CS540 Intro to Al
Uninformed Search

Yingyu Liang
University of Wisconsin-Madison

Slides created by Xiaojin Zhu (UW-Madison),
lightly edited by Anthony Gitter slide 1

Many Al problems can be
formulated as search.

slide 2

Search is a general problem-solving framework. We will see several examples.

@@%ﬂ%

slide 3

Let’s consider this scenario when a farmer is trying to cross the river with a wolf, a sheep and a cabbage. There are two conditions, the sheep cannot stay along with the
cabbage and the wolf cannot stay alone with the sheep. The boat can only hold at most two at a time, and the farmer is the only one who can handle the boat.

—{PROBLET http://xked.com/1134/
THE. BOAT ONLY HOLD5 W0, BUT YOU p:/ixked.co

CANT (EAVE THE GOAT WITH THE
CABBAGE OR THE WOLF WITH THE GOAT.

(WO | 1. TAKE THE GOAT ACRDSS. |

slide 4

We can let the farmer take the goat across and then return.

http://xkcd.com/1134/

3. TAKE THE. CABBAGE ACROSS.

C((

4, LEAVE THE WOLE
WHY DID YOU HAVE A WOLF?

slide 5

Of course this is a not a real solution. At least for the design of the original problem, we would like to bring the wolf across the river. So let’s be more specific about the
problem by giving a formal description.

The search problem

9
¢ State space §': all valid configurations g%
. © B Fgge
C S

Initial state I={(CSDF,)} c § D F

® Goal state G={(,CSDF)} c S

® Successor function succs(s)c S : states reachable in
one step from state s

» succs((CSDF,)) = {(CD, SF)}
= succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}
® Cost(s,s’)=1 for all steps. (weighted later)

® The search problem: find a solution path from a state
in I to a state in G.

= Optionally minimize the cost of the solution.

slide 6

Let’s first enumerate all the possible situations or configurations; call them the state space.

Initial state: Can have multiple initial states.
Goal state: a situation we want to achieve. (Can have multiple goal states.)

What actions can we perform? Successor function returns States reachable one step away from s, which can be 0 or more.

Cost on an action: usually=1 for all steps, but can have general weights.

Search examples

¢ 8-puzzle
7 2 4 1 2
5 6 3 B 5
8 3 1 6 7 8
Start State Goal State

¢ States = 3x3 array configurations
® action = up to 4 kinds of movement
® Cost = 1 for each move

slide 7

Given an initial configuration of 8 numbered tiles on a 3 x 3 board, move the tiles in such a way so as to produce a desired goal configuration of the tiles.

State = 3 x 3 array configuration of the tiles on the board. Operators: Move Blank square Left, Right, Up or Down. (Note: this is a more efficient encoding of the operators
than one in which each of four possible moves for each of the 8 distinct tiles is used.) Initial State: A particular configuration of the board. Goal: A particular configuration
of the board.

Search examples

® Water jugs: how to get 1?

& =,

State = (x,y), where x = number of gallons of water in the 5-
gallon jug and y is gallons in the 2-gallon jug

Initial State = (5,0)

Goal State = (*,1), where * means any amount

slide 8

Given a 5-gallon jug and a 2-gallon jug, with the 5-gallon jug initially full of water and the 2-gallon jug empty, the goal is to fill the 2-gallon jug with exactly one gallon of
water.

Search examples

® Water jugs: how to get 1?

& =,

State = (x,y), where x = number of gallons of water in the 5-
gallon jug and y is gallons in the 2-gallon jug
Initial State = (5,0)
Goal State = (*,1), where * means any amount
Operators
(%,y) -> (0,y) ; empty 5-gal jug
(x,y) -> (x,0) ; empty 2-gal jug
(x,2) and x<=3 -> (x+2,0) ; pour 2-gal into 5-gal
(x,0) and x>=2 -> (x-2,2) ; pour 5-gal into 2-gal
(1,0) > (0,1) ; empty 5-gal into 2-gal ide o

Given a 5-gallon jug and a 2-gallon jug, with the 5-gallon jug initially full of water and the 2-gallon jug empty, the goal is to fill the 2-gallon jug with exactly one gallon of
water.

There could be many different operations/successors allowed. Here we list some for example.

