

CS 540 Introduction to Artificial Intelligence Perceptron

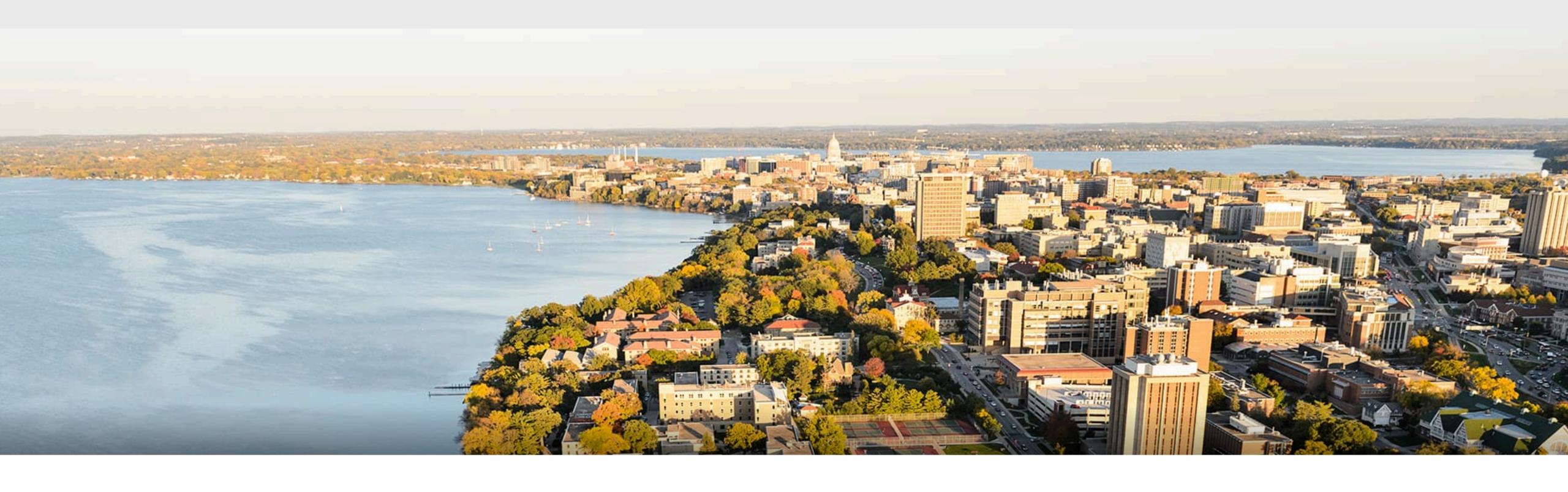
Yingyu Liang
University of Wisconsin-Madison

Oct 19, 2021

Slides created by Sharon Li [modified by Yingyu Liang]

Today's outline

- Naive Bayes (cont.)
- Single-layer Neural Network (Perceptron)



Part I: Naïve Bayes (cont.)

• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ***) vs. p(No | ***)

• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ***) vs. p(No | ***)

- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day *m*}, m={1,2,...,N}

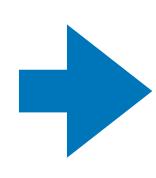
• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ***) vs. p(No | ***)

- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day *m*}, m={1,2,...,N}

• Step 1: Convert the data to a frequency table of Weather and Play

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

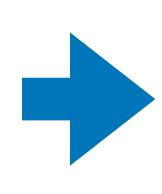


Frequency Table				
Weather	No	Yes		
Overcast		4		
Rainy	3	2		
Sunny	2	3		
Grand Total	5	9		

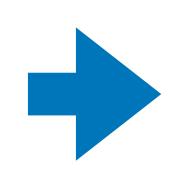
Step 1: Convert the data to a frequency table of Weather and Play

Step 2: Based on the frequency table, calculate likelihoods and priors

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No



Frequency Table			
Weather No Ye			
Overcast		4	
Rainy	3	2	
Sunny	2	3	
Grand Total	5	9	



Like	lihood tab	le		
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14		
	0.36	0.64		

$$p(Play = Yes) = 0.64$$

$$p(|Yes| Yes) = 3/9 = 0.33$$

Step 3: Based on the likelihoods and priors, calculate posteriors

Step 3: Based on the likelihoods and priors, calculate posteriors

```
P(Yes)
=P( Yes)*P(Yes)/P( Yes)
 =0.33*0.64/0.36
 =0.6
P(No
=P( No)*P(No)/P( )
 =0.4*0.36/0.36
 =0.4
```

P(Yes| ***) > P(No| ***) go outside and play!

$$\hat{y} = \arg\max_{y} p(y \mid \mathbf{x}) \quad \text{(Posterior)}$$

$$= \arg\max_{y} \frac{p(\mathbf{x} \mid y) \cdot p(y)}{p(\mathbf{x})} \quad \text{(by Bayes' rule)}$$

$$= \arg\max_{y} p(\mathbf{x} \mid y) p(y)$$

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior) (Prediction)

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

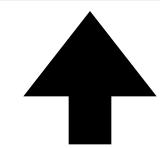
$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior) (Prediction)

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior)

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)



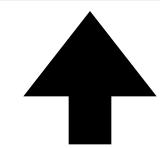
Independent of y

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior)

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)



Independent of y

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior)

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)

$$= \underset{y}{\operatorname{arg max}} p(X_1, \dots, X_k | y) p(y)$$

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior)

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)

$$= \underset{y}{\operatorname{arg\,max}} p(X_1, \dots, X_k | y) p(y)$$

Class conditional likelihood

Class prior

Naïve Bayes Assumption

Conditional independence of feature attributes

Q1-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value
- D Attributes are statistically independent of one another given the class value
- E All of above

Q1-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value
- D Attributes are statistically independent of one another given the class value
- E All of above

Q1-2: Consider a classification problem with two binary features, $x_1, x_2 \in \{0,1\}, y \in \{1,...,32\}$. Suppose P(Y = y) = 1/32, $P(x_1 = 1 | Y = y) = y/46$, $P(x_2 = 1 | Y = y) = y/62$. Which class will naive Bayes classifier produce on a test item with $x_1 = 1$ and $x_2 = 0$?

- A 16
- B 26
- C 31
- D 32

Q1-2: Consider a classification problem with two binary features, $x_1, x_2 \in \{0,1\}$. Suppose P(Y = y) = 1/32, $P(x_1 = 1 | Y = y) = y/46$, $P(x_2 = 1 | Y = y) = y/62$. Which class will naive Bayes classifier produce on a test item with $x_1 = 1$ and $x_2 = 0$?

- A 16
- B 26
- C 31
- D 32

Q1-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

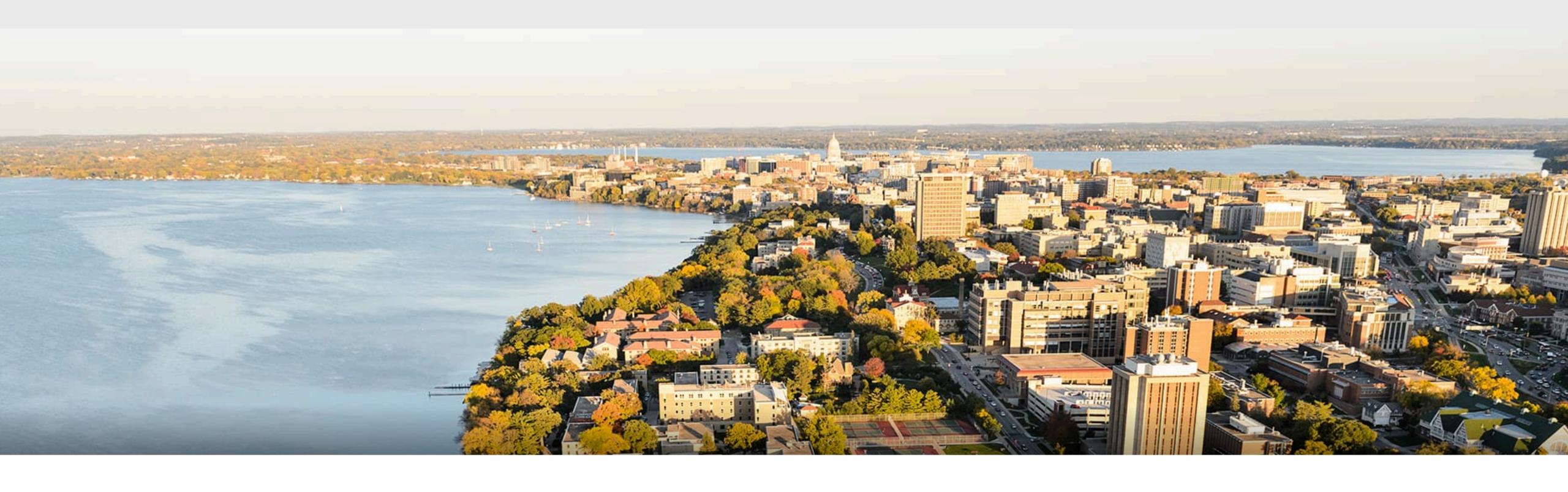
Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

