


Search is a general problem-solving framework. We will see several examples.




Let’s consider this scenario when a farmer is trying to cross the river with a wolf, a sheep and a cabbage. There are two conditions, the sheep cannot stay along with the 
cabbage and the wolf cannot stay alone with the sheep. The boat can only hold at most two at a time, and the farmer is the only one who can handle the boat.  




We can let the farmer take the goat across and then return. 




Of course this is a not a real solution. At least for the design of the original problem, we would like to bring the wolf across the river. So let’s be more specific about the 
problem by giving a formal description. 




Let’s first enumerate all the possible situations or configurations; call them the state space.


Initial state: Can have multiple initial states.

Goal state: a situation we want to achieve. (Can have multiple goal states.)


What actions can we perform? Successor function returns States reachable one step away from s, which can be 0 or more. 


Cost on an action: usually=1 for all steps, but can have general weights.�



Given an initial configuration of 8 numbered tiles on a 3 x 3 board, move the tiles in such a way so as to produce a desired goal configuration of the tiles. 


State = 3 x 3 array configuration of the tiles on the board. Operators: Move Blank square Left, Right, Up or Down. (Note: this is a more efficient encoding of the operators 
than one in which each of four possible moves for each of the 8 distinct tiles is used.) Initial State: A particular configuration of the board. Goal: A particular configuration 
of the board.




Given a 5-gallon jug and a 2-gallon jug, with the 5-gallon jug initially full of water and the 2-gallon jug empty, the goal is to fill the 2-gallon jug with exactly one gallon of 
water.




Given a 5-gallon jug and a 2-gallon jug, with the 5-gallon jug initially full of water and the 2-gallon jug empty, the goal is to fill the 2-gallon jug with exactly one gallon of 
water.


There could be many different operations/successors allowed. Here we list some for example.




Another example is route finding. The states can be different locations (e.g., intersection of streets, places where action decisions need to be made). Notably, in this 
example, the cost can be weighted (e.g., time).




View states as nodes, view successor function as directed edges, then we can get a directed graph. 


Suppose we are now in the state (CDF,S), and by the successor function, we know three successors (CD, SF), (D,CFS) and (C,DSF). We have been to (CD, SF) before, so 
we only keep the two states (D,CFS) and (C,DSF) under consideration.


expanded states: those states we have been to and applied successor functions

Fringe: those states generated from the successor function but not yet expanded, e.g., the two states (D,CFS) and (C,DSF) in the figure.




Fringe (OPEN set): those states in our mind (generated from the successor function, but not yet expanded)


Continuing the example in the previous slide: if we decide to go to the state (D,CFS) and check its successor, then now the fringe is {(C,DSF), (DFS,C)}. Note that (C, DSF) 
is still in the fringe.


Different ways to select nodes from the fringe to expand lead to different search algorithms with different properties.




Formally we will talk about the simplest version of search which is uniformed search. Note the difference between uninformed and informed search. 


Simplification: consider the case when the search graph is a tree




Breadth-first search (BFS): expand the shallowest node first.

High level intuition: like ripple in a pool




BFS: implemented by queue, the FIFO data structure. The first-in nodes are shallower (closer in steps to the initial state) so are expanded first.




At the beginning, put the init state in the queue




Here we show iteration 1:

the state checked: A

the queue at the end of the iteration: [CB]

The right hand side of the queue is the front of the queue. 




Iteration 2




Iteration 3.


Note that we generate G and put it in the queue but haven’t checked it yet.




Iteration 4: [GFE]-> D

Iteration 5: [GF]-> E

Iteration 6: [G]-> F

Iteration 7: []-> G. Success!




If we would like to return the solution path, we can keep a back point for each node that we generated. Then when succeed, we can trace back the path. 




A few fundamental questions about the performance. 


Note that the time complexity is roughly proportional to total # states generated. To describe that we introduce parameters d and b.

The space complexity is roughly proportional to the max # states stored at any time point during the execution of the algorithm.




If all edge cost are identical, then optimal. 


More generally, if the cost is positive and non-decreasing in depth then optimal (we don’t require to understand the general case in this course).


O(b^d): big-O notation. It means that it’s roughly (C*b^d + smaller terms) for some constant C


If all edge cost are identical, then optimal. 


More generally, if the cost is positive and non-decreasing in depth then optimal (we don’t require to understand the general case in this course).


O(b^d): big-O notation. It means that it’s roughly (C*b^d + smaller terms) for some constant C. 


In the worst case, we need to generate all nodes within radius d+1 (including the children of the nodes at radius d). Then the time is b+b^2+ ... + b^d + b^{d+1} = O(b^d) 
viewing b as a constant. 




The space complexity is roughly proportional to the max # states stored at any time point during the execution of the algorithm. In the worst case, at some point it can 
store all nodes the same depth as the goal state.










One drawback: may not be optimal 




 Each time pick the least-cost node in the fringe to expand. 


Need to keep the cost of each node when generated. Use the priority queue data structure: priority queue is designed exactly for the purpose of picking the least-cost 
item.




Example for UCS.


Iteration, node expanded, fringe at the end of the iteration (nodes not sorted; nodes are in the format (id, cost))

1: (S,0), [(A,1), (B,5), (C,8)]

2: (A,1), [(B,5), (C,8), (D,4), (E,8), (G,10)]

3: (D,4), [(B,5), (C,8), (E,8), (G,10)]

4: (B,5), [(C,8), (E,8), (G,9)]

     At iteration 4, we will get a new copy of G: (G,9). We can keep both copies: the old (G,10) and the new (G,9). We can also keep only the least-cost copy: (G,9). Here we 
do the latter for simplicity. Note that if we keep a back pointer, we also need to update the back point accordingly. 


5: (C,8), [(E,8), (G,9)]

   At iteration 5, we need to break ties between (C,8) and (E,8). Here we use the dictionary order: C before E. Also, note that from C we generate a new copy of G: (G, 13). 
However, its cost is larger than the old copy (G,9), so we only keep (G,9).


6: (E,8), [(G,9)]

7: (G,9), []: Success!




Recall that the time complexity is proportional to total #nodes generated before success. It can be all the nodes with smaller or equal cost as the goal state. These nodes 
are at most C*/\epsilon steps away from the initial state, so in the worst case there can be roughly b^{C*/\epsilon} so many of them. 


Similar reasoning for the space complexity. 








The cost is simply the sum of the edge costs along the path from the initial state to D and then to F. 






UCS has the property that it will always check a smaller cost node before larger cost node. 


I and B have smaller cost than C, so they must have been expanded before C. D has smaller cost than E F A, so D must be expanded before E F A. 