Search examples

® Route finding (State? Successors? Cost weighted)

£ Geople Maps - Trom 1210 W Dayton 5¢, Nadises, W1 53706 to: State 51, Nadisen, W1 53703 - Nozilla Firefex

Fe (M Vew @ Bodwwds ook Heb

Mips Locd Sawch Ditections
GO()Sle 1210W Deyton S Madison, WIS3706 | Etmse £ Mackson W153703 [Search | tak
A SInt adwess Erelaoness

SPm £ Emul e Linktoihzpage
Star addrmrs: 1210 % Dayton St
» tadison, W 53705
End addiess Stae 2
Madaon, W 53703
Distance: 1 2mifabout 2 mins)

Reweeze

dracticns

1 Head ast om W Dayton S1-
2 85 mi

2 Tum bem 3t N Frances S1- 9o 802 mi
3 Tumsight ot W Gilman St go 0,3 s
P4 Tumaight & N Hesey St- go 0.1 mi
& Tumsight 2 W Gorbkass St- g0 &1 mi

slide 10

Another example is route finding. The states can be different locations (e.g., intersection of streets, places where action decisions need to be made). Notably, in this
example, the cost can be weighted (e.g., time).

A directed graph in state space

@@%g‘k
C S D F

In general there will be many generated, but un-
expanded states at any given time

® One has to choose which one to expand next

slide 12

View states as nodes, view successor function as directed edges, then we can get a directed graph.

Suppose we are now in the state (CDF,S), and by the successor function, we know three successors (CD, SF), (D,CFS) and (C,DSF). We have been to (CD, SF) before, so
we only keep the two states (D,CFS) and (C,DSF) under consideration.

expanded states: those states we have been to and applied successor functions
Fringe: those states generated from the successor function but not yet expanded, e.g., the two states (D,CFS) and (C,DSF) in the figure.

Different search strategies

® The generated, but not yet expanded states form the
fringe (OPEN).

® The essential difference is which one to expand first.
® Deep or shallow?

start

()~
-0 o€
-6

slide 13

Fringe (OPEN set): those states in our mind (generated from the successor function, but not yet expanded)

Continuing the example in the previous slide: if we decide to go to the state (D,CFS) and check its successor, then now the fringe is {(C,DSF), (DFS,C)}. Note that (C, DSF)
is still in the fringe.

Different ways to select nodes from the fringe to expand lead to different search algorithms with different properties.

Uninformed search on trees

Uninformed means we only know:
— The goal test
— The succs() function

But not which non-goal states are better: that would
be informed search (next topic).

® For now, we also assume succs() graph is a tree.
= Won'’t encounter repeated states.
= We will relax it later.
Search strategies: BFS, UCS, DFS, IDS
Differ by what un-expanded nodes to expand

slide 14

Formally we will talk about the simplest version of search which is uniformed search. Note the difference between uninformed and informed search.

Simplification: consider the case when the search graph is a tree

Breadth-first search (BFS)

Expand the shallowest node first

¢ Examine states one step away from the initial states
® Examine states two steps away from the initial states
¢ andsoon...

ripple

slide 15

Breadth-first search (BFS): expand the shallowest node first.

High level intuition: like ripple in a pool

Breadth-first search (BFS)

Use a queue (First-in First-out) D@ Search tree
i en_queue(Initial states)

2. While (queue not empty)

3. s= de_queue()

4. if (s==goal) success!

5. T= succs(s)

0. en_queue(T)

/. endWhile

Initial state: A
Goal state: G

slide 16

BFS: implemented by queue, the FIFO data structure. The first-in nodes are shallower (closer in steps to the initial state) so are expanded first.

Breadth-first search (BFS)

>@

Use a queue (First-in First-out)
i en_queue(Initial states)
2. While (queue not empty)

3. s= de_queue()

4. if (s==goal) success!

5. T= succs(s)

0. en_queue(T)

/. endWhile queue (fringe, OPEN)

-2 [A] 2

Initial state: A
Goal state: G

Search tree

slide 17

At the beginning, put the init state in the queue

Breadth-first search (BFS)

Use a queue (First-in First-out) o Search tree

i en_queue(Initial states)

2. While (queue not empty)

3. s= de_queue() D 6 G
4. if (s==goal) success!

5. T= succs(s)

0. en_queue(T)

/. endWhile queue (fringe, OPEN)

> [CB]> A

Initial state: A
Goal state: G

slide 18

Here we show iteration 1:
the state checked: A
the queue at the end of the iteration: [CB]

The right hand side of the queue is the front of the queue.