- A Pass
- B Fail

Q1-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

- A Pass
- B Fail



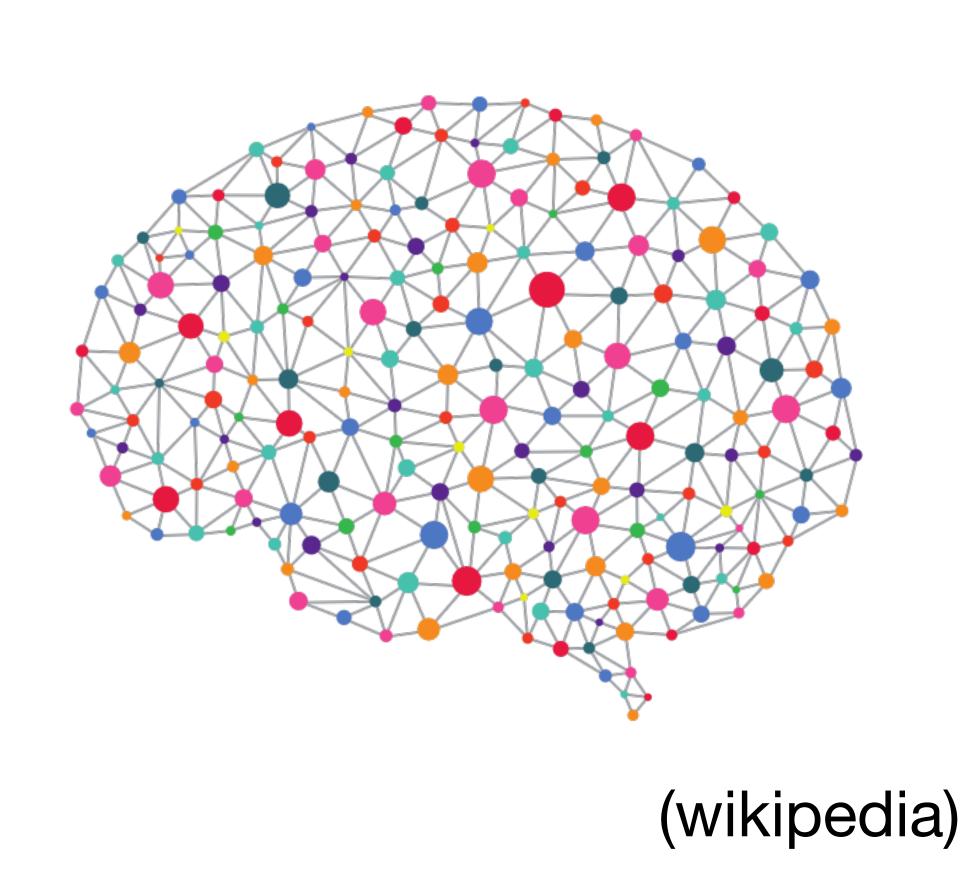
Part I: Single-layer Neural Networks

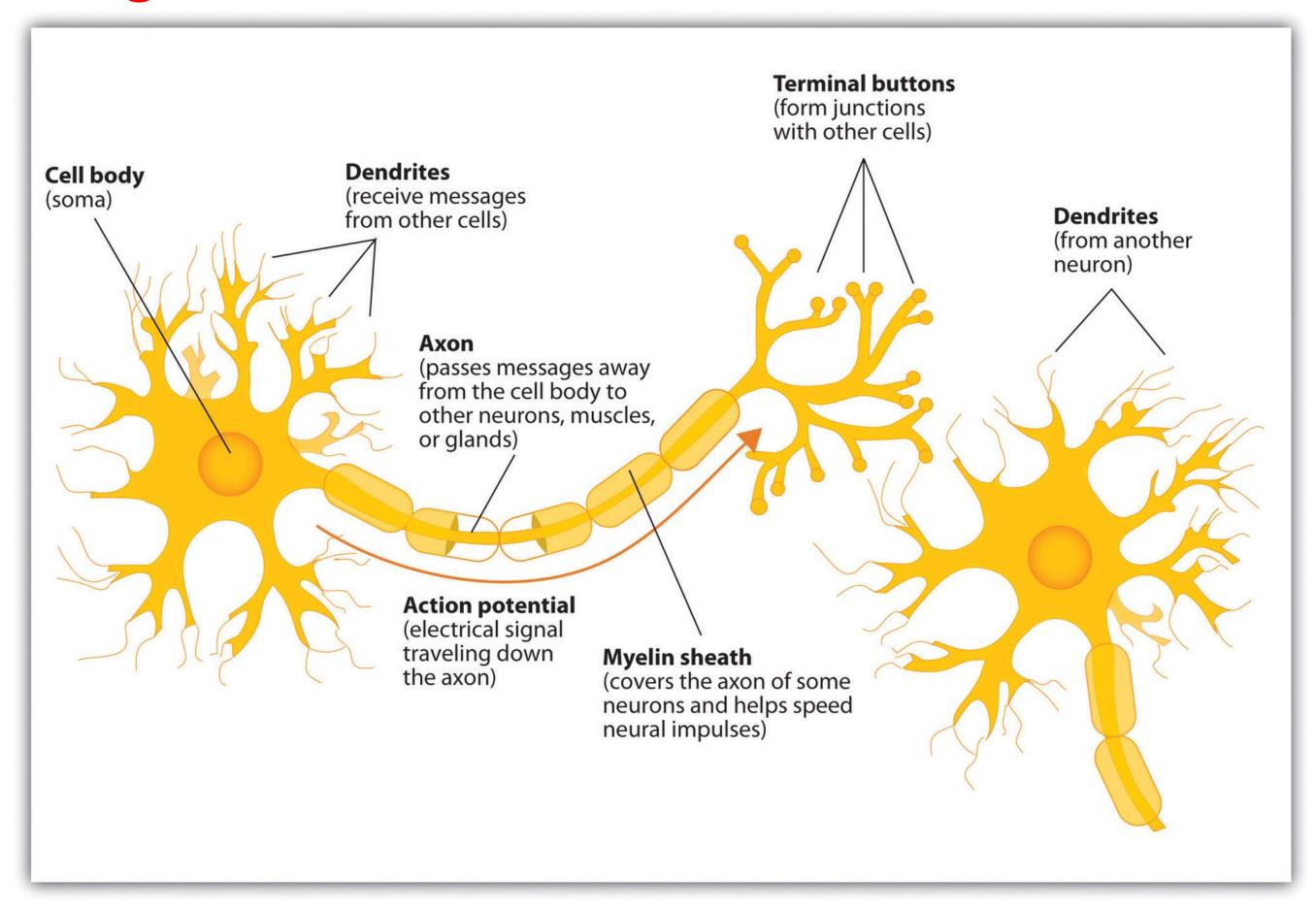
How to classify

Cats vs. dogs?

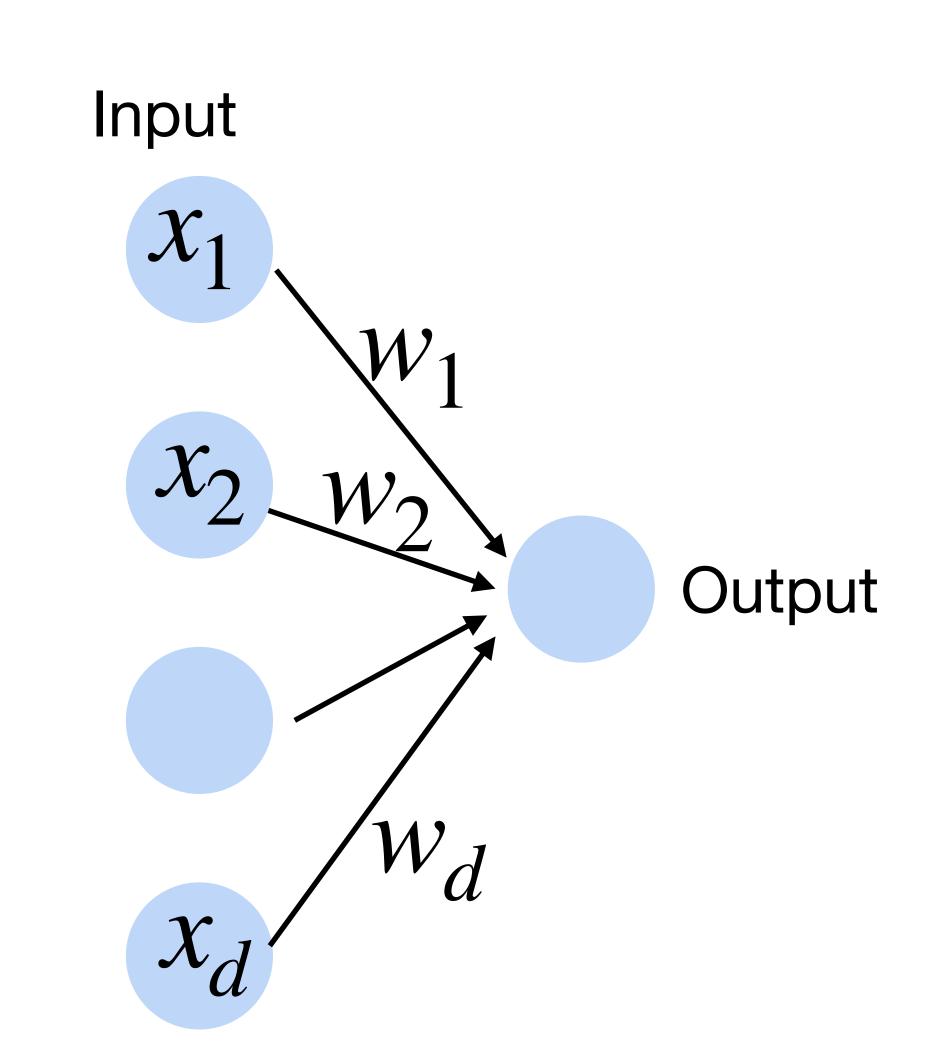
Inspiration from neuroscience

- Inspirations from human brains
- Networks of simple and homogenous units





Cats vs. dogs?



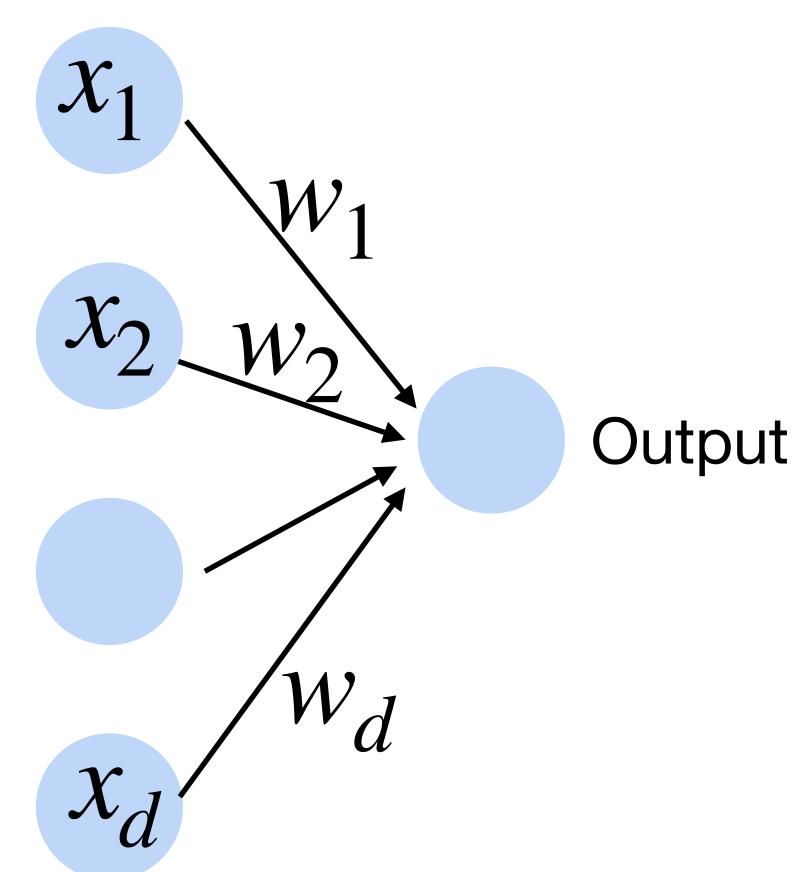
Linear Perceptron

Given input x, weight w and bias b, perceptron outputs:

$$f = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

Input

Cats vs. dogs?



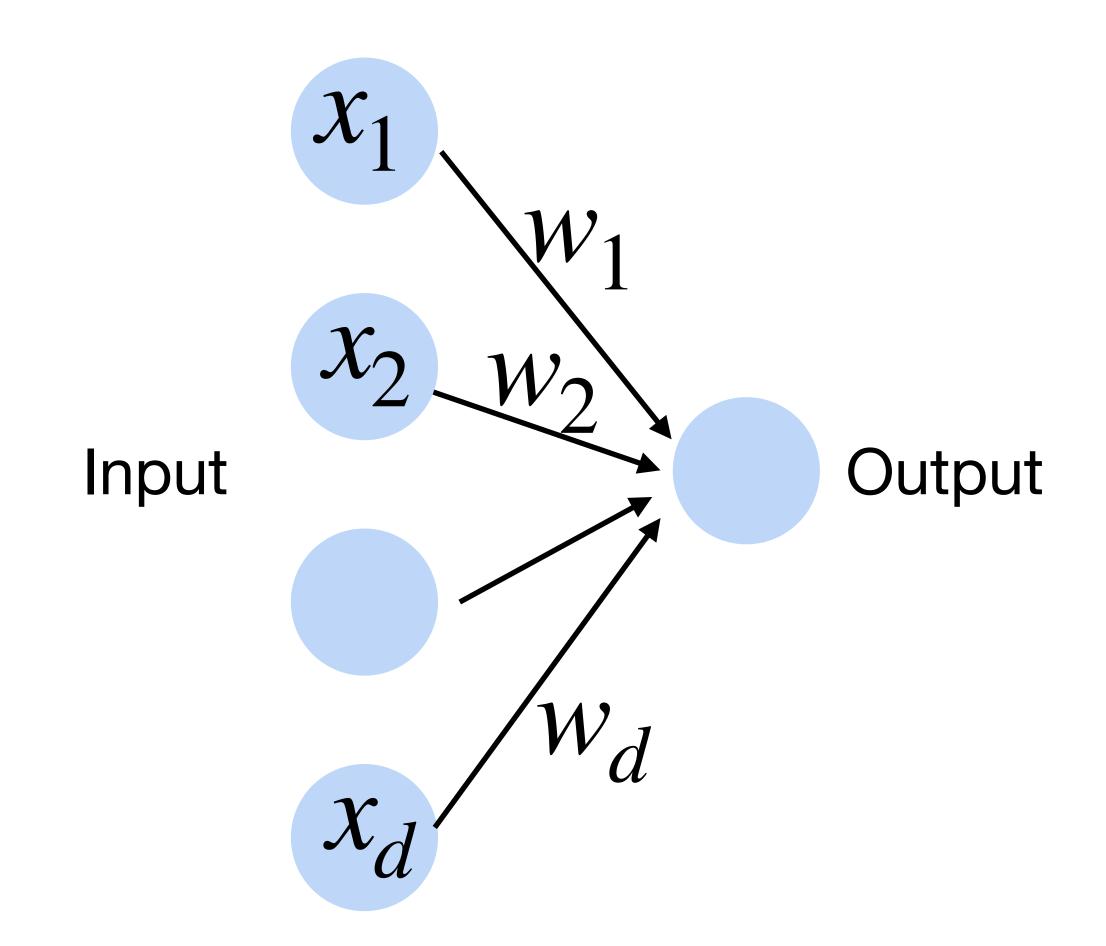
Given input x, weight w and bias b, perceptron outputs:

