B RSAaas S s

CS 540 Introduction to Artificial Intelligence
Informed Search

Yingyu Liang
University of Wisconsin-Madison
Nov 16, 2021

Based on slides by Fred Sala

Outline

 Uninformed continued

e A* Search
— Heuristic properties, stopping rules, analysis

General State-Space Search Algorithm

function general-search(problem, QUEUEING-FUNCTION)
;; problem describes the start state, operators, goal test, and
;; operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or "failure"

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop
if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
problem.OPERATORS))
;; succ(s)=EXPAND(s, OPERATORS)
;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops
end

The general framework for search algorithms.
Input: problem description and also an implementation of the fringe
First put the initial state into the fringe then go to loops

In each iteration:

check if the fringe is empty, if so output failure.

Otherwise get a node from the fringe, and test if it’s the goal state.
If yes, then claim success.

If no, get the successors and put them into the fringe.

Four measures of search algorithms:

Recall the bad space complexity of BFS

Solution:
Uniform-cost

Completeness (not finding all goals):
find a goal.

Optimality: yes if edges cost 1 (more geneally
positive non-decreasing with depth), no otherwise.

Time compleli bl goal is the last node at
radius d. Depth-first

search

Bdes at radius d.

Space complexity (bad, see the Figure)
= Back points for all generated nodes O(@%")
* The queue (smaller, but still O@®"))

Two drawbacks of BFS.
Not optimal for non-uniform cost: addressed by UCS
Bad space complexity: addressed by DFS

Depth-first search

Expand the deepest node first

i Select a direction, go deep to the end m——
2. Slightly change the end s

e, 3 Slightly change the end some more. . . m—

Sl

)

7Ei

DFS expands the deepest node first (compared to: DFS expands the shallowest node first)
The execution of the algorithm intuitively is like going along a direction: going deeper and deeper (because of expanding the deepest node first) until the end;

if still doesn’t get the goal state, step back a bit and slightly change the end (expanding the current deepest node which is one step back along the path);
if still doesn’t get the goal state, step back a bit more and slightly change the end

It’s like a fan swinging across the tree.

Depth-first search (DFS)

Use a stack (First-in Last-out) [> @
1. push(Initial states)

2. While (stack not empty)
3. s=pop()
4. if (s==goal) success!
. T = succs(s)
A
push(T))
— _ tack (f
/. endWhile [S]ig \nnge)

Pseudocode similar to BFS (except using stack instead of queue).

Example:

First put A into the stack.

lterations, node popped, stack at the end of the iteration (left means going to be popped). Tie breaking: left node has higher priority
1: A, [B C]
2:B,[DEC]
3: D, [EC]
4: E, [C]
5:C, [FQG]
6: F, [CG]
7:G

What’s in the fringe for DFS?

® m = maximum depth of graph from start
® m(b-1) ~ O(mb))
(Space complexity) (7

Wi

©,

e

¢ “backtracking search” even less space
® generate siblings (if applicable)

c.f. BFS O(b9)

Performance of DFS: good in space complexity
The fringe contains the children of the nodes along the path, which is in the order of m*b, where b is the branching factor. A significant win over BFS.

Can be further reduced by backtracking trick (not required in this course)

What’s wrong with DFS?

not find goal (incomplete)

¢ Infinite tree: may
¢ May not be optima

® Finite tree: may visiy almost all nodes, time
complexity O®™)

c.f. BFS O(®9)

However, DFS has bad performance in the other 3 aspects.

Incomplete: it can go to the wrong direction which has no goal but is infinite, then it gets in an infinite loop
Not optimal: can shoot in the direction of a suboptimal goal and thus find that goal first
Time complexity: can be infinite on an infinite tree; even on finite tree, it can visit all nodes before reaching the goal which takes time of order bAm

Performance of search algorithms on trees

b: branching factor (assume finite) d: goal depth m: graph depth

Complete optimal time space
preadihfirst |y Y, if o(b°) O(be)
s | Y Y Obe™) | O®C)

Sop N N o(b™) O(bm)

1. edge cost constant, or positive non-decreasing in depth
2. edge costs > ¢ > 0. C*is the best goal path cost.

Qu2-1: You are running DFS in the state space graph below. DFS expands nodes left to
right. G is the goal state. The state space graph is infinite (the path after D does not
terminate). What is the behavior of DFS?