Iteration 2

Breadth-first search (BFS)

Use a queue (First-in First-out)
i en_queue(Initial states)
2. While (queue not empty)
3. s= de_queue()

4. if (s==goal) success!
5. T= succs(s)

0. en_queue(T)

/. endWhile queue (fringe, OPEN)
> [EDC] > B

Initial state: A
Goal state: G

Search tree

slide 19

3. s= de_queue()

4. if (s==goal) success!
5. T= succs(s)

0. en_queue(T)

/. endWhile

Initial state: A
Goal state: G

Breadth-first search (BFS)

Use a queue (First-in First-out)
i en_queue(Initial states)
2. While (queue not empty)

o Search tree

b ® © @

queue (fringe, OPEN)
2>[GFED] > C

If G is a goal, we've seen it, but
we don't stop!

slide 20

Iteration 3.

Note that we generate G and put it in the queue but haven’t checked it yet.

lteration 4: [GFE]-> D
lteration 5: [GF]-> E
lteration 6: [G]-> F

Iteration 7: []-> G. Success!

Breadth-first search (BFS)

Use a queue (First-in First-out) (A) Search tree
1. en_queue(Initial states)

2. While (queue not empty)
s = de_queue()

if (s==goal) success!

4.
5. T=succs(s) D @ ‘ e ‘
6.

/.

e

en_queue(T)

endWhile queue
2[] 2G

s ... until much later we pop G.
ooking foolish?

Indeed. But let’s be

consistent. ..

slide 21

Breadth-first search (BFS)

Use a queue (First-in First-out) o Search tree
1. en_queue(Initial states)

2. While (queue not empty)
s = de_queue()

if (s==goal) success!

O. T=succs(s) D> (D) ‘ (F) ‘
6.
f.

e

en_queue(T)
endWhile

queue
>0 >G

e e ... until much later we pop G.
ooking foolish?

Indeed. But let’s be We need back pointers to

recover the solution path.
slide 22

consistent. ..

If we would like to return the solution path, we can keep a back point for each node that we generated. Then when succeed, we can trace back the path.

Performance of BFS

¢ Assume:

= the graph may be infinite.

= Goal(s) exists and is only finite steps away.
® Will BFS find at least one goal?
® Will BFS find the least cost goal?
® Time complexity?

= # states generated

= Goal d edges away

= Branching factor b » @ s
® Space complexity? lg %
= # states stored oa) 1

slide 23

A few fundamental questions about the performance.

Note that the time complexity is roughly proportional to total # states generated. To describe that we introduce parameters d and b.
The space complexity is roughly proportional to the max # states stored at any time point during the execution of the algorithm.

Performance of BFS

Four measures of search algorithms:

Completeness (not finding all goals): yes, BFS will
find a goal.

® Optimality: yes if edges cost 1 (more generally
positive non-decreasing in depth), no otherwise.

® Time complexity (worst case): goal is the last node at
radius d.

= Have to generate all nodes at radius d.
" b+ +... +bF ~ OF)
® Space complexity (bad)
= Back pointers for all generated nodes O#”)
= The queue / fringe (smaller, but still O@"))

slide 24

If all edge cost are identical, then optimal.

More generally, if the cost is positive and non-decreasing in depth then optimal (we don’t require to understand the general case in this course).
O(bAd): big-O notation. It means that it’s roughly (C*bAd + smaller terms) for some constant C

If all edge cost are identical, then optimal.

More generally, if the cost is positive and non-decreasing in depth then optimal (we don’t require to understand the general case in this course).
O(bAd): big-O notation. It means that it’s roughly (C*bAd + smaller terms) for some constant C.

In the worst case, we need to generate all nodes within radius d+1 (including the children of the nodes at radius d). Then the time is b+b/2+ ... + bAd + bA{d+1} = O(bAd)
viewing b as a constant.

What'’s in the fringe (queue) for BFS?

* Convince yourself this is 059

n
\]
Ra\Y/ *

*
*
"
4 s
& L
)
a
| | —~
a

TN,

al\y A e®
N m

slide 25

The space complexity is roughly proportional to the max # states stored at any time point during the execution of the algorithm. In the worst case, at some point it can
store all nodes the same depth as the goal state.

Performance of search algorithms on trees

b: branching factor (assume finite)

d: goal depth

Complete

optimal

time

space

Breadth-first
search

Y

¥ I

O(bd)

o(b?)

