e ——— R . e
-p-'

A e] 'vr,ﬂn"i'ﬂ" R Dt oo YRR
- ‘~ ."‘q - . renws’ etsvine s
e el o = S : ;' .‘ B gu‘--._’,._,-._ * L

! o

s € J,. o \B"
: _.._...A.';"t_~ o - 5

Wil =

-

S 540 Introduction to Artificial Intelligence

eural Networks (lll)
Yingyu Liang
University of Wisconsin-Madison

Oct 26, 2021

Slides created by Sharon Li [modified by Yingyu Liang]

Today’s outline

 Deep neural networks

 Computational graph (forward and backward propagation)
 Numerical stability in training

» Gradient vanishing/exploding
* (Generalization and regularization

* Qverfitting, underfitting

* Weight decay and dropout

> . * - « — - ’
5 » - X N e = oy Sy
<, BN . . L e e T 15 o n sl A 7 - ¥
i e e - ~ i WOV e G mrmxs
- -~ - «
- . - > . . - -~ . . et ol [0 - g, > o orewws’ un- Sttt
iy AT e . o - = - L - —_ s Sy IR s . > ?-'-»«.-, Ve ¥ %, S = 4 b S "
B e e o Pt - 3 T = o £ oA
LA A RPN &“‘. O ol e = R : %
- > ~-‘;’ = +. _ A A i B R L 4
- o - - —— ~& LR
st n "
' 2
_—, - — —

U ey e v

A3
g D e b

Part |: Neural Networks as a
omputational Graph

Review: neural networks with one hidden layer

. d Input
Inpm X ER P Hidden layer
e Hidden W € R™4 b € R™ M Neurons

 |Intermediate output

Review: neural networks with one hidden layer

. d Input
Inpm X ER P Hidden layer
e Hidden W € R™4 b € R™ M Neurons

 |Intermediate output
h = c(WWx + b)

h e R"

Review: neural networks with one hidden layer

X d
" dx 1

e

M

2=
y

Review: neural networks with one hidden layer

\ g

W 000000000
|

X

S

+|

o
X
s

=
X
S

L

S
nZ
),
s
_W

Review: neural networks with one hidden layer

m X d m X 1 m X 1
dXx 1

.*gz

o

0.2}

0.1+

0
-1

Element-wise
activation function

g
=+
|

Review: neural networks with one hidden layer

Key elements: linear operations + Nonlinear activations

X d X 1
" dx 1 "

Element-wise
activation function

g
=+
|

Deep neural networks (DNNs)

utput layer il b h, =06(Wx+ b))

Hidden layer 0 @ h2 — G(thl T b2)

Hidden layer G\ /@ f — W4h3 ‘I‘ b4

y = softmax(f)
Hidden layer 0\@ e @/@

Deep neural networks (DNNs)

i b h, = o(Wx+b))
o & h, = o(W5h, + b,)
’$'\ h, = 6(W;h, + b,)
o fyer Q\\"g%/g f=W,h;+b,
éb}@::,«&\ y = softmax(f)

ridden fayer 0(@&@ ,@;e NNs are composition

[) .
K
TSI of non!lnear
nput layer 0 ° @ ° functions

Neural networks as variables + operations
a = sigmoid(Wx + b)
 Decompose functions into atomic operations

o Separate data (variables) and computing (operations)
« Known as a computational graph

“mamae
® @&

Neural networks as a computational graph

* A two-layer neural network

Neural networks as a computational graph

* A two-layer neural network
* Forward propagation vs. backward propagation

* |+

— /1

e

e @

— +

/@

Neural networks: forward propagation

* A two-layer neural network
* |ntermediate variables Z

-+ @
s &

Neural networks: forward propagation

* A two-layer neural network
* |ntermediate variables Z

%)

X

—/-®

[i—*

<1
-+ — +

Neural networks: forward propagation

* A two-layer neural network
* |ntermediate variables Z

Neural networks: forward propagation

* A two-layer neural network
* |ntermediate variables Z

Neural networks: forward propagation

* A two-layer neural network
* |ntermediate variables Z

Neural networks: backward propagation

* A two-layer neural network
 Assuming forward propagation is done
* Minimize a loss function L

Neural networks: backward propagation

* A two-layer neural network
* Assuming forward propagation is done
* Minimize a loss function L o0l ol

E da

Neural networks: backward propagation

* A two-layer neural network
* Assuming forward propagation is done
* Minimize a loss function L oL Ol

0z, 0z

Neural networks: backward propagation

* A two-layer neural network
 Assuming forward propagation is done

oL B oL
623 B 624

% {3 {4 {5
* Vi O
e
oL oL

{1

w

WD ~ 9z,

Backward propagation: A modern treatment

* Define a neural network as a computational graph
 Must be a directed graph

* Nodes as variables and operations

* All operations must be differentiable

Q1. Suppose we want to solve the following k-class classification problem with cross entropy loss

k
£(y,§) = — Z y;log yj . where the ground truth and predicted probabilities y, § € R*. Recall that the

j=1
| | - exp fi(x) | |
softmax function turns output into probabilities: Vi = . What is the partial derivative
2. EXp fi(x)
Hidden layer
A Y. —y. M=3 neurons
S Input Output
B. exp(y;) — ; &3 Ji
x € R?
C. Y=Y X

