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Outline

• Advanced Search & Hill-climbing
– More difficult problems, basics, local optima, variations

• Simulated Annealing
– Basic algorithm, temperature, tradeoffs

• Genetic Algorithms
– Basics of evolution, fitness, natural selection



Search vs. Optimization

Before: wanted a path from start state to goal state
• Uninformed search, informed search

New setting: optimization
• States s have values f(s)
• Want: s with optimal value f(s) (i.e, optimize over states)
• Challenging setting: too many states for previous search 

approaches, but maybe not a continuous function for SGD.
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Examples: n Queens

A classic puzzle:
• Place 8 queens on 8 x 8 chessboard so that no two have same 

row, column, or diagonal.
• Can generalize to n x n chessboard.

• What are states s? Values f(s)?
– State: configuration of the board
– f(s): # of non-conflicting queens 
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Hill Climbing

One approach to such optimization problems
• Basic idea: move to a neighbor with a better f(s)

• Q: how do we define neighbor?
– Not as obvious as our successors in search
– Problem-specific
– As we’ll see, needs a careful choice



Defining Neighbors: n Queens

In n Queens, a simple possibility:
• Look at the most-conflicting column (ties? right-most one)
• Move queen in that column vertically to a different location

…

s
f(s)=6

Neighborhood of s

f=6

f=5



Hill Climbing Neighbors

Q: What’s a neighbor?
• Vague definition. For a given problem structure, neighbors 

are states that can be produced by a small change
• Tradeoff! 

– Too small? Will get struck. 
– Too big? Not very efficient

• Q: how to pick a neighbor? Greedy
• Q: terminate? When no neighbor has better value



Hill Climbing Algorithm

Pseudocode:

What could happen? Local optima!

1. Pick initial state s
2. Pick t in neighbors(s) with the best f(t)
3. if f(t) is not better than f(s) THEN stop, return s
4. s← t. goto 2.



Hill Climbing: Local Optima

Q: Why is it called hill climbing?

L: What’s actually going on.                R: What we get to see.

state

f
Global optimum, where 

we want to be

state

f fog



Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Done?

state

f

state

f
Where do I go?



Escaping Local Optima

Simple idea 1: random restarts
• Stuck: pick a random new starting point, re-run.
• Do k times, return best of the k runs

Simple idea 2: reduce greed
• “Stochastic” hill climbing: randomly select between neighbors
• Probability proportional to the value of neighbors



Hill Climbing: Variations

Q: neighborhood too large?
• Generate random neighbors, one at a time. Take the better 

one.

Q: relax requirement to always go up?
• Often useful for harder problems
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Simulated Annealing

A more sophisticated optimization approach
• Idea: move quickly at first, then slow down
• Pseudocode:

Pick initial state s
For k = 0 through kmax:

T ← temperature( (k+1)/kmax )
Pick a random neighbor, t ← neighbor(s)
If f(t) better than f(s), then s ← t
Else, with prob. P(f(s), f (t), T) then s ← t

Output: the final state s

The interesting bit



Simulated Annealing: Picking Probability

How do we pick probability P? Note 3 parameters.
• Decrease with time
• Decrease with gap |f(s) - f(t)|

Pick initial state s
For k = 0 through kmax:

T ← temperature( (k+1)/kmax )
Pick a random neighbour, t ← neighbor(s)
If f(t) better than f(s), then s ← t
Else, with prob. P(f(s), f (t), T) then s ← t

Output: the final state s



Simulated Annealing: Picking Probability

How do we pick probability P? Note 3 parameters.
• Decrease with time
• Decrease with gap |f(s) - f(t)|:

• Temperature cools over time.
– So: high temperature, accept any t
– But, low temperature, behaves like hill-climbing
– Still, |f(s) - f(t)| plays a role: if big, replacement probability low.
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Simulated Annealing: Visualization

What does it look like in practice?
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Simulated Annealing: Picking Parameters

• Have to balance the various parts., e.g., cooling schedule.
– Too fast: becomes hill climbing, stuck in local optima
– Too slow: takes too long.

• Combines with variations (e.g., with random restarts)
– Probably should try hill-climbing first though. 

• Inspired by cooling of metals
– We’ll see one more alg. inspired by nature 



Another optimization approach based on nature
• Survival of the fittest!

Genetic Algorithms



Evolution Review

Encode genetic information in DNA (four bases)
• A/C/T/G: nucleobases acting as symbols

• Two types of changes
– Crossover: exchange between parents’ codes
– Mutation: rarer random process

• Happens at individual level



Natural Selection

Competition for resources
• Organisms better fit ➔ better probability of reproducing
• Repeated process: fit become larger proportion of population 

Goal: use these principles for optimization
– New terminology: state is ‘individual’
– Value f(s) is now the ‘fitness’



Genetic Algorithms Setup I

Keep around a fixed number of states/individuals 
• Call this the population
For our n Queens game example, an individual:

(3 2 7 5 2 4 1 1)



Genetic Algorithms Setup II

Goal of genetic algorithms: optimize using principles inspired by 
mechanism for evolution
• E.g., analogous to natural selection, cross-over, and mutation

à Next generation
# of non-

attacking pairs prob. 
reproduction 
µ fitness



Genetic Algorithms Pseudocode

Just one variant:
1. Let s1, …, sN be the current population
2. Let pi = f(si) / Sj f(sj) be the reproduction probability
3. for k = 1; k<N; k+=2

• parent1 = randomly pick according to p
• parent2 = randomly pick another
• randomly select a crossover point, swap strings of 

parents 1, 2 to generate children t[k], t[k+1]
4. for k = 1; k<=N; k++

• Randomly mutate each position in t[k] with a small 
probability (mutation rate)

5. The new generation replaces the old: { s }ß{ t }.  Repeat



Reproduction probability: pi = f(si) / Sj f(sj)
• Example: Sj f(sj) = 5+20+11+8+6=50
• p1=5/50=10%

Reproduction: Proportional Selection
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