




The general framework for search algorithms. 


Input: problem description and also an implementation of the fringe


First put the initial state into the fringe then go to loops


In each iteration:

check if the fringe is empty, if so output failure.

Otherwise get a node from the fringe, and test if it’s the goal state. 

If yes, then claim success.

If no, get the successors and put them into the fringe.




Two drawbacks of BFS.

Not optimal for non-uniform cost: addressed by UCS

Bad space complexity: addressed by DFS




DFS expands the deepest node first (compared to: DFS expands the shallowest node first )


The execution of the algorithm intuitively is like going along a direction: going deeper and deeper (because of expanding the deepest node first) until the end;

if still doesn’t get the goal state, step back a bit and slightly change the end (expanding the current deepest node which is one step back along the path);

if still doesn’t get the goal state, step back a bit more and slightly change the end 

… 


It’s like a fan swinging across the tree.




Pseudocode similar to BFS (except using stack instead of queue). 


Example:

First put A into the stack.

Iterations, node popped, stack at the end of the iteration (left means going to be popped). Tie breaking: left node has higher priority

1: A, [B C]

2: B, [D E C]

3: D, [E C]

4: E, [C]

5: C, [F G]

6: F, [G]

7: G




Performance of DFS: good in space complexity 


The fringe contains the children of the nodes along the path, which is in the order of m*b, where b is the branching factor. A significant win over BFS.


Can be further reduced by backtracking trick (not required in this course)




However, DFS has bad performance in the other 3 aspects.


Incomplete: it can go to the wrong direction which has no goal but is infinite, then it gets in an infinite loop

Not optimal: can shoot in the direction of a suboptimal goal and thus find that goal first

Time complexity: can be infinite on an infinite tree; even on finite tree, it can visit all nodes before reaching the goal which takes time of order b^m








First put I into the stack.

Iteration 1: pop I, put ABC into the stack

Iteration 2: pop A, no successor

Iteration 3: pop B, add D to the stack

Iteration 4: pop D, add the next node along the path to the stack

And it goes deeper and deeper infinitely along the middle path.




DFS: good space complexity compared to BFS but bad in the other aspects


Can combine the two to get the best of both: run in stages; across  stages like BFS; within each stage run DFS. 


In stage t: do DFS only on nodes at most t steps away from the initial state. That is equivalent to considering a truncated tree with nodes at most t steps from the initials 
state, and then run DFS on that truncated tree.


Each stage t is like a ripple of radius t (like that in BFS); within the stage, run DFS which acts like a fan within the ripple. 




Performance: because each stage we have a finite truncated tree, we avoid the bad aspects of DFS.


Complete: if there is a goal d steps away from the initial state, then within d stages, we must be able to find it. 

Optimal when edge costs are uniform: the first time the truncated tree includes a goal state, it must be the optimal goal state.

Small space complexity: the space needed is like that of DFS

Time complexity: stage t may visit all nodes t steps away from the initial state, so has a runtime of order b^t ; we must succeed within d stages if there is a goal d steps 
away from the initial state. So the total run time is in the order of b^1 + b^2 + … + b^d = O(b^d), similar in order to BFS  


So this is the preferred method for uninformed search




IDS on the example (tie breaking: expand left node first)


Stage 1:

First put S into the fringe

Iteration: node expanded, fringe at the end of the iteration

1: S, [A B C]

2: A, [B C]       Note that we only consider nodes within 1 step from S, pretending A has no successors. 

3: B, [C]

4: C, []


Stage 2: 

First put S into the fringe

1: S, [A B C]

2: A, [D E G B C]     Note that we now consider nodes within 2 steps from S, ie, including all nodes.

3: D, [E G B C]

4: E, [G B C]

5: G, [B C].       Claim success and return the path SAG






We have been talking about search on trees which have no loops. If there is a loop then we may revisit an already expanded node. 


Consider DFS on the given graph (assuming tie-breaking by expanding left nodes first).


First put (CSDF,) into the fringe.

Iteration 1: pop (CSDF, ),  put (CD, SF) into the fringe

Iteration 2: pop (CS, SF), put (CSDF,) and (CDF, S) into the fringe

Iteration 3: pop (CSDF,) …. 

Get infinite loop




The idea is simple: keep a CLOSED set which memorizes all nodes already expanded; check when get a stage from the fringe. (Can also check at the time point when we 
generate successors)


Applied to the previous example.


First put (CSDF,) into the fringe. CLOSED set is empty.

Iteration 1: pop (CSDF, ),  put (CD, SF) into the fringe. CLOSED=[CSDF, )]

Iteration 2: pop (CS, SF), put (CSDF,) and (CDF, S) into the fringe. CLOSED=[CSDF, ), (CS, SF)]

Iteration 3: pop (CSDF,). Note that it’s in CLOSED, so throw away.

Iteration 4: pop (CDF, S), ….