/fk

» For notational simplicity, we use y; to denote 1{y. = 1}, and y. as p(y; = 1 |x; 0)

Q1. Suppose we want to solve the following k-class classification problem with cross entropy loss
k

£(y,y) = — 2 y;logy;, wherey,y € R*. Recall that the softmax function turns output into
j=1
X exp f,(x) | | - X
probabilities: y; = . What is the partial derivative 0,2(y, y)?
k J
2. EXpfi(x)
o0 Hidden layer
CX
Rewrite £(y, §) = Z y, log —— m=3 neurons
> 16Xp(f) Input Output
k \
Z lOg 2 GXp(f) o Z y] .xl fi
_ _ x € R?

_ tog Y, exp(f) — Yy

=1 j=1 / f];
exp(f;)

We have aﬁf(ya y) = P] Yi=Yi— Y-
1 €Xp(fi)

—]
- A - AT,
"~ . " ~ _ b e 24 -
- L A, T : $ - . PPN Lo,
> PRPRS- S S S - - » :
e o S B

R
= o el 20 1 B

-

.—
»

— —
S

Part lI: Numerical Stability

Gradients for Neural Networks

» Compute the gradient of the loss £ w.r.t. W,

o o¢ oh® oh™*! oh’
OW! ohd ohd-1""" oht OW!

Wikipedia

Two Issues for Deep Neural Networks ﬁ oh'*!
ohi

1=t

Gradient Exploding Gradient Vanishing

0.8100 ~ 2 x 1071V

Issues with Gradient Exploding

» Value out of range: infinity value (NaN)
» Sensitive to learning rate (LR)
* Not small enough LR -> larger gradients
 Joo small LR -> No progress
* May need to change LR dramatically during training

Gradient Vanishing

» Use sigmoid as the activation function

|
o(x) = o'(x) = o(x)(1 — o(x
- (x) = o(x)((X))
0a{ SOmall Small
gradients gradients

Issues with Gradient Vanishing

» Gradients with value O
* NoO progress In training

* No matter how to choose learning rate
» Severe with bottom layers

* Only top layers are well trained

* No benefit to make networks deeper

How to
stabilize
training?

Stabilize Training: Practical Considerations

Stabilize Training: Practical Considerations

* Goal: make sure gradient values are in a proper range
 E.g.In[1e-6, 1e3]

Stabilize Training: Practical Considerations

* Goal: make sure gradient values are in a proper range
 E.g.In[1e-6, 1e3]

* Multiplication -> plus
* Architecture change (e.g., ResNet)

Stabilize Training: Practical Considerations

* Goal: make sure gradient values are in a proper range
 E.g.In[1e-6, 1e3]

* Multiplication -> plus
* Architecture change (e.g., ResNet)

 Normalize
» Batch Normalization, Gradient clipping

Stabilize Training: Practical Considerations

* Goal: make sure gradient values are in a proper range
 E.g.In[1e-6, 1e3]

* Multiplication -> plus
* Architecture change (e.g., ResNet)

 Normalize
» Batch Normalization, Gradient clipping

* Proper activation functions

Q2. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute
B. ReLU has non-zero gradient everywhere
C. The gradient of Sigmoid is always less than 0.3

D. The gradient of RelLLU is constant for positive input

Q2. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute
B.
C. The gradient of Sigmoid is always less than 0.3

D. The gradient of RelLLU is constant for positive input

Q3. A Leaky RelLU is defined as f(x)=max(0.1x, x). Let f(0)=1. Does it have non-zero
gradient everywhere??

A.Yes

B. NoO

Q3. A Leaky RelLU is defined as f(x)=max(0.1x, x). Let f(0)=1. Does it have non-zero
gradient everywhere??

B. NoO

PAPSOSVNSLAA —daniol S T o e B § L S
- .

e > : o A S e NNk et L o A A e S ——— e
T e e e S SRR RS L R VRN AT e SSa o o Bl e : i Tt
. s 3PS N - - .
- > " e ’ - . - @ - g o e . VL ¥ T e N SR e - - - < < _hr_‘, ! wy o rEEWS -'-.u'u-' Sttt . » . "
: 4 - e : .-’“‘-}': ~.A_’ : : = '. - = 3 - . ,.';,-;..:--. - S W " 8 - n.‘.; "T; & ?"Q“‘m . 1!‘”_%"‘ s - 4 ~ t-“ ” -—sse. e ,: { — 3
\‘0 S PP e o) "‘. ~ ‘ ’ v ~ R ol P R R - < e LA t . ‘.I‘ : : - o - b't | - &5
' 8- - LA b SR S X _"«_.ﬂ‘ L L*' -M‘\!‘:" - w\‘w o A d - . > 111 ‘: = - o --.' - - "'%“ %0 =1
— C— q—— "b'- > ky 5 .