$$o = \sigma(\langle \mathbf{w}, \mathbf{x} \rangle + b)$$

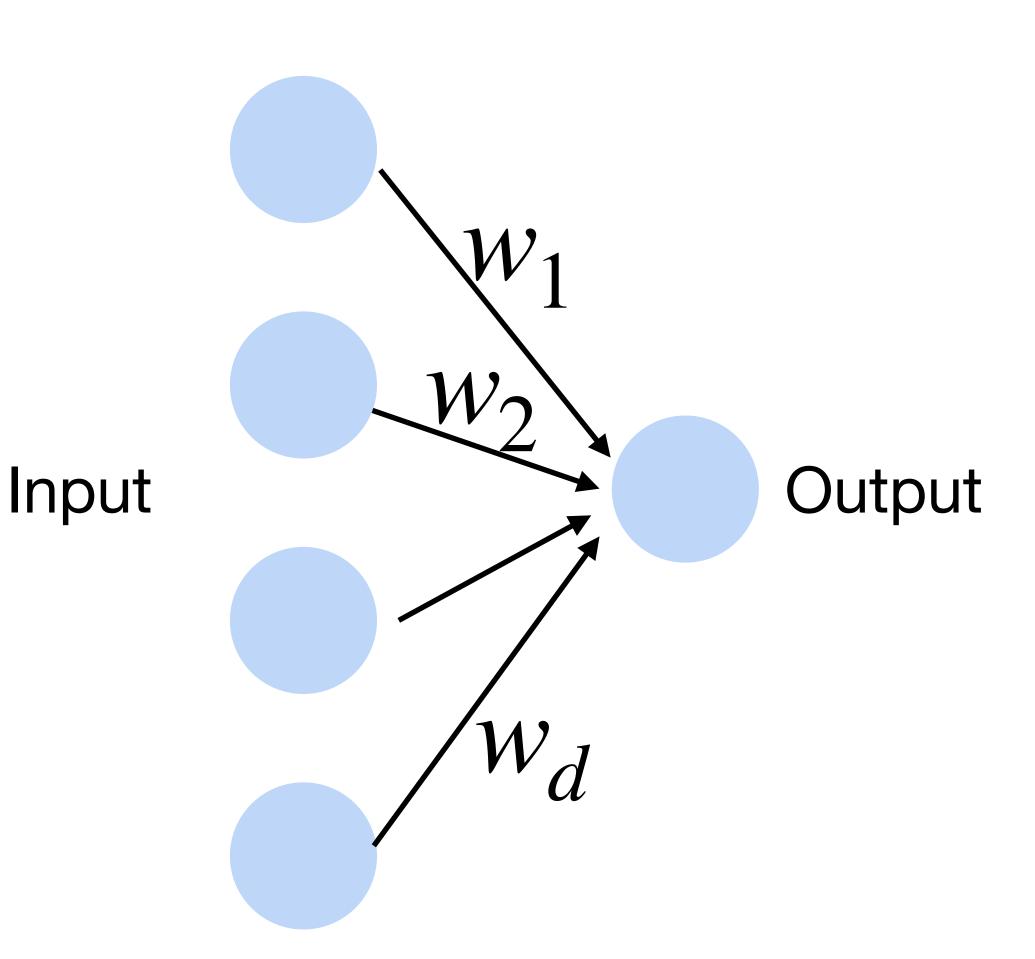
$$o = \sigma\left(\langle \mathbf{w}, \mathbf{x} \rangle + b\right)$$

$$\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$
Activation function

Cats vs. dogs?



• Goal: learn parameters $\mathbf{w} = \{w_1, w_2, \dots, w_d\}$ and b to minimize the classification error

