 
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An extra example of computing the reproduction probability: normalizing the  fitness 
score. 
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