
CS 540 Introduction to Artificial Intelligence
Advanced Search

Yingyu Liang
University of Wisconsin-Madison

Nov 18, 2021
Based on slides by Fred Sala

Outline

• Advanced Search & Hill-climbing
– More difficult problems, basics, local optima, variations

• Simulated Annealing
– Basic algorithm, temperature, tradeoffs

• Genetic Algorithms
– Basics of evolution, fitness, natural selection

Search vs. Optimization

Before: wanted a path from start state to goal state
• Uninformed search, informed search

New setting: optimization
• States s have values f(s)
• Want: s with optimal value f(s) (i.e, optimize over states)
• Challenging setting: too many states for previous search

approaches, but maybe not a continuous function for SGD.

Wiki TuringFin

Examples: n Queens

A classic puzzle:
• Place 8 queens on 8 x 8 chessboard so that no two have same

row, column, or diagonal.
• Can generalize to n x n chessboard.

• What are states s? Values f(s)?
– State: configuration of the board
– f(s): # of non-conflicting queens

Wiki

Hill Climbing

One approach to such optimization problems
• Basic idea: move to a neighbor with a better f(s)

• Q: how do we define neighbor?
– Not as obvious as our successors in search
– Problem-specific
– As we’ll see, needs a careful choice

Defining Neighbors: n Queens

In n Queens, a simple possibility:
• Look at the most-conflicting column (ties? right-most one)
• Move queen in that column vertically to a different location

…

s
f(s)=6

Neighborhood of s

f=6

f=5

Hill Climbing Neighbors

Q: What’s a neighbor?
• Vague definition. For a given problem structure, neighbors

are states that can be produced by a small change
• Tradeoff!

– Too small? Will get struck.
– Too big? Not very efficient

• Q: how to pick a neighbor? Greedy
• Q: terminate? When no neighbor has better value

Hill Climbing Algorithm

Pseudocode:

What could happen? Local optima!

1. Pick initial state s
2. Pick t in neighbors(s) with the best f(t)
3. if f(t) is not better than f(s) THEN stop, return s
4. s← t. goto 2.

Hill Climbing: Local Optima

Q: Why is it called hill climbing?

L: What’s actually going on. R: What we get to see.

state

f
Global optimum, where

we want to be

state

f fog

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Done?

state

f

state

f
Where do I go?

Escaping Local Optima

Simple idea 1: random restarts
• Stuck: pick a random new starting point, re-run.
• Do k times, return best of the k runs

Simple idea 2: reduce greed
• “Stochastic” hill climbing: randomly select between neighbors
• Probability proportional to the value of neighbors

Hill Climbing: Variations

Q: neighborhood too large?
• Generate random neighbors, one at a time. Take the better

one.

Q: relax requirement to always go up?
• Often useful for harder problems

D. Selsam

Simulated Annealing

A more sophisticated optimization approach
• Idea: move quickly at first, then slow down
• Pseudocode:

Pick initial state s
For k = 0 through kmax:

T ← temperature((k+1)/kmax)
Pick a random neighbor, t ← neighbor(s)
If f(t) better than f(s), then s ← t
Else, with prob. P(f(s), f (t), T) then s ← t

Output: the final state s

The interesting bit

Simulated Annealing: Picking Probability

How do we pick probability P? Note 3 parameters.
• Decrease with time
• Decrease with gap |f(s) - f(t)|

Pick initial state s
For k = 0 through kmax:

T ← temperature((k+1)/kmax)
Pick a random neighbour, t ← neighbor(s)
If f(t) better than f(s), then s ← t
Else, with prob. P(f(s), f (t), T) then s ← t

Output: the final state s

Simulated Annealing: Picking Probability

How do we pick probability P? Note 3 parameters.
• Decrease with time
• Decrease with gap |f(s) - f(t)|:

• Temperature cools over time.
– So: high temperature, accept any t
– But, low temperature, behaves like hill-climbing
– Still, |f(s) - f(t)| plays a role: if big, replacement probability low.

÷÷
ø

ö
çç
è

æ -
-

Temp
tfsf |)()(|exp

Simulated Annealing: Visualization

What does it look like in practice?

Wiki

Simulated Annealing: Picking Parameters

• Have to balance the various parts., e.g., cooling schedule.
– Too fast: becomes hill climbing, stuck in local optima
– Too slow: takes too long.

• Combines with variations (e.g., with random restarts)
– Probably should try hill-climbing first though.

• Inspired by cooling of metals
– We’ll see one more alg. inspired by nature

Another optimization approach based on nature
• Survival of the fittest!

Genetic Algorithms

Evolution Review

Encode genetic information in DNA (four bases)
• A/C/T/G: nucleobases acting as symbols

• Two types of changes
– Crossover: exchange between parents’ codes
– Mutation: rarer random process

• Happens at individual level

Natural Selection

Competition for resources
• Organisms better fit ➔ better probability of reproducing
• Repeated process: fit become larger proportion of population

Goal: use these principles for optimization
– New terminology: state is ‘individual’
– Value f(s) is now the ‘fitness’

Genetic Algorithms Setup I

Keep around a fixed number of states/individuals
• Call this the population
For our n Queens game example, an individual:

(3 2 7 5 2 4 1 1)

Genetic Algorithms Setup II

Goal of genetic algorithms: optimize using principles inspired by
mechanism for evolution
• E.g., analogous to natural selection, cross-over, and mutation

à Next generation
of non-

attacking pairs prob.
reproduction
µ fitness

Genetic Algorithms Pseudocode

Just one variant:
1. Let s1, …, sN be the current population
2. Let pi = f(si) / Sj f(sj) be the reproduction probability
3. for k = 1; k<N; k+=2

• parent1 = randomly pick according to p
• parent2 = randomly pick another
• randomly select a crossover point, swap strings of

parents 1, 2 to generate children t[k], t[k+1]
4. for k = 1; k<=N; k++

• Randomly mutate each position in t[k] with a small
probability (mutation rate)

5. The new generation replaces the old: { s }ß{ t }. Repeat

Reproduction probability: pi = f(si) / Sj f(sj)
• Example: Sj f(sj) = 5+20+11+8+6=50
• p1=5/50=10%

Reproduction: Proportional Selection

Acknowledgements: Adapted from materials by Jerry Zhu + Tony Gitter
(University of Wisconsin), Andrew Moore