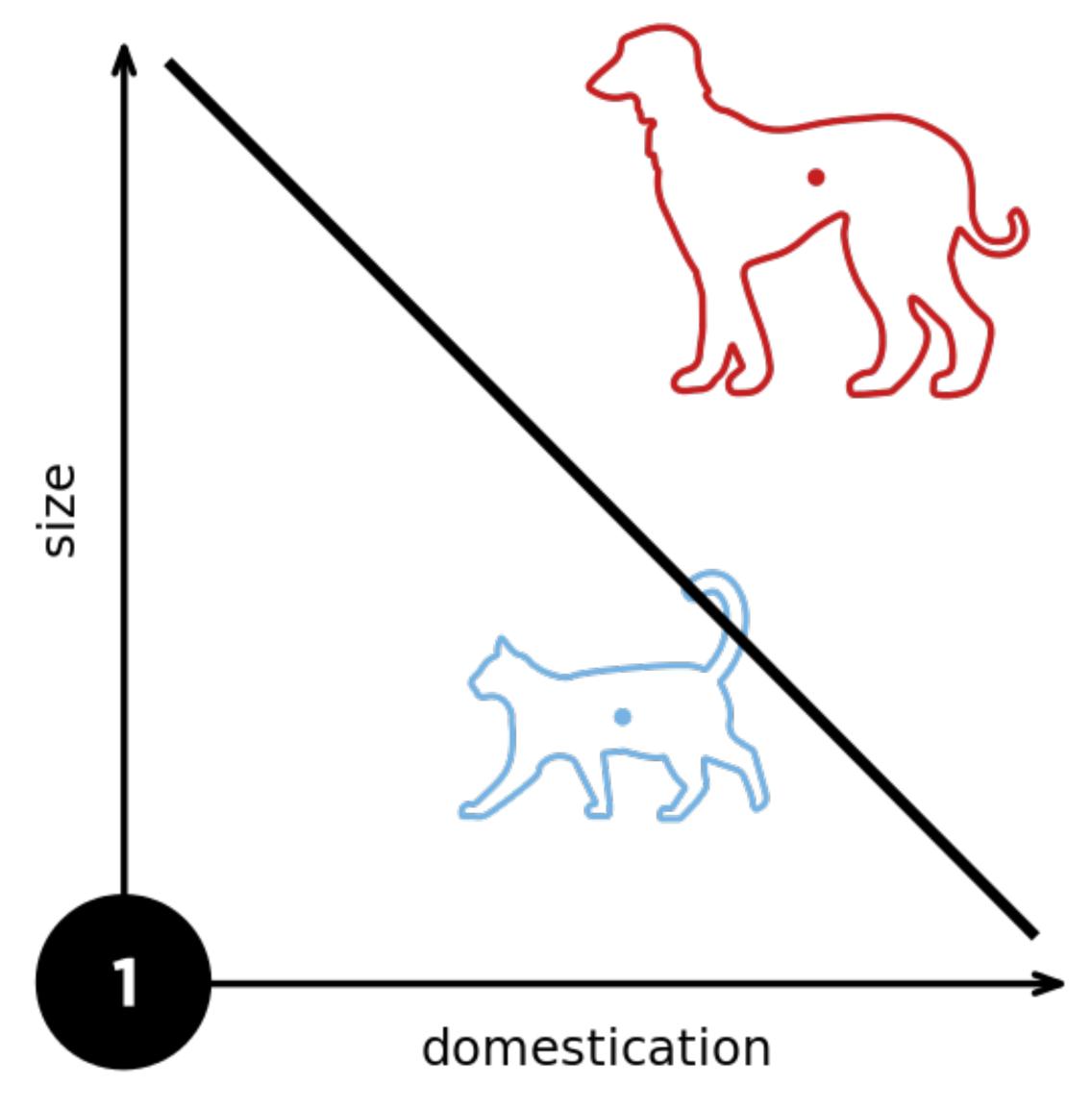


Training the Perceptron

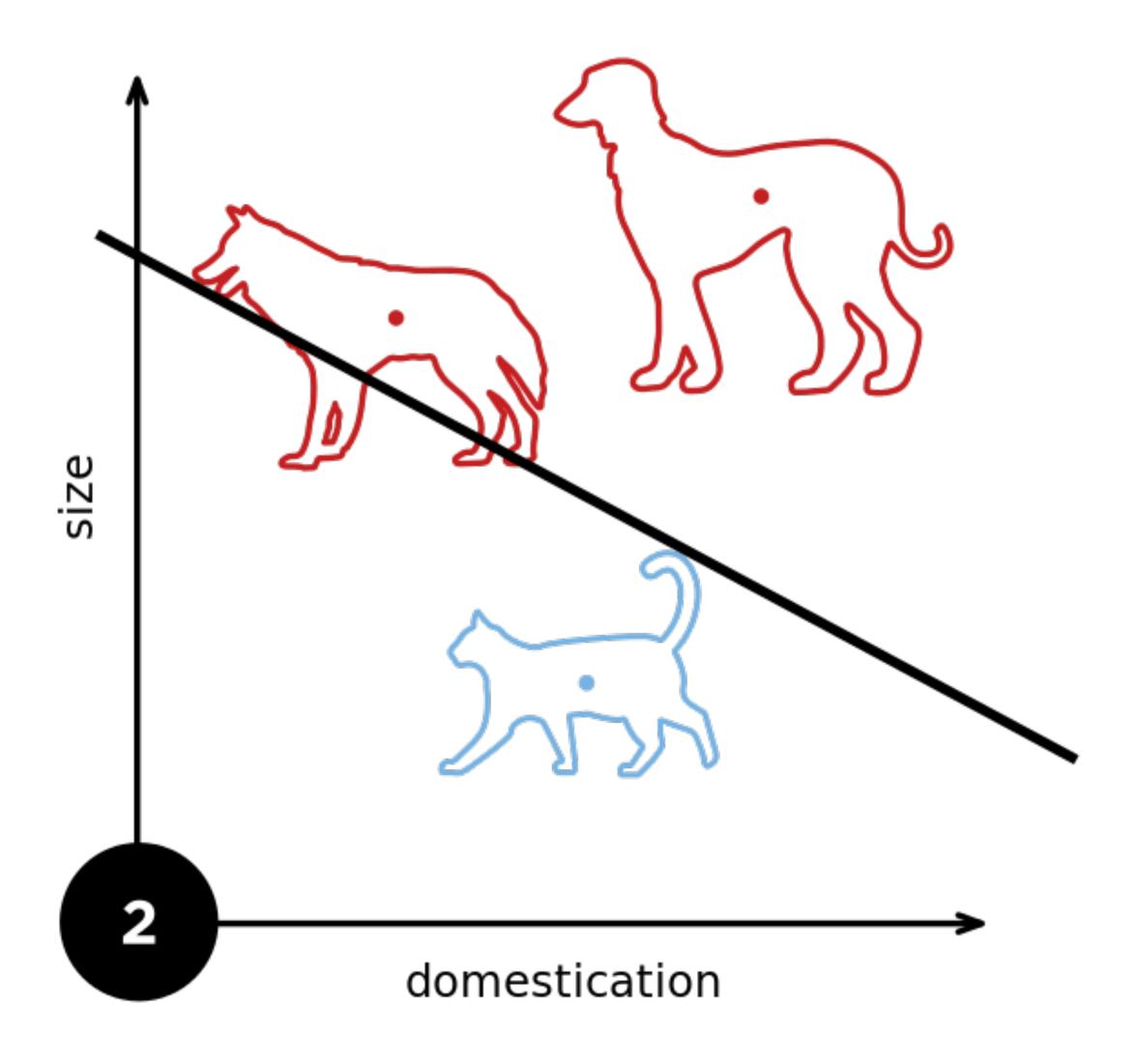
Perceptron Algorithm

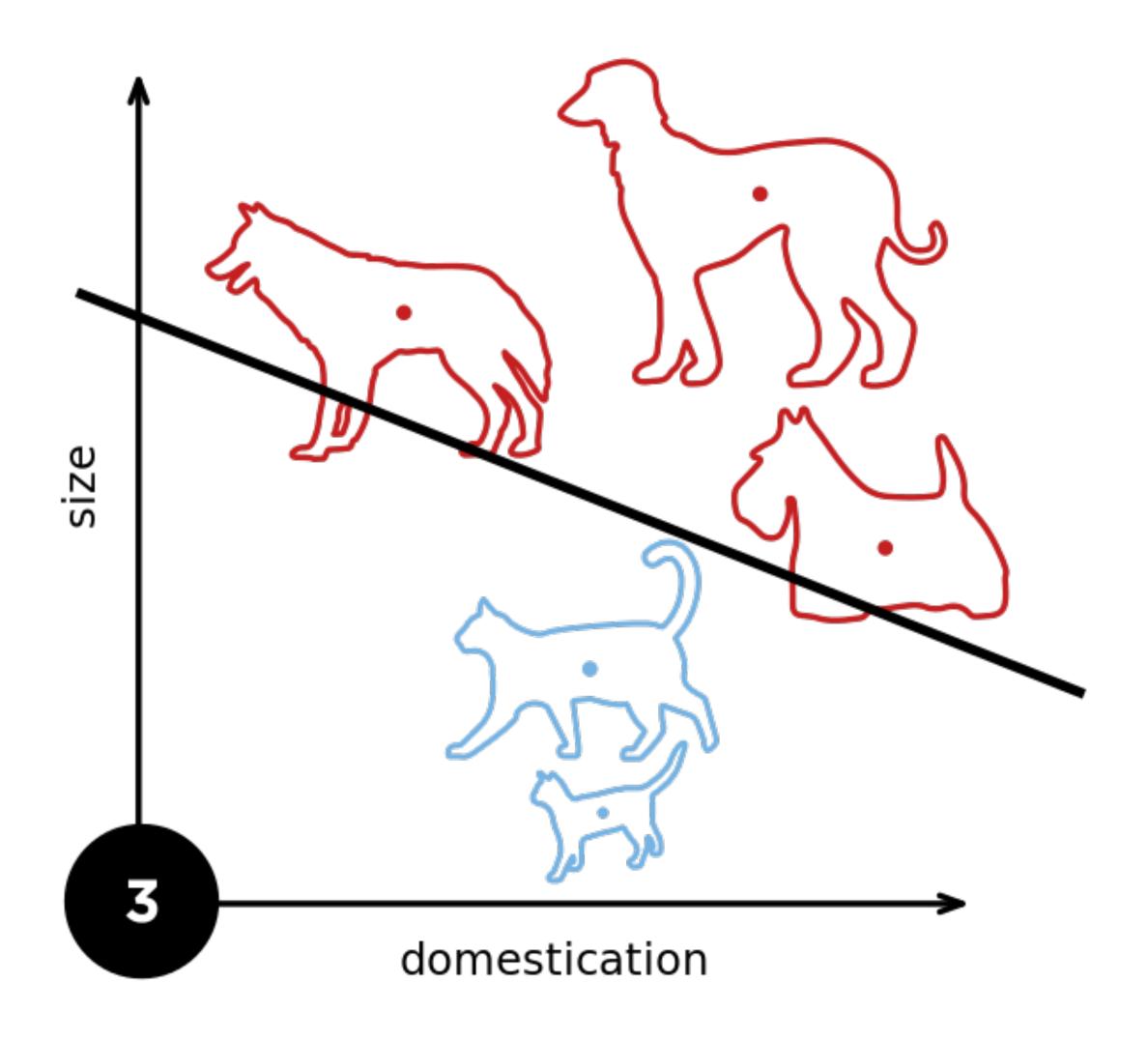
```
Initialize \vec{w} = \vec{0}
                                                 Initialize \vec{w}. \vec{w} = \vec{0} misclassifies everything.
while TRUE do
                                                  Keep looping
    m = 0
                                                  Count the number of misclassifications, m
                                                 Loop over each (data, label) pair in the dataset, D
    for (x_i, y_i) \in D do
                                              // If the pair (\vec{x_i}, y_i) is misclassified
         if o_i \neq y_i
              \overrightarrow{w} \leftarrow \overrightarrow{w} + x_i \text{ if } y_i = 1, \quad \overrightarrow{w} \leftarrow \overrightarrow{w} - x_i \text{ if } y_i = 0
Counter the number of misclassification
         end if
    end for
                                               / If the most recent \vec{w} gave 0 misclassifications
    if m = 0 then
                                                 Break out of the while-loop
         break
    end if
                                                 Otherwise, keep looping!
end while
```

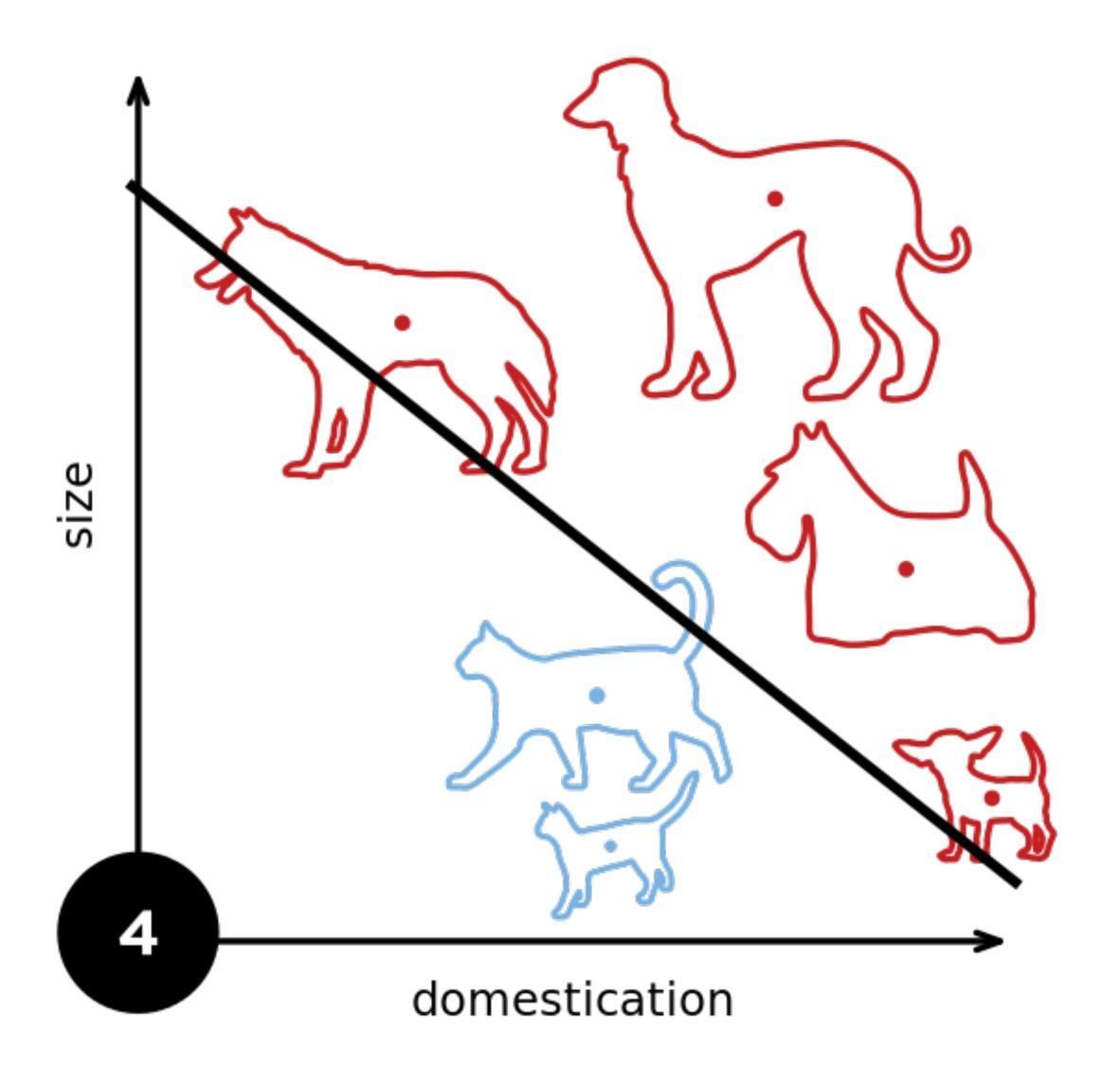
For simplicity, the weight vector and input vector are extended vectors (including the bias or the constant 1).