1. Getstuckin an

infinite loop
2. ReturnA
3. Return G

4. Return “failure”

Qu2-1: You are running DFS in the state space graph below. DFS expands nodes left to
right. G is the goal state. The state space graph is infinite (the path after D does not
terminate). What is the behavior of DFS?

1. Getstuckin an

infinite loop
2. ReturnA
3. Return G

4. Return “failure”

First put | into the stack.

Iteration 1: pop I, put ABC into the stack

Iteration 2: pop A, no successor

lteration 3: pop B, add D to the stack

lteration 4: pop D, add the next node along the path to the stack
And it goes deeper and deeper infinitely along the middle path.

How about this?

a il DFS, but stop if path length > 1.
2. If goal not found, repeat DFS, stop if path length >

ﬁs‘az
R

fan within ripple

DFS: good space complexity compared to BFS but bad in the other aspects
Can combine the two to get the best of both: run in stages; across stages like BFS; within each stage run DFS.

In stage t: do DFS only on nodes at most t steps away from the initial state. That is equivalent to considering a truncated tree with nodes at most t steps from the initials
state, and then run DFS on that truncated tree.

Each stage t is like a ripple of radius t (like that in BFS); within the stage, run DFS which acts like a fan within the ripple.

Iterative deepening

Search proceeds like BFS, but fringe is like DFS
= Complete, optimal like BFS
= Small space complexity like DFS
» Time complexity like BFS

Preferred uninformed search method

Performance: because each stage we have a finite truncated tree, we avoid the bad aspects of DFS.

Complete: if there is a goal d steps away from the initial state, then within d stages, we must be able to find it.
Optimal when edge costs are uniform: the first time the truncated tree includes a goal state, it must be the optimal goal state.

Small space complexity: the space needed is like that of DFS
Time complexity: stage t may visit all nodes t steps away from the initial state, so has a runtime of order b/t ; we must succeed within d stages if there is a goal d steps

away from the initial state. So the total run time is in the order of bA1 + bA2 + ... + bAd = O(bAd), similar in order to BFS

So this is the preferred method for uninformed search

Nodes expanded by: s

® ®
Breadth-First Search:. SABCDEG @

Solution found: SAG 3/ 71\9 |4 5

Uniform-Cost Search. SADBCEG @ @ @

Solution found: S B G (This is the only uninformed
search that worries about costs.)

¢ Depth-First Search. SADE G
Solution found: SAG

® Iterative-Deepening Search. SABC SADEG
Solution found: SA G

IDS on the example (tie breaking: expand left node first)

Stage 1:

First put S into the fringe

lteration: node expanded, fringe at the end of the iteration

1:S,[ABC]

2: A, [B C] Note that we only consider nodes within 1 step from S, pretending A has no successors.
3: B, [C]

4: G, []

Stage 2:

First put S into the fringe

1: S,[ABC]

2: A,[DEGBC] Notethat we now consider nodes within 2 steps from S, ie, including all nodes.
3:D,[EGBC(C]

4:E, [GBC(C]

5: G, [B C]. Claim success and return the path SAG

Performance of search algorithms on trees

b: branching factor (assume finite)

d: goal depth

m: graph depth

Complete optimal time space
preadihfirst |y Y, if o(b°) o(be)
s | Y Y Obe™) | O®C)

Sop N N o(b™) O(bm)
aspening | X i o(b) O(ba)

1. edge cost constant, or positive non-decreasing in depth
2. edgecosts >¢>0. C*is the best goal path cost.

If state space graph is not a tree

® The problem: repeated states

Sas
o
6 e

® Ignore the danger of repeated states: wasteful (BFS)
or impossible (DFS). Can you see why?

® How to prevent it?

We have been talking about search on trees which have no loops. If there is a loop then we may revisit an already expanded node.
Consider DFS on the given graph (assuming tie-breaking by expanding left nodes first).

First put (CSDF,) into the fringe.

Iteration 1: pop (CSDF,), put (CD, SF) into the fringe

lteration 2: pop (CS, SF), put (CSDF,) and (CDF, S) into the fringe
Iteration 3: pop (CSDF))

Get infinite loop

If state space graph is not a tree
We have to remember already-expanded states
(CLOSED).

When we take out a state from the fringe (OPEN),
check whether it is in CLOSED (already expanded).

