

CS 540 Introduction to Artificial Intelligence Advanced Search

Yingyu Liang University of Wisconsin-Madison Nov 18, 2021

Based on slides by Fred Sala

Outline

- Advanced Search & Hill-climbing
 - More difficult problems, basics, local optima, variations
- Simulated Annealing
 - Basic algorithm, temperature, tradeoffs
- Genetic Algorithms
 - Basics of evolution, fitness, natural selection

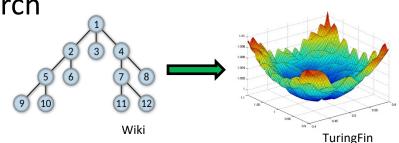
Search vs. Optimization

Before: wanted a path from start state to goal state

Uninformed search, informed search

New setting: optimization

- States s have values f(s)
- Want: s with optimal value f(s) (i.e, optimize over states)
- Challenging setting: too many states for previous search approaches, but maybe not a continuous function for SGD.



Examples: n Queens

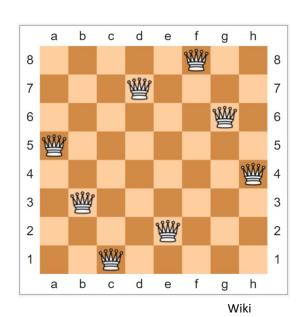
A classic puzzle:

Place 8 queens on 8 x 8 chessboard so that no two have same

row, column, or diagonal.

• Can generalize to n x n chessboard.

- What are states s? Values f(s)?
 - State: configuration of the board
 - f(s): # of non-conflicting queens



Hill Climbing

One approach to such optimization problems

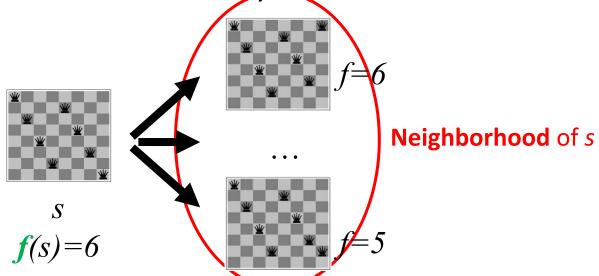
• Basic idea: move to a neighbor with a better f(s)

- Q: how do we define neighbor?
 - Not as obvious as our successors in search
 - Problem-specific
 - As we'll see, needs a careful choice

Defining Neighbors: n Queens

In n Queens, a simple possibility:

- Look at the most-conflicting column (ties? right-most one)
- Move queen in that column vertically to a different location



Hill Climbing Neighbors

Q: What's a neighbor?

- **Vague definition**. For a given problem structure, neighbors are states that can be produced by a small change
- Tradeoff!
 - Too small? Will get struck.
 - Too big? Not very efficient

- Q: how to pick a neighbor? Greedy
- Q: terminate? When no neighbor has better value

Hill Climbing Algorithm

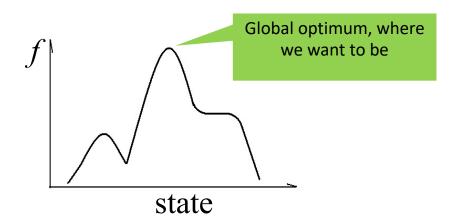
Pseudocode:

- 1. Pick initial state s
- 2. Pick t in **neighbors**(s) with the best f(t)
- 3. if f(t) is not better than f(s) THEN stop, return s
- 4. $s \leftarrow t$. goto 2.

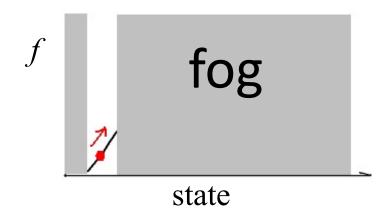
What could happen? Local optima!

Hill Climbing: Local Optima

Q: Why is it called hill climbing?



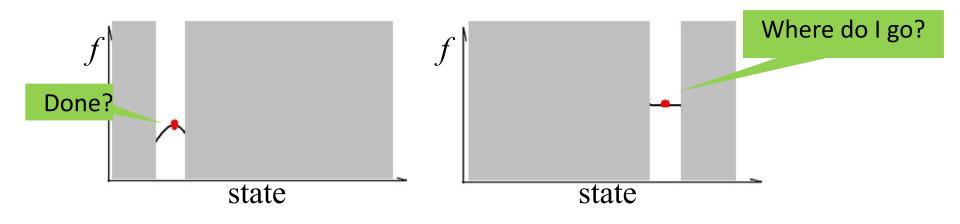
L: What's actually going on.



R: What we get to see.

Hill Climbing: Local Optima

Note the **local optima**. How do we handle them?



Escaping Local Optima

Simple idea 1: random restarts

- Stuck: pick a random new starting point, re-run.
- Do *k* times, return best of the *k* runs

Simple idea 2: reduce greed

- "Stochastic" hill climbing: randomly select between neighbors
- Probability proportional to the value of neighbors

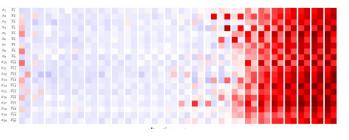
Hill Climbing: Variations

Q: neighborhood too large?

 Generate random neighbors, one at a time. Take the better one.

Q: relax requirement to always go up?