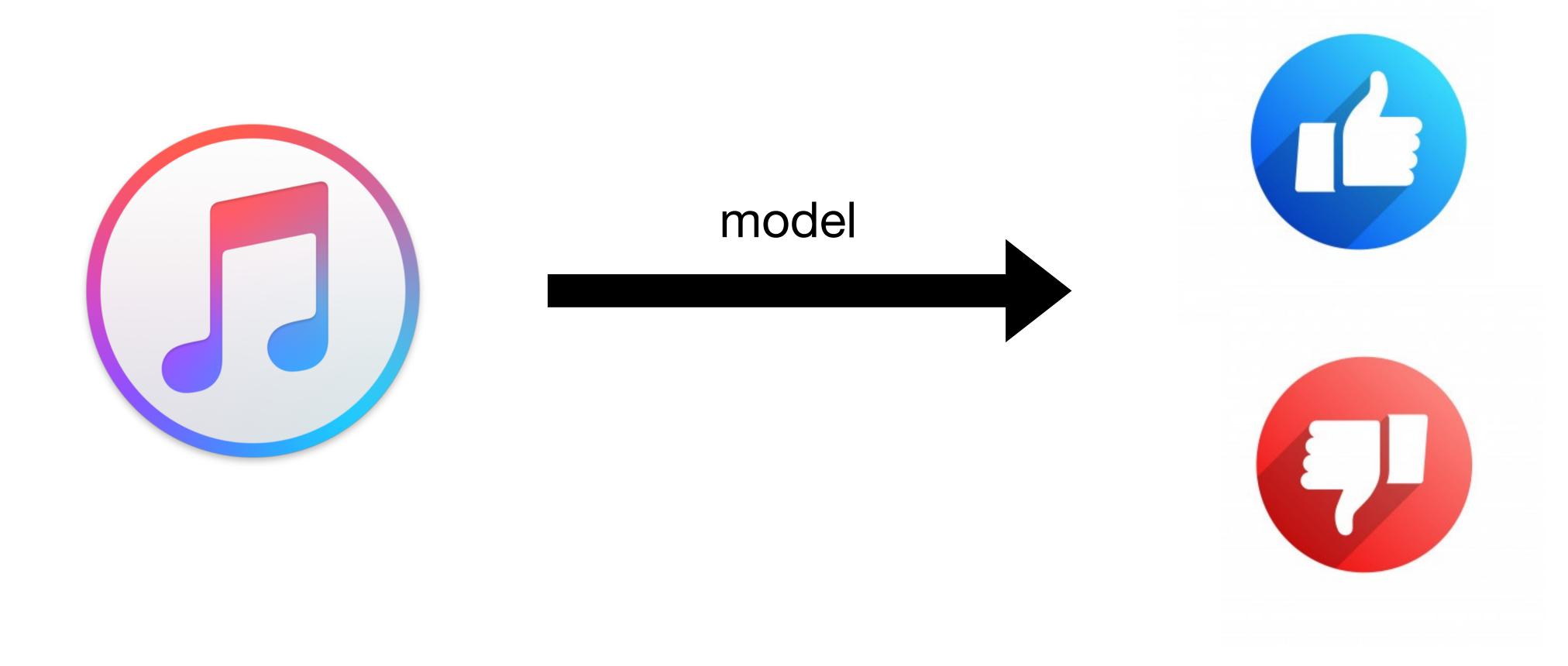
From wikipedia



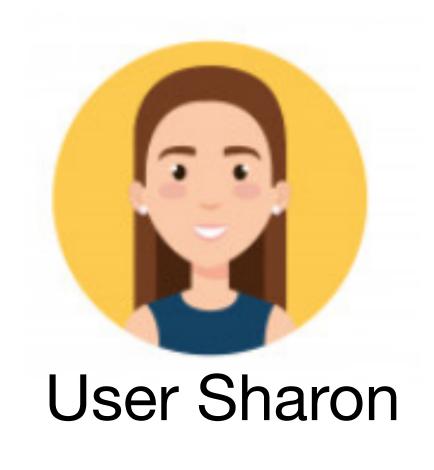




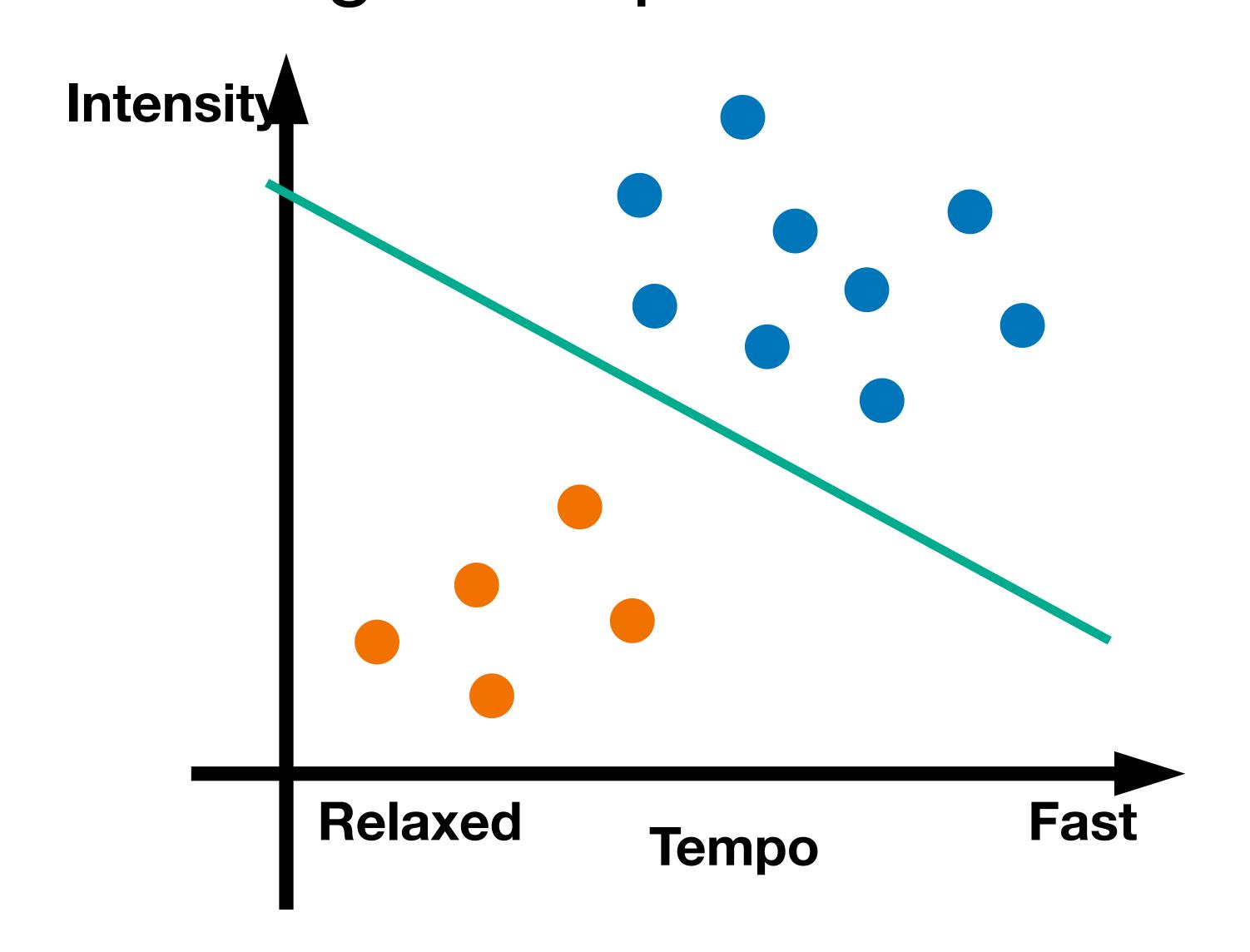
Example 2: Predict whether a user likes a song or not

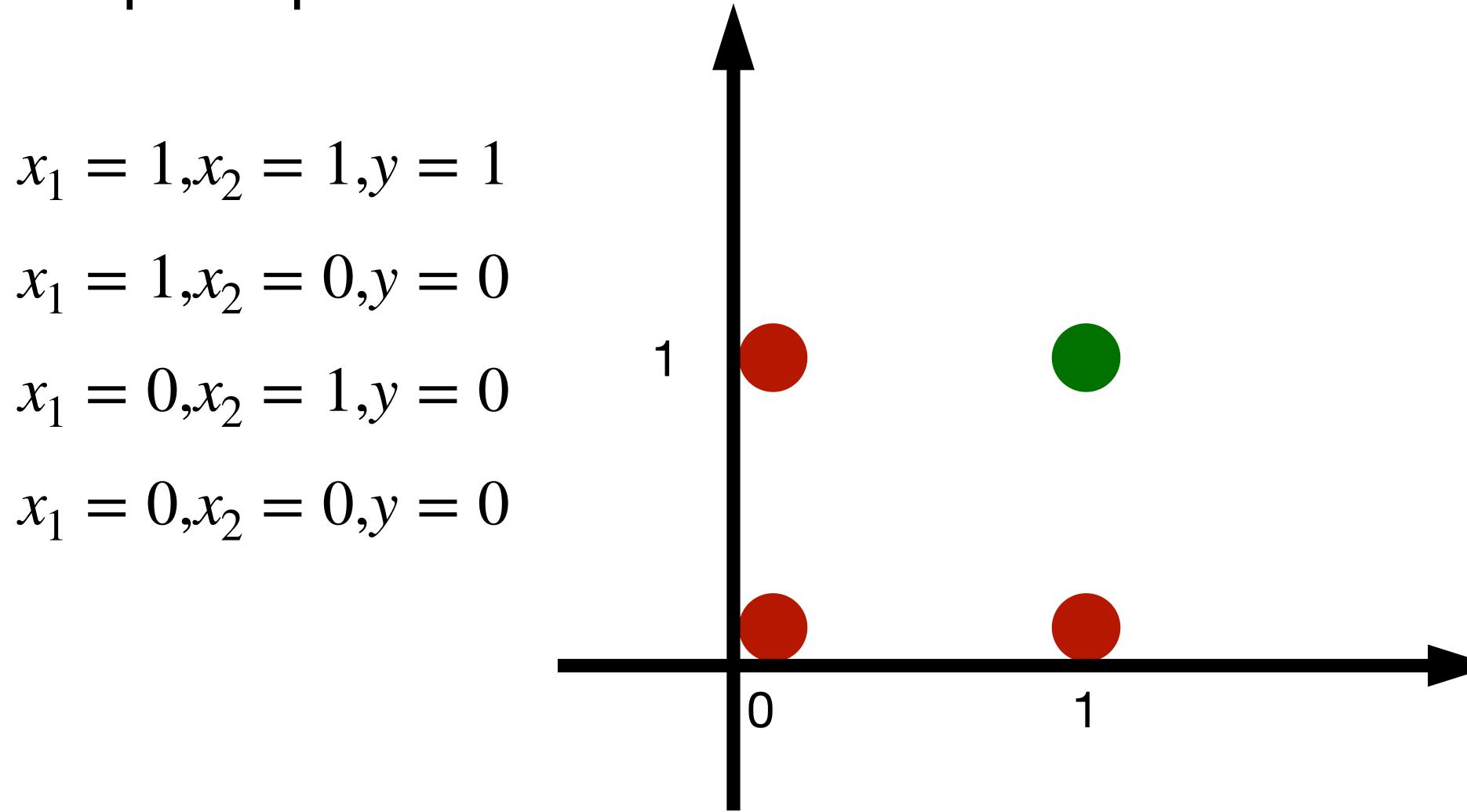


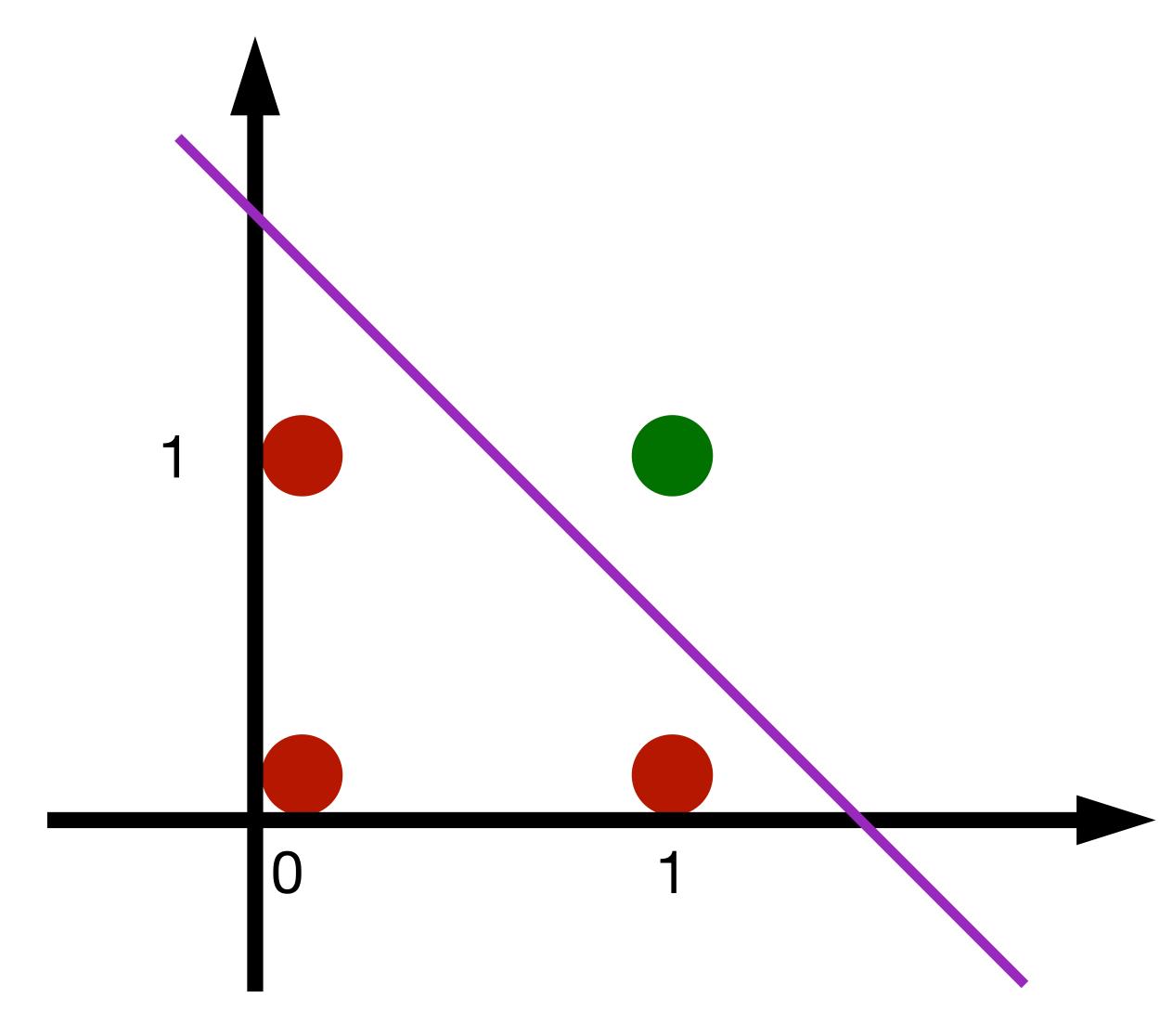
Example 2: Predict whether a user likes a song or not Using Perceptron