= [f yes, throw it away.

» If no, expand it (add successors to OPEN), and
move it to CLOSED.

The idea is simple: keep a CLOSED set which memorizes all nodes already expanded; check when get a stage from the fringe. (Can also check at the time point when we
generate successors)

Applied to the previous example.

First put (CSDF,) into the fringe. CLOSED set is empty.

lteration 1: pop (CSDF,), put (CD, SF) into the fringe. CLOSED=[CSDF,)]

Iteration 2: pop (CS, SF), put (CSDF,)) and (CDF, S) into the fringe. CLOSED=[CSDF,), (CS, SF)]
Iteration 3: pop (CSDF,). Note that it’s in CLOSED, so throw away.

Iteration 4: pop (CDF,),

Can avoid the infinite loop

What you should know

® Problem solving as search: state, successors, goal test
® Uninformed search
= Breadth-first search
*Uniform-cost search
= Depth-first search

9
= |terative deepening* © B Rggee gﬁ
&&=

® Can you unify them using the same algorithm, with
different priority functions?

® Performance measures

= Completeness, optimality, time complexity, space
complexity

Summary:

The search framework

Several uninformed search methods

Unified pseudocode for them; key difference: how to pick a node from the fringe to expand first
Performance measure; iterative deepening is the preferred method due to its good performance.

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
* Path cost g(s) from start to node s

* Successors. @
gls)

Informed search. Know:
* Alluninformed search properties, plus
* Heuristic h(s) from s to goal

a(s)

-

Key difference: knows an additional function h(s), which can be regarded as an
estimation of the cost from a state to the goal (or one of the goal states).

35

Informed Search

Informed search. Know:
* Alluninformed search properties, plus
* Heuristic h(s) from s to goal

* Use information to speed up search.

36

Using the Heuristic

Back to uniform-cost search

* We had the priority queue
* Expand the node with the smallest g(s)
— g(s) “first-half-cost”

* Now let’s use the heuristic (“second-half-cost”)
— Several possible approaches: let’s see what works

Recall in UCS: we pick the node with the lowest cost g(s). This is using the first half
cost. Now we have h(s) giving an estimation of the second-half-cost, we can think of

ways to use it.

There are several approaches: which works and under what conditions?

37

Attempt 1: Best-First Greedy

One approach: just use h(s) alone

» Specifically, expand node with smallest h(s)
* Thisisn’t a good idea. Why?

1 1 1
h=3 h=2 h=1 h=0

* Notoptimal!lGetA->C->G. Want: AB->C->G

Attempt: use only h as the priority.

Can lead to trouble: because g is not considered at all, then may pick a path that has

a large g, which is suboptimal.

Example:

Iteration: node expanded, fringe at the end

1: (A, 3), [(B,2), (C,1)]

2:(C,1), I(8,2),(G,0)]

3:(G,0) claim success and return the path ACG.

ACG has cost 1000, much larger than the optimal cost by ABCG.

This is because the edge AC has a huge cost, which is not taken into account.

38

Attempt 2: A Search

Next approach: use both g(s) + h(s)
Specifically, expand node with smallest g(s) + h(s)
* Again, use a priority queue
Called “A” search

Still not optimal! (Does work for former example).

Natural fix: use g+h. Called A search.

Can fix the issue in the example on the previous slide. But may still be optimal in
other cases, when h is very inaccurate.

Example on this slide:

Iteration: node expanded, fringe at the end

1: (A, 3), [(B,1001), (C,1000)]

2:(C,1000), [(B,1001), (G,1000)]

3:(G,1000) claim success and return the path ACG.

ACG has cost 1000, much larger than the optimal cost by ABCG.

This is because the h value of B is huge, very inaccurate estimation of the true cost
(the true cost from B to G is only 2).

39

Attempt 3: A* Search

Same idea, use g(s) + h(s), with one requirement
* Demand that 0 < h(s) < h*(s), the actual cost
* |f heuristic has this property, “admissible”

— Optimistic! Never over-estimates I

* Still need h(s) 20
— Negative heuristics can lead to strange behavior I

* This is A* search

V. Batotanin

Then we add an requirement on the h: it should be a rough estimation of the true
value h*.

Formally, it’s within 0 and the true value on any node s: admissible.