Often useful for harder problems



Simulated Annealing

A more sophisticated optimization approach

- Idea: move quickly at first, then slow down
- Pseudocode:

```
Pick initial state s

For k = 0 through k_{max}:

T \leftarrow \text{temperature}(\ (k+1)/k_{max}\ )

Pick a random neighbor, t \leftarrow \text{neighbor}(s)

If f(t) better than f(s), then s \leftarrow t

Else, with prob. P(f(s), f(t), T) then s \leftarrow t

Output: the final state s
```


Simulated Annealing: Picking Probability

How do we pick probability P? Note 3 parameters.

- Decrease with time
- Decrease with gap |f(s) f(t)|

```
Pick initial state s

For k = 0 through k_{\text{max}}:

T \leftarrow \text{temperature}(\ (k+1)/k_{\text{max}}\ )

Pick a random neighbour, t \leftarrow \text{neighbor}(s)

If f(t) better than f(s), then s \leftarrow t

Else, with prob. P(f(s), f(t), T) then s \leftarrow t

Output: the final state s
```

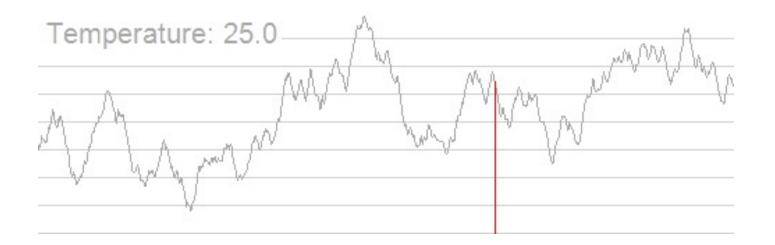

Simulated Annealing: Picking Probability

How do we pick probability P? Note 3 parameters.

- Decrease with time
- Decrease with gap |f(s) f(t)|: $\exp\left(-\frac{|f(s) f(t)|}{Temp}\right)$
- Temperature cools over time.
 - So: high temperature, accept any t
 - But, low temperature, behaves like hill-climbing
 - Still, |f(s) f(t)| plays a role: if big, replacement probability low.

Simulated Annealing: Visualization

What does it look like in practice?



Simulated Annealing: Picking Parameters

- Have to balance the various parts., e.g., cooling schedule.
 - Too fast: becomes hill climbing, stuck in local optima
 - Too slow: takes too long.
- Combines with variations (e.g., with random restarts)
 - Probably should try hill-climbing first though.

- Inspired by cooling of metals
 - We'll see one more alg. inspired by nature

Genetic Algorithms

Another optimization approach based on nature

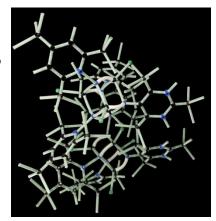
Survival of the fittest!

Evolution Review

Encode genetic information in DNA (four bases)

A/C/T/G: nucleobases acting as symbols

- Two types of changes
 - Crossover: exchange between parents' codes
 - Mutation: rarer random process
 - Happens at individual level



Natural Selection

Competition for resources

- Organisms better fit → better probability of reproducing
- Repeated process: fit become larger proportion of population

Goal: use these principles for optimization

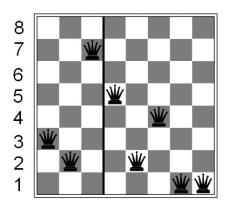
- New terminology: state is 'individual'
- Value f(s) is now the 'fitness'

Genetic Algorithms Setup I

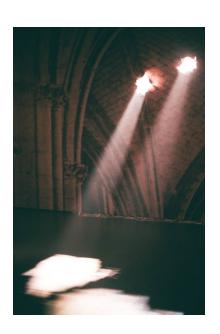
Keep around a fixed number of states/individuals

Call this the population

For our n Queens game example, an individual:



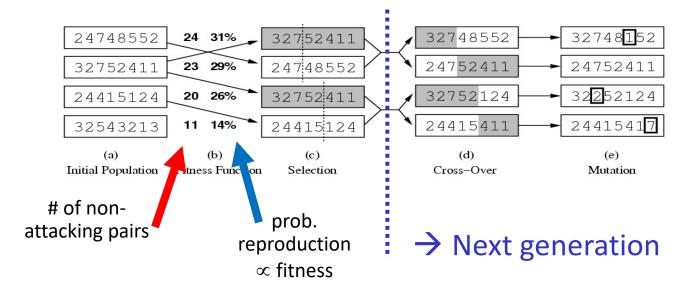
(32752411)



Genetic Algorithms Setup II

Goal of genetic algorithms: optimize using principles inspired by mechanism for evolution

E.g., analogous to natural selection, cross-over, and mutation



Genetic Algorithms Pseudocode

Just one variant:

- 1. Let $s_1, ..., s_N$ be the current population
- 2. Let $p_i = f(s_i) / \sum_i f(s_i)$ be the reproduction probability
- 3. for k = 1; k < N; k + = 2
 - parent1 = randomly pick according to p
 - parent2 = randomly pick another
 - randomly select a crossover point, swap strings of parents 1, 2 to generate children t[k], t[k+1]
- 4. for k = 1; k <= N; k++
 - Randomly mutate each position in t[k] with a small probability (mutation rate)
- 5. The new generation replaces the old: $\{s\} \leftarrow \{t\}$. Repeat

Reproduction: Proportional Selection

Reproduction probability: $p_i = f(s_i) / \Sigma_i f(s_i)$

- **Example**: $\Sigma_i f(s_i) = 5+20+11+8+6=50$
- $p_1 = 5/50 = 10\%$

Individual	Fitness	Prob.
Α	5	10%
В	20	40%
С	11	22%
D	8	16%
E	6	12%

Acknowledgements: Adapted from materials by Jerry Zhu + Tony Gitter (University of Wisconsin), Andrew Moore