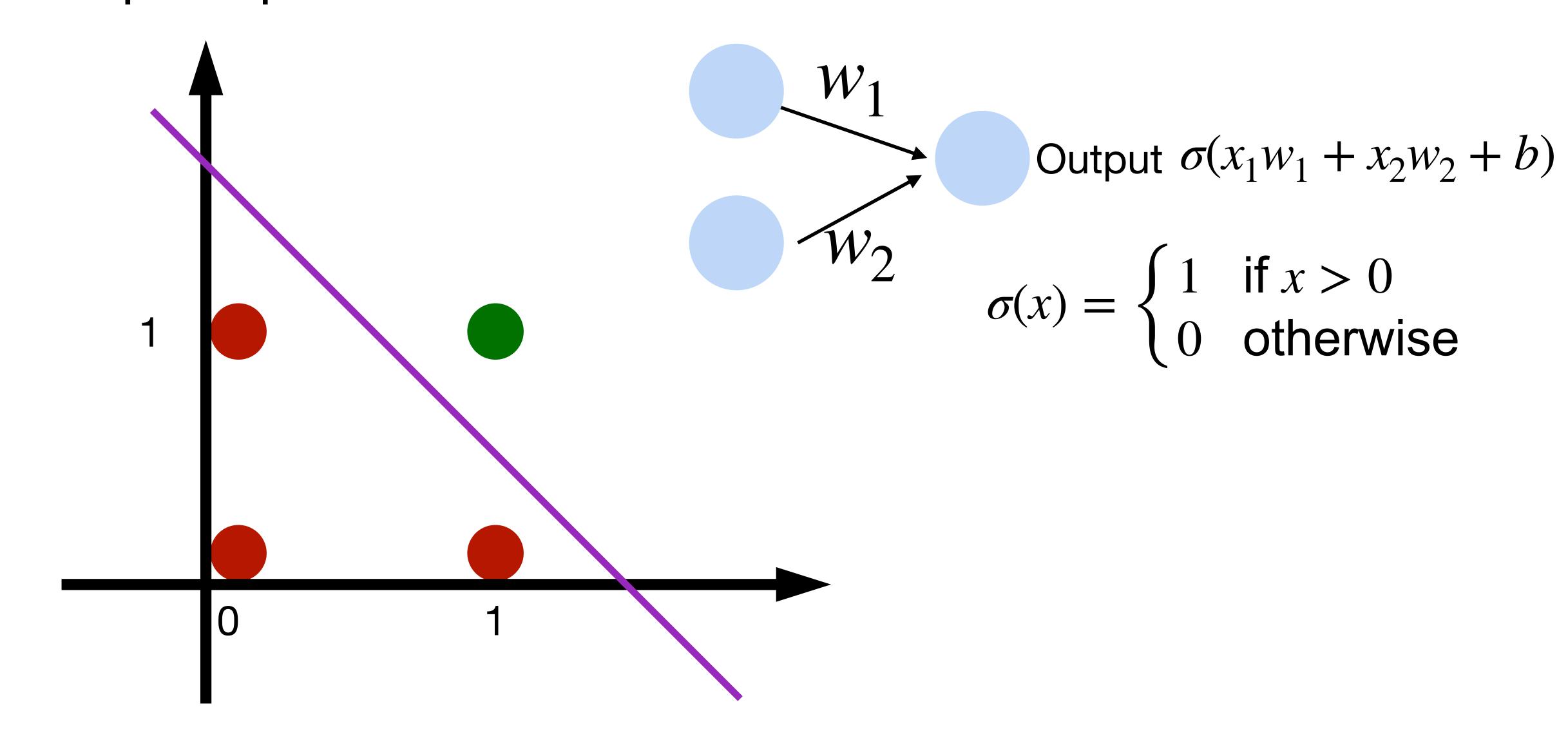


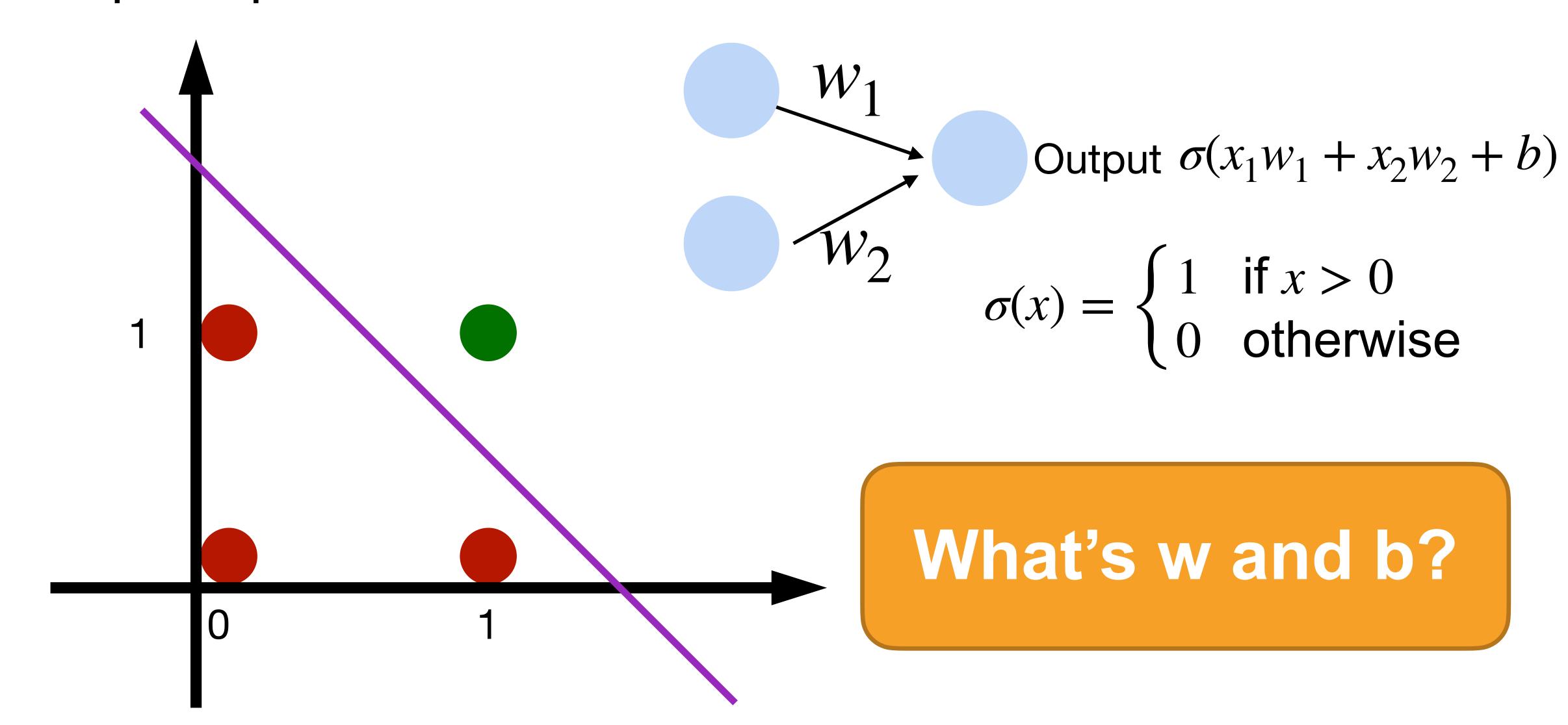
- DisLike
- Like

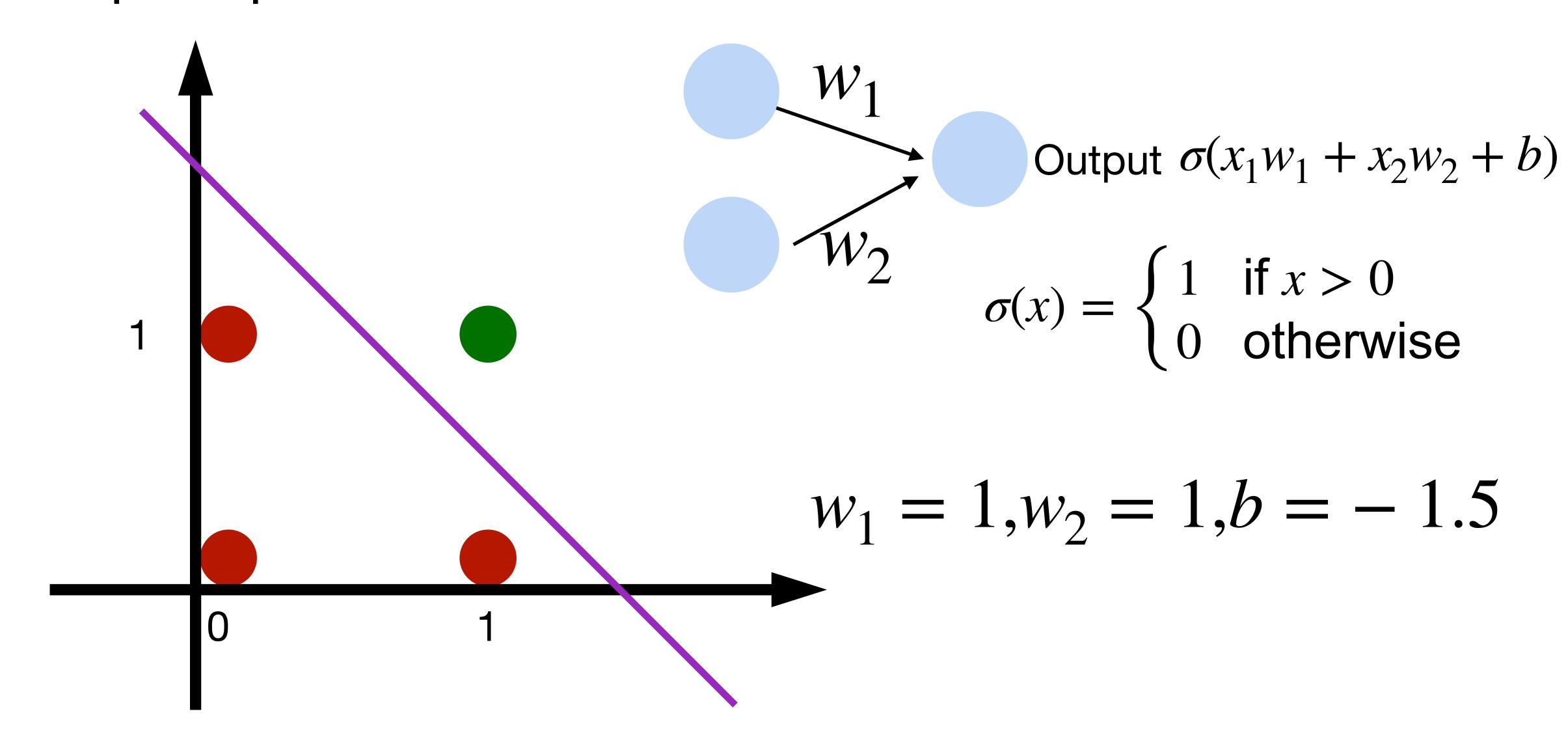


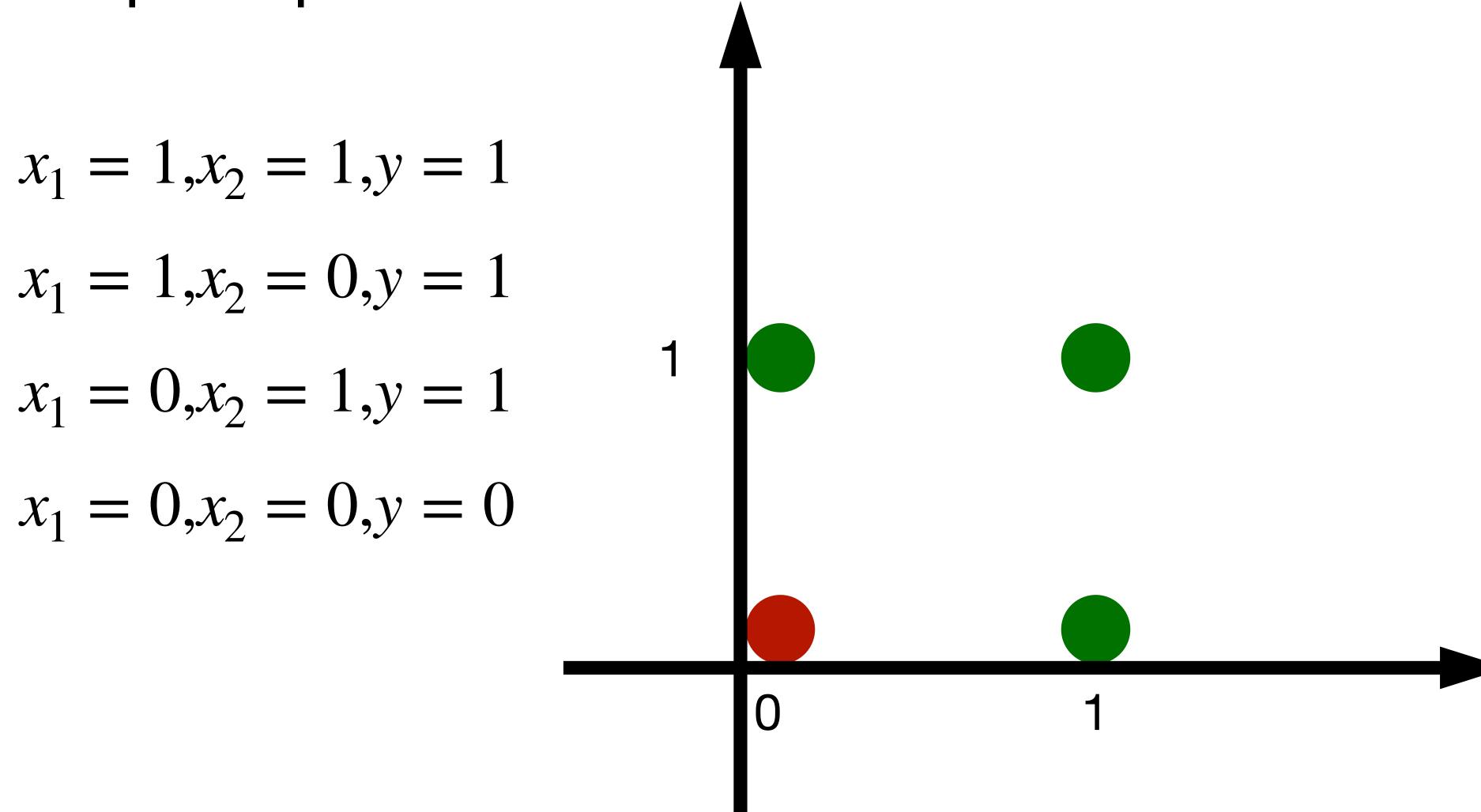


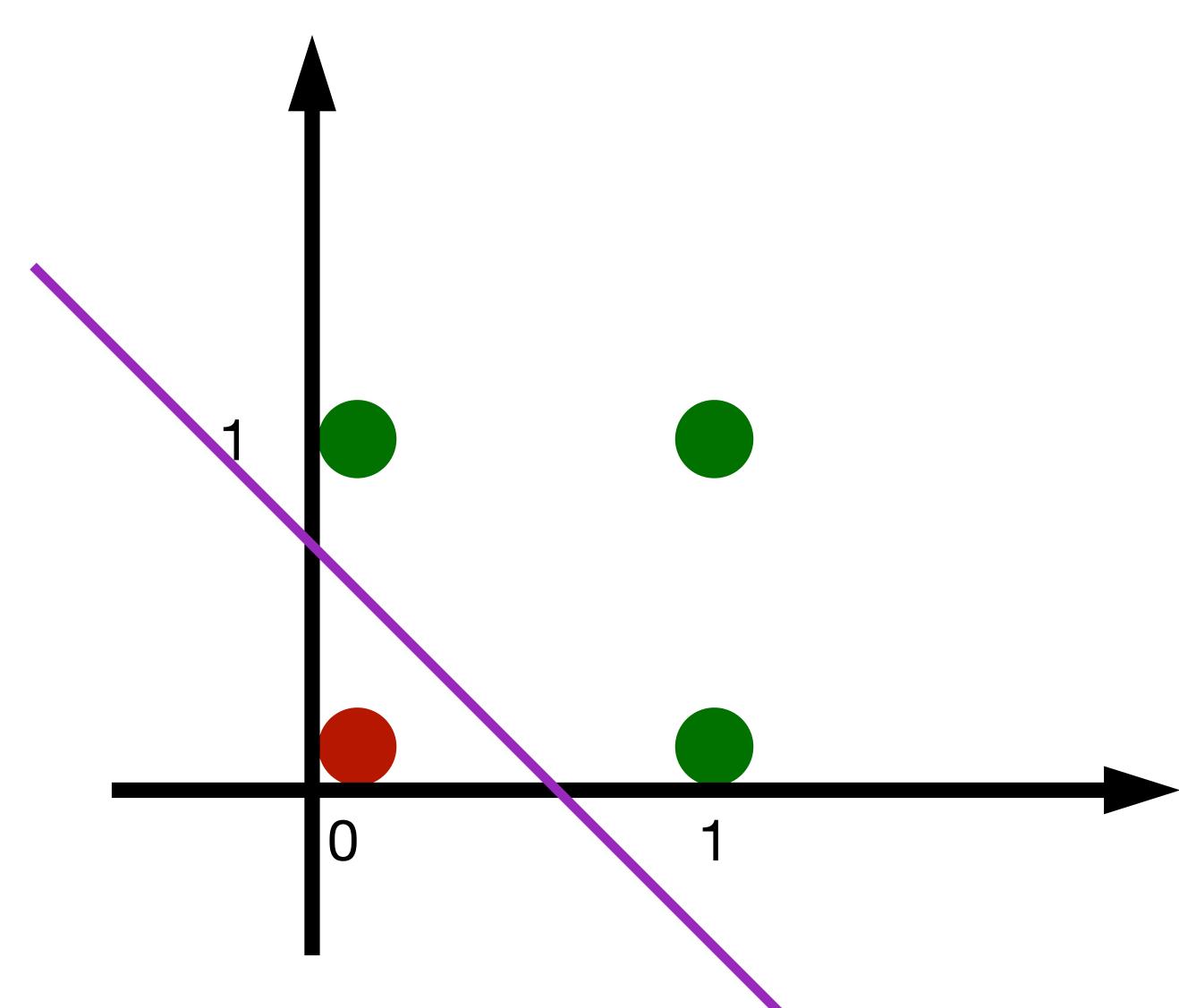


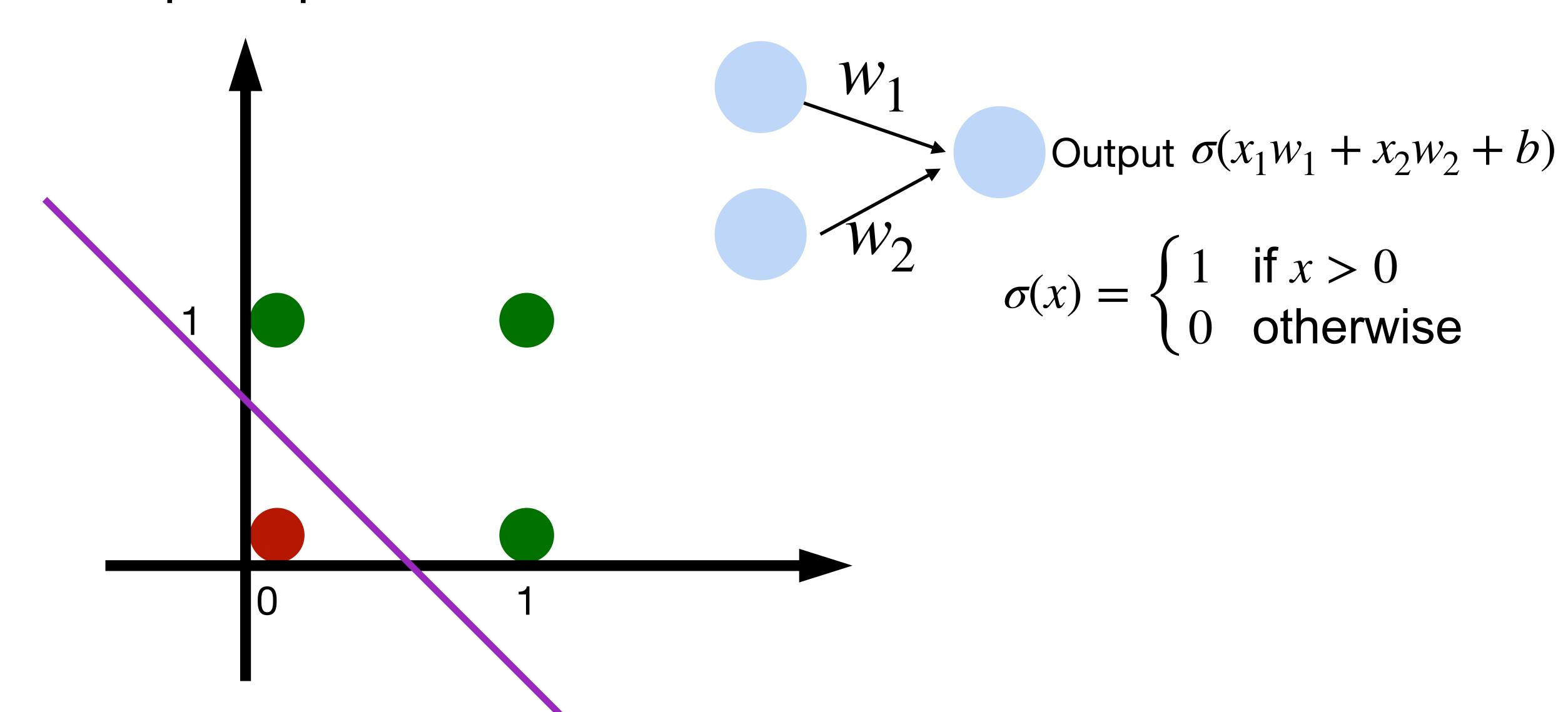


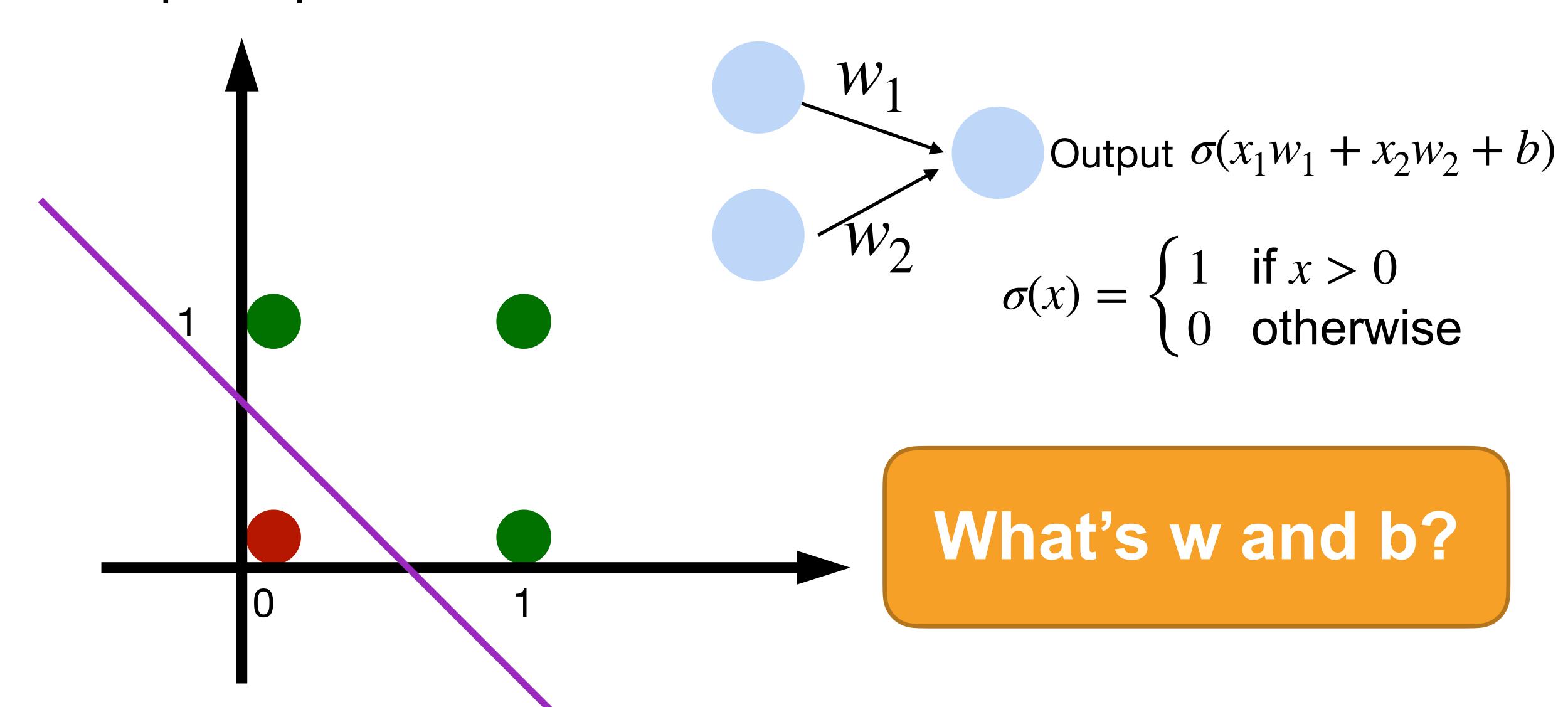


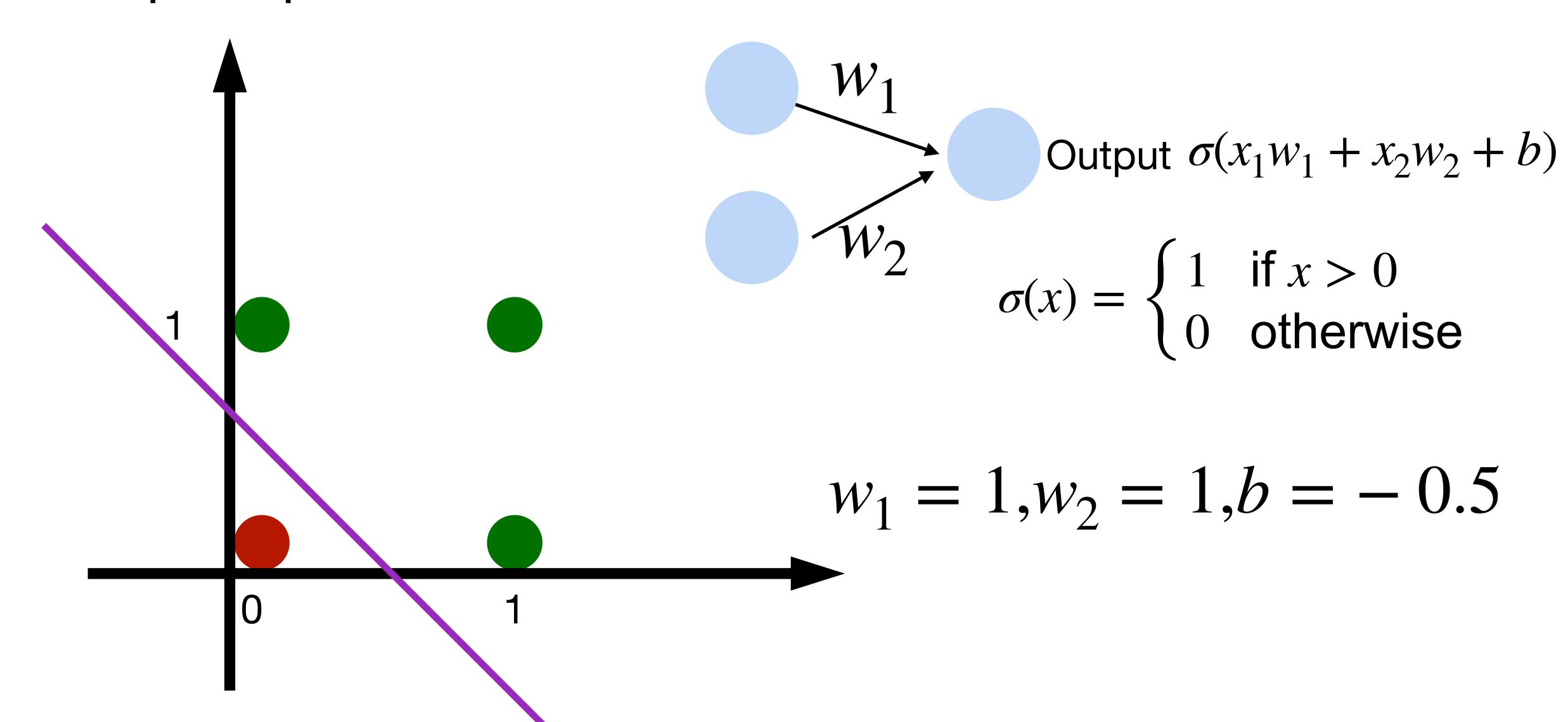




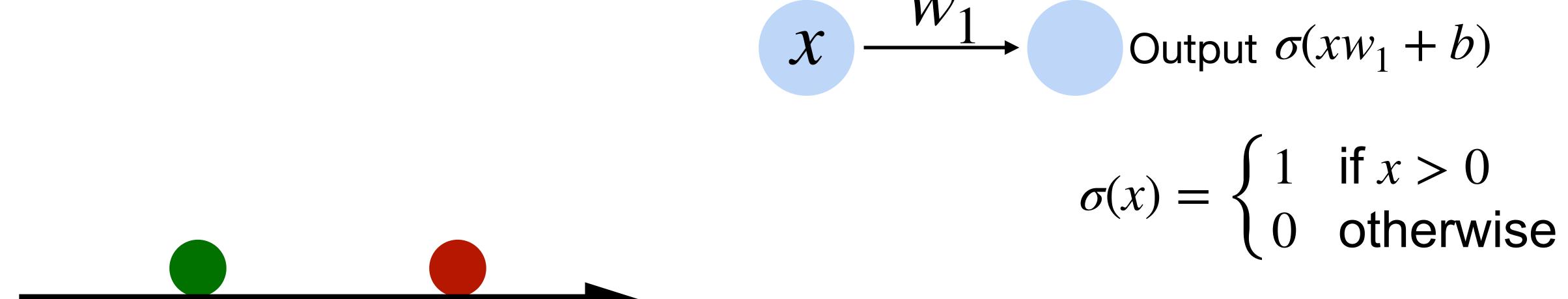




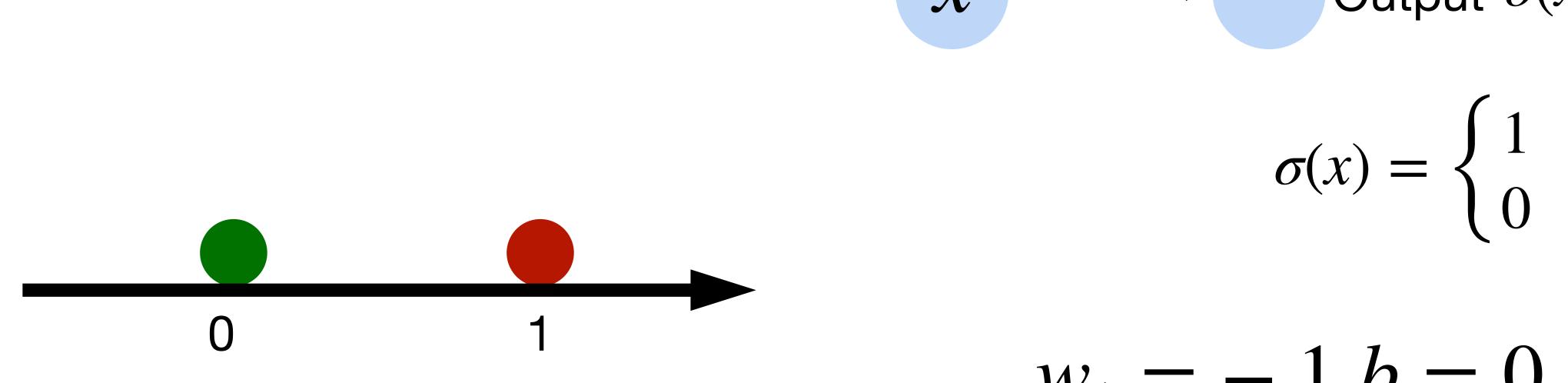




The perceptron can learn NOT function (single input)



The perceptron can learn NOT function (single input)



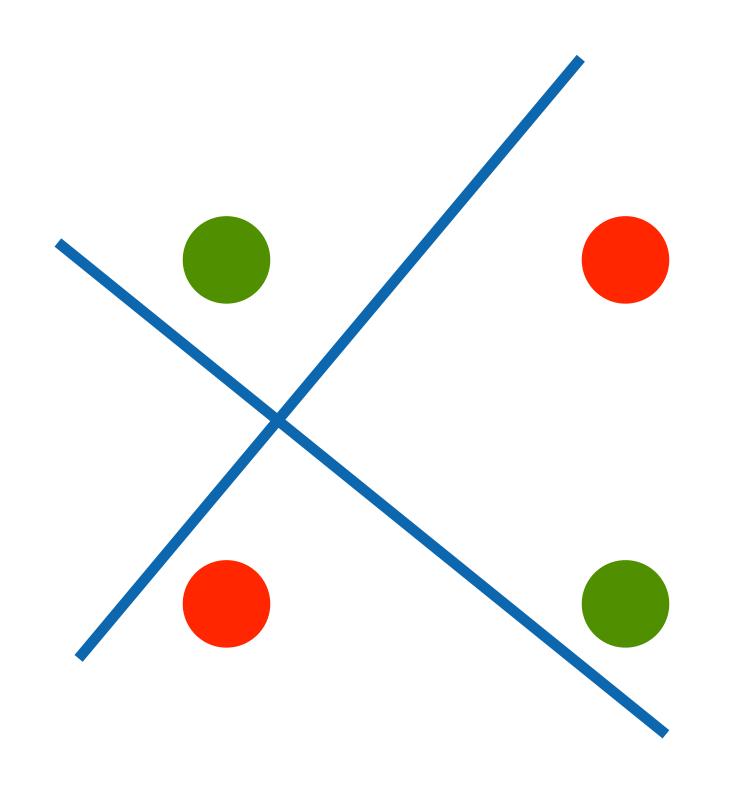
$$x \xrightarrow{W_1} Output \sigma(xw_1 + b)$$