A* search = A search + admissible heuristic function

40

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)
* Example: 8-puzzle

Example 1 2 g°a| L% 2
State 2 |6 |3 e 12 5 l6
7 |4 |8 7 |8

* One useful approach: relax constraints

— h(s) = number of tiles in wrong position
* allows tiles to fly to destination in a single step

How can we design an admissible heuristic without knowing the actual cost h*?

Useful principle: relax the constraints on the successor function in the search
problem; compute the cost in the relaxed problem. Relaxing the constraints is like
adding edges to the search graph, which can only introduce more paths and thus will
not increase the cost.

Example:

Original 8-puzzle only allow to move the tiles around the blank space.

Relax: allow the corresponding number to fly to the destination. (In the example
state, allow to fly 2 to the blank space)

If we keep flying in this way, the steps to reach the goal state is #tiles in wrong
position. Let that be the heuristic. It’s now clear that it’s admissible: nonnegative; and
at most the true cost since in the original search problem each wrong-position tile
need to be moved at least once to get to the goal state.

41

Break & Quiz

Q 1.1: Consider finding the fastest driving route from one US city to
another. Measure cost as the number of hours driven when driving at

the speed limit. Let h(s) be the number of hours needed to ride a bike
from city s to your destination. h(s) is

* A. An admissible heuristic
* B. Not an admissible heuristic

42

Break & Quiz

Q 1.1: Consider finding the fastest driving route from one US city to
another. Measure cost as the number of hours driven when driving at

the speed limit. Let h(s) be the number of hours needed to ride a bike
from city s to your destination. h(s) is

* A. An admissible heuristic
* B. Not an admissible heuristic

43

Break & Quiz

Q 1.1: Consider finding the fastest driving route from one US city to
another. Measure cost as the number of hours driven when driving at

the speed limit. Let h(s) be the number of hours needed to ride a bike
from city s to your destination. h(s) is

* A. An admissible heuristic No: riding your bike take longer.
* B. Not an admissible heuristic

44

Break & Quiz

Q 1.2: Which of the following are admissible heuristics?
(i) his)=h*(s)

(i) h(s)=max(2, h*(s))

(iii) h(s)=min(2, h*(s))

(iv) h(s) = h*(s)-2

(v) his)=sart(h*(s))

* A.All of the above

* B. (i), (iii), (iv)

o C. (i), (iii)

* D. (i), (iii), (v)

45

Break & Quiz

Q 1.2: Which of the following are admissible heuristics?
(i) his)=h*(s)

(i) h(s)=max(2, h*(s))

(iii) h(s)=min(2, h*(s))

(iv) h(s) = h*(s)-2

(v) his)=sart(h*(s))

* A.All of the above

* B. (i), (iii), (iv)

o C. (i), (iii)

* D. (i), (iii), (v)

46

Break & Quiz

Q 1.2: Which of the following are admissible heuristics?
(i) his)=h*(s)

(i) h(s)=max(2, h*(s)) No: h(s) might be too big

(iii) h(s)=min(2, h*(s))

(iv) h(s) = h*(s)-2 No: h(s) might be negative

(v) h(s)=sqrt(h*(s)) No: if h*(s) < 1 then h(s) is bigger

A. All of the above

B. (i), (iii), (iv)

C. (i), (iii)

D. (i), (iii), (v)

Heuristic Function Tradeoffs

Dominance: h, dominates h; if for all states s,
h,(s) < h,(s) < h*(s)

* ldea: we want to be as close to h* as possible
— But not over!

* Tradeoff: being very close might require a very complex
heuristic, expensive computation

— Might be better off with cheaper heuristic & expand more nodes.

48

A* Termination

When should A* stop?
* One idea: as soon as we reach goal state?

h=1
* hadmissible, but note that we get A B = G (cost 1000)!

If we stop and return as soon as we generate a goal state, can return a suboptimal
path.

Example:

Iteration: node expanded, fringe at the end

1: (A, 2), [(8,1), (C,2)]

2:(B,1), [(C,2), (G,1000)]. Stop and return

The path obtained is ABG which is suboptimal. This is due to that we haven’t
considered the last step (BG has a huge cost 999).

49

A* Termination

When should A* stop?
* Rule: terminate when a goal is popped from queue.

* Note: taking h =0 reduces to uniform cost search rule.

If we return only when we pop the goal from the fringe, then can solve the issue.
(Also this is consistent with what we did in uninformed search.)