=

v
- \?’ggﬂ: T

.

R
= o el 20 1 B

L SN T_ —-
1"
- - -
— s

-

S —

Part lll: Generalization & Regularization

e
ood ar
mzwmgodels?

g5 ?L"E

Training Error and Generalization Error

 [raining error: model error on the training data
* Generalization error: model error on new data
« Example: practice a future exam with past exams

* Doing well on past exams (training error) doesn't
guarantee a good score on the future exam
(generalization error)

Underfitting —~— \/ WA

Ove I‘fitti n g Overfitting

Image credit: hackernoon.com

Model Capacity

W)

Model Capacity

» The ability to fit variety of functions

"

Model Capacity

» The ability to fit variety of functions
» Low capacity models struggles to ———

fit training set

» Underfitting

Model Capacity

» The ability to fit variety of functions

* Low capacity models struggles to ____._
fit training set ' ‘

» Underfitting
» High capacity models can

memorize the training set
» Overfitting

Underfitting and Overfitting

Data complexity

Simple Complex

Model Low Normal Underfitting
capacity

High Overfitting Normal

Influence of Model Complexity

D — —_—
Underfitting Optimum Overfitting

Also known as “Test

error”

Loss

Generalization loss

Training loss

Model complexity

Estimate Neural Network Capacity

* |t's hard to compare complexity
between different algorithms

* e.g. tree vs neural network

Estimate Neural Network Capacity

* |t's hard to compare complexity
between different algorithms

* e.g. tree vs neural network

* Given an algorithm family, two main
factors matter:

* The number of parameters
* The values taken by each parameter

d+ 1

(d+ Dm + (m + Dk

Data Complexity

* Multiple factors matters
* # of examples
» # of features in each example
* time/space structure
o # of labels

B

How to regularize the model for
better generalization?

Neural Network - 10 Units, No Weight Decay Neural Network - 10 Units, Weight Decay=0.02

0
Q
Training Emor: 0.100 1 Traning Emor. 0.160
Test Enor: 0259 Test Emor: 0.223

Bayes Emor. 0.210 Bayes Ermor. 0.210

Squared Norm Regularization as Hard Constraint

* Reduce model complexity by limiting value
range A

min £(w,b) subjectto |w|*< 6 y

» Often do not regularize bias b \
* Doing or not doing has little difference in

practice
 Asmall § means more regularization

Squared Norm Regularization as Soft Constraint

« \We can rewrite the hard constraint version as

. Ao
min £ (w,b) + Ellwll

Squared Norm Regularization as Soft Constraint
* WWe can rewrite the hard constraint version as
. AL
min £ (w,b) + —||w]||
2
* Hyper-parameter Acontrols regularization importance

e 1=0: no effect

e L —> oo,w*¥ > ()

lHlu
stra
te
the
Eff
ecton O
ptim
al S
oluti
ion
S

W>I<
= arg mi
in
£(w,b)
_|__
i [wil*

W>I<
W*
= ar
gmin Z(
W
,b)

WS ///////

//,x_///..

II 8“

?b‘:.“a 3.; —

a___,,;s._d i

Q.« ’

Hinton et al.

Apply Dropout

» Often apply dropout on the output of hidden fully-
connected layers

MLP with one hidden layer Hidden layer after dropout

h=o(WXx+Db) \1%%({ $

"= cropouth @Q CHRM & W
— / N SR < \ % '

0 = W,h'+ b, '/5“%?’{%?("0‘.4(!\

y = softmax(o) 0/ 'Q

courses.d2l.ai/berkeley-stat-157

Dropout

PW
Present with Always
probability p present
(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output

at training time.

Dropout

Hinton et al.

Classification Error %

1.0

1.5

A ‘
A

J

f " L 1
200000 400000 600000 800000 1000000
Number of weight updates

Figure 4: Test error for different architectures

with and without dropout. The net-

works have 2 to 4 hidden layers each
with 1024 to 2048 units.

What we’ve learned today...

 Deep neural networks

 Computational graph (forward and backward propagation)
 Numerical stability in training

» Gradient vanishing/exploding
* (Generalization and regularization

* Qverfitting, underfitting

* Weight decay and dropout

v

- .c_ ror V€ - s BTSN N
Sas adie etd S \Lx.gn. ~""\.-t {9\.‘

. o - ' ~

" &y . .‘: rrws [elesies g

= . !" -, -"’1”0 .'., .

» - 2 P " .
- » e Y .‘- 4 ."..7.
- L -~ o

»
i"‘ e : >
L u.....\ A’ ‘sn&“ b_ -~ 4 . - i =
. T e B LA = ‘.).‘.A :AA. L_ ._(. ’

N .f-.

g

st n
AU R