$$\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$w_1 = -1, b = 0.5$$

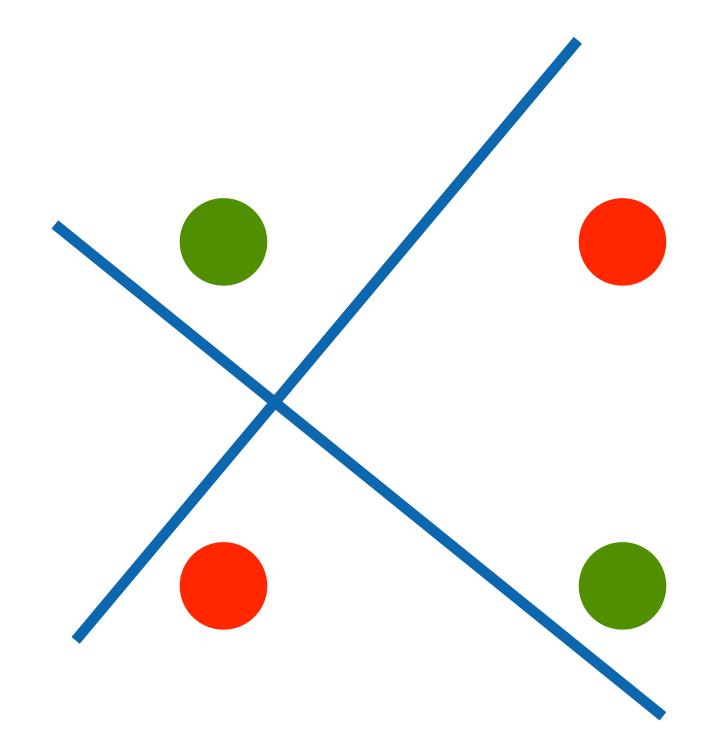
XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function (neurons can only generate linear separators)



XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function (neurons can only generate linear separators)



This contributed to the first AI winter

Consider the linear perceptron with x as the input. Which function can the linear perceptron compute?

(1)
$$y = ax + b$$

(2)
$$y = ax^2 + bx + c$$

- A. (1)
- B. (2)
- C.(1)(2)
- D. None of the above

Consider the linear perceptron with x as the input. Which function can the linear perceptron compute?