Example:

Iteration: node expanded, fringe at the end

1: (A, 2), [(8,1), (C,2)]

2:(B,1), [(C,2), (G,1000)]

3:(C,2), [(G, 2)] Here we generate another copy of G (going from A to C to G),
which has a smaller cost 2, than the old copy (G,1000). We can keep only the lower
cost copy.

4: (G,2).

Return the path ACG.

It also shows that we should compare the new copy with the old copy, when we
revisit an already expanded state.

50

A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter
path:

h=900
* Put D back into priority queue, smaller g+h

In the general case, need to keep a CLOSED set

Example:

Iteration: node expanded, fringe at the end, CLOSED set at the end

1: (A, 1), [(B,2), (C,901)], [(A,1)]

2:(B,2), [(D,4), (C,901)], [(A,1),(B,2)]

3:(D,4), [(C,901), (G, 1002)], [(A,1), (B,2), (D,4)]

4:(C,901), [(G,1002), (D,3)], [(A,1), (B,2), (D,3)] Note that in iteration 4, we find out
that D has been expanded but the new copy has a lower cost, so still process it; also
put the new copy to the CLOSED set so that later can use it filter new copies with cost
>= 3; the old copy in the CLOSED set can be removed or kept and here we remove it

5: (D, 3), [(G,1001)], [(A,1), (B,2), (D,3), (C,901)] Note that in iteration 5, we find out

that G has been generated but the new copy has a lower cost.
6, (G,1001). Claim success and return the path ACDG.

51

A* Full Algorithm

1. Putthe start node S on the priority queue, called OPEN
2. If OPEN is empty, exit with failure
3. Remove from OPEN and place on CLOSED a node n for which f(n) is minimum (note that

f(n)=g(n)+h(n))
4. Ifnisagoal node, exit (trace back pointers from n to S)

5. Expand n, generating all successors and attach to pointers back to n. For each successor n' of n
1. Ifn'is not already on OPEN or CLOSED estimate h(n'), g(n')=g(n)+ c(n,n’), f(n')=g(n")+h(n’),
and place it on OPEN.
2. Ifn'is already on OPEN or CLOSED, then check if g(n') is lower for the new version of n'. If so,
then:
1. Redirect pointers backward from n' along path yielding lower g(n').
2. Put n' on OPEN.
3. Ifg(n')is not lower for the new version, do nothing.
6. Goto 2.

Differences from how we handle repeated states in uninformed search

1. Inthe uninformed search slide, we don’t consider cost. (but we can also consider
cost for uninformed search if needed)

2. Inthe uninformed search slide the check is done when a node is picked from the
fringe; here the check is done when a node is generated by the successor
function. (but here we can also perform the check when a node is picked from the

fringe)

52

A* Analysis

Some properties:

* Terminates!

* A* can use lots of memory: O(#
states).

* Will run out on large problems.

It’s guaranteed to terminate. But it can use lots of memory since it may keep all states
before termination. Can use some other tricks to alleviate this issue.

53

Break & Quiz

Q 2.1: Consider two heuristics for the 8 puzzle problem. h, is the number
of tiles in wrong position. h, is the |;/Manhattan distance between the
tiles and the goal location. How do h, and h, relate?

* A. h, dominates h,
* B. h, dominates h,
* C. Neither dominates the other

54

Break & Quiz

Q 2.1: Consider two heuristics for the 8 puzzle problem. h, is the number
of tiles in wrong position. h, is the |,/Manhattan distance between the
tiles and the goal location. How do h, and h, relate?

* A. h, dominates h,
* B. h, dominates h,
* C. Neither dominates the other

55

Break & Quiz

Q 2.1: Consider two heuristics for the 8 puzzle problem. h, is the number
of tiles in wrong position. h, is the |,/Manhattan distance between the
tiles and the goal location. How do h, and h, relate?

* A. h, dominates h,

* B. h, dominates h, (No: h, is a distance where each entry is at
most 1, h, can be greater)

* C. Neither dominates the other

56

Summary

Informed search: introduce heuristics
— Not all approaches work: best-first greedy is bad

e A*algorithm

— Properties of A*, idea of admissible heuristics

59

Acknowledgements: Adapted from materials by Jerry Zhu,
Anthony Gitter, and Fred Sala (University of Wisconsin-Madison).

60