1. Edge cost constant, or positive non-decreasing in depth

slide 26

Q1-1: You are running BFS on a finite tree-structured state space
graph that does not have a goal state. What is the behavior of BFS?

1. Visit all N nodes, then
return one at random

2. Visit all N nodes, then
stop and return
“failure”

3. Visit all N nodes, then
return the node
farthest from the initial
state

4. Get stuck in an infinite
loop

slide 27

Q1-1: You are running BFS on a finite tree-structured state space
graph that does not have a goal state. What is the behavior of BFS?

1. Visit all N nodes, then
return one at random

2. Visit all N nodes, then —
stop and return
“failure”

3. Visit all N nodes, then
return the node
farthest from the initial
state

4. Get stuck in an infinite
loop

slide 28

One drawback: may not be optimal

Performance of BFS

Four measures of search algorithms: Solution:

Uniform-cost

Completeness (not finding all goals): search

find a goal.

Optimality: yes if edges cost 1 (more gen&gally
positive non-decreasing with depth), no otherwise.

Time complexity (worst case): goal is the last node at
radius d

= Have to generate all nodes at radius d
" b+ +... + b~ Or)
Space complexity (bad, see the Figure)
= Back points for all generated nodes O@#*)
= The queue (smaller, but still O@#?))

slide 29

Uniform-cost search

® Find the least-cost goal

¢ Each node has a path cost from start (= sum of edge
costs along the path).

® Expand the least cost node first.
® Use a priority queue instead of a normal queue
= Always take out the least cost item

slide 30

Each time pick the least-cost node in the fringe to expand.

Need to keep the cost of each node when generated. Use the priority queue data structure: priority queue is designed exactly for the purpose of picking the least-cost
item.

Example

Initial state

8

@K
bk

(All edges are directed, pointing downwards)

Goal state

@

slide 31

Example for UCS.

lteration, node expanded, fringe at the end of the iteration (nodes not sorted; nodes are in the format (id, cost))
1:(S,0), [(A,1), (B,5), (C,8)]

'(1), [(B,5), (C,8), (D.4), (E.8), (G,10)]

3:(D.4), [B,5), (C.8), (E,8), (G,10)]

4: (B,

5), [(C,8), (E,8), (G,9)]
At iteration 4, we will get a new copy of G: (G,9). We can keep both copies: the old (G,10) and the new (G,9). We can also keep only the least-cost copy: (G,9). Here we

do the latter for simplicity. Note that if we keep a back pointer, we also need to update the back point accordingly.

5:(GC,8), [(E.8), (G,9)]
At iteration 5, we need to break ties between (C,8) and (E,8). Here we use the dictionary order: C before E. Also, note that from C we generate a new copy of G: (G, 13).
However, its cost is larger than the old copy (G,9), so we only keep (G,9).

6: (E,8), [(G,9)]
7:(G,9), []: Success!

Uniform-cost search (UCS)

® Complete and optimal (if edge costs > £ > 0)

® Time and space: can be much worse than BFS
= Let C* be the cost of the least-cost goal
o O(bC*/e)

slide 32

Recall that the time complexity is proportional to total #nodes generated before success. It can be all the nodes with smaller or equal cost as the goal state. These nodes
are at most C*/\epsilon steps away from the initial state, so in the worst case there can be roughly bA{C*/\epsilon} so many of them.

Similar reasoning for the space complexity.

Performance of search algorithms on trees
b: branching factor (assume finite) d: goal depth

Complete optimal time space
Breadth-first i 1 q q
search Y Y, if O(b9) O(b9)
Uniform-cost Y Y O(bC"%) O(bC"")
search?

1. edge cost constant, or positive non-decreasing in depth
2. edge costs > ¢ > 0. C*is the best goal path cost.

slide 33

Q1-2: You are running UCS in the state space graph below. You just called
the successor function on node D. What is the cost of node F?

slide 34

Q1-2: You are running UCS in the state space graph below. You just called
the successor function on node D. What is the cost of node F?

slide 35

The cost is simply the sum of the edge costs along the path from the initial state to D and then to F.

Q1-3: You are running UCS in the state space graph below. You just
expanded (visited) node C. What node will the search expand next?

slide 36

Q1-3: You are running UCS in the state space graph below. You just
expanded (visited) node C. What node will the search expand next?

slide 37

UCS has the property that it will always check a smaller cost node before larger cost node.

| and B have smaller cost than C, so they must have been expanded before C. D has smaller cost than E F A, so D must be expanded before E F A.