(1)
$$y = ax + b$$

(2)
$$y = ax^2 + bx + c$$

A. (1)

B. (2)

C.(1)(2)

D. None of the above

Answer: A. All units in a linear perceptron are linear. Thus, the model can not present non-linear functions.

Perceptron can be used for representing:

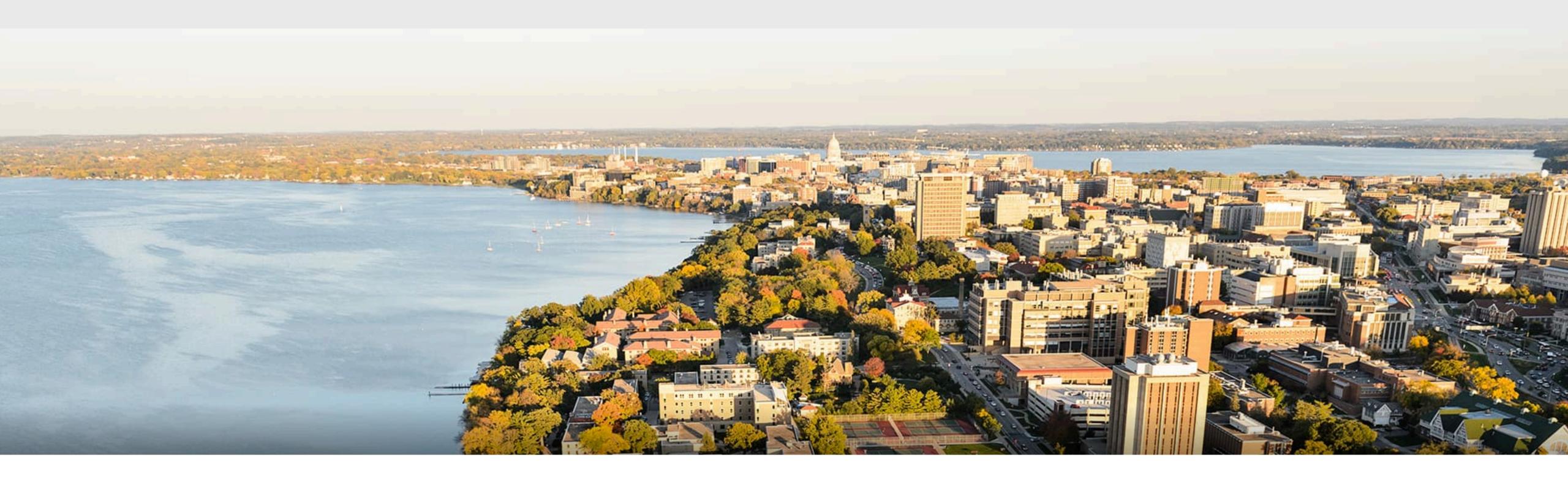
- A. AND function
- B. OR function
- C. XOR function
- D. Both AND and OR function

Perceptron can be used for representing:

- A. AND function
- B. OR function
- C. XOR function
- D. Both AND and OR function

What we've learned today...

- Single-layer Perceptron
 - Motivation
 - Activation function
 - Representing AND, OR, NOT



Thanks!