Can avoid the infinite loop




Summary: 

The search framework

Several uninformed search methods

Unified pseudocode for them; key difference: how to pick a node from the fringe to expand first

Performance measure; iterative deepening is the preferred method due to its good performance.




Key difference: knows an additional function h(s), which can be regarded as an 
estimation of the cost from a state to the goal (or one of the goal states). 
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Recall in UCS: we pick the node with the lowest cost g(s). This is using the first half 
cost. Now we  have h(s) giving an estimation of the second-half-cost, we can think of 
ways to use it. 

There are several approaches: which works and under what conditions? 
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Attempt: use only h as the priority. 

Can lead to trouble: because g is not considered at all, then may pick a path that has 
a large g, which is suboptimal. 

Example:
Iteration: node expanded, fringe at the end
1: (A, 3),   [(B,2), (C,1)]
2: (C,1),    [(B,2), (G,0)]
3: (G,0)   claim success and return the path  ACG.
ACG has cost 1000, much larger than the optimal cost by ABCG. 

This is because the edge AC has a huge cost, which is not taken into account. 
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Natural fix: use g+h. Called A search.

Can fix the issue in the example on the previous slide. But may still be optimal in 
other cases, when h is very inaccurate.

Example on this slide:
Iteration: node expanded, fringe at the end
1: (A, 3),   [(B,1001), (C,1000)]
2: (C,1000),    [(B,1001), (G,1000)]
3: (G,1000)   claim success and return the path  ACG.
ACG has cost 1000, much larger than the optimal cost by ABCG. 

This is because the h value of B is huge, very inaccurate estimation of the true cost 
(the true cost from B to G is only 2). 
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Then we add an requirement on the h: it should be a rough estimation of the true 
value h*. 

Formally, it’s within 0 and the true value on any node s: admissible. 

A* search = A search + admissible heuristic function 
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How can we design an admissible heuristic without knowing the actual cost h*? 

Useful principle: relax the constraints on the successor function in the search 
problem; compute the cost in the relaxed problem. Relaxing the constraints is like 
adding edges to the search graph, which can only introduce more paths and thus will 
not increase the cost. 

Example: 
Original 8-puzzle only allow to move the tiles around the blank space. 
Relax: allow the corresponding number to fly to the destination. (In the example 
state, allow to fly 2 to the blank space)
If we keep flying in this way, the steps to reach the goal state is #tiles in wrong 
position. Let that be the heuristic. It’s now clear that it’s admissible: nonnegative; and 
at most the true cost since in the original search problem each wrong-position tile 
need to be moved at least once to get to the goal state. 
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If we stop and return as soon as we generate a goal state, can return a suboptimal 
path. 

Example:
Iteration: node expanded, fringe at the end
1: (A, 2), [(B,1), (C,2)]
2: (B,1),  [(C,2), (G,1000)]. Stop and return
The path obtained is ABG which is suboptimal. This is due to that we haven’t 
considered the last step (BG has a huge cost 999).
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If we return only when we pop the goal from the fringe, then can solve the issue. 
(Also this is consistent with what we did in uninformed search.)

Example:
Iteration: node expanded, fringe at the end
1: (A, 2), [(B,1), (C,2)]
2: (B,1),  [(C,2), (G,1000)]
3: (C,2), [(G, 2)]     Here we generate another copy of G (going from A to C to G), 
which has a smaller cost 2, than the old copy (G,1000). We can keep only the lower 
cost copy.
4: (G,2).
Return the path ACG. 

It also shows that we should compare the new copy with the old copy, when we 
revisit an already expanded state. 
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In the general case, need to keep a CLOSED set

Example:
Iteration: node expanded, fringe at the end, CLOSED set at the end
1: (A, 1), [(B,2), (C,901)],   [(A,1)]
2: (B,2), [(D,4), (C,901)],    [(A,1), (B,2)]
3: (D,4), [(C,901), (G, 1002)], [(A,1), (B,2), (D,4)]
4: (C,901), [(G,1002), (D,3)], [(A,1), (B,2), (D,3)]   Note that in iteration 4, we find out 
that D has been expanded but the new copy has a lower cost, so still process it; also 
put the new copy to the CLOSED set so that later can use it filter new copies with cost 
>= 3; the old copy in the CLOSED set can be removed or kept and here we remove it

5: (D, 3), [(G,1001)], [(A,1), (B,2), (D,3), (C,901)]    Note that in iteration 5, we find out 
that G has been generated but the new copy has a lower cost.
6, (G,1001).          Claim success and return the path ACDG. 
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Differences from how we handle repeated states in uninformed search
1. In the uninformed search slide, we don’t consider cost. (but we can also consider 

cost for uninformed search if needed)
2. In the uninformed search slide the check is done when a node is picked from the 

fringe; here the check is done when a node is generated by the successor 
function. (but here we can also perform the check when a node is picked from the 
fringe)
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It’s guaranteed to terminate. But it can use lots of memory since it may keep all states 
before termination. Can use some other tricks to alleviate this issue. 
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