

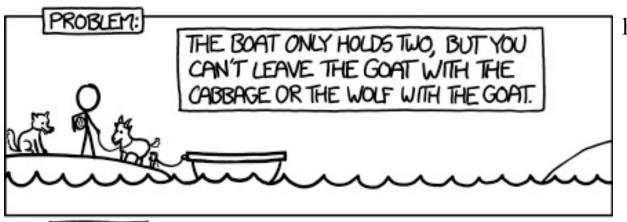
CS540 Intro to Al Uninformed Search

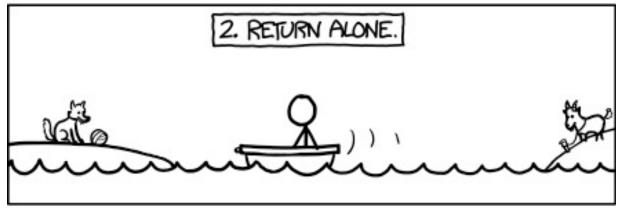
Yingyu Liang
University of Wisconsin-Madison

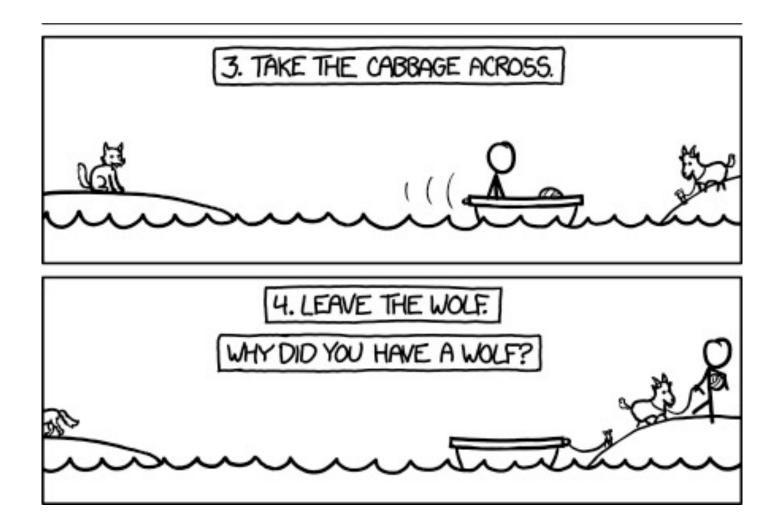
Slides created by Xiaojin Zhu (UW-Madison), lightly edited by Anthony Gitter

Many Al problems can be formulated as search.

http://xkcd.com/1134/

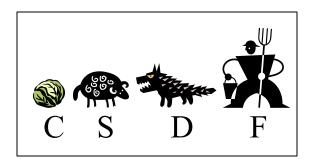






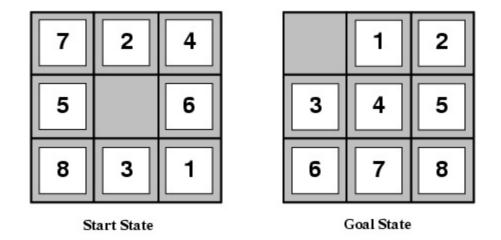
The search problem

- State space S: all valid configurations
- Initial state I={(CSDF,)} ⊆ S
- Goal state *G*={(,CSDF)} ⊆ *S*



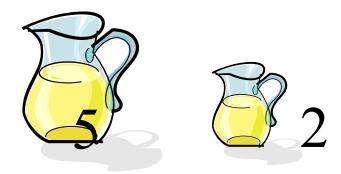
- Successor function succs(s)⊆ S: states reachable in one step from state s
 - succs((CSDF,)) = {(CD, SF)}
 - succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}
- Cost(s,s')=1 for all steps. (weighted later)
- The search problem: find a solution path from a state in I to a state in G.
 - Optionally minimize the cost of the solution.

8-puzzle



- States = 3x3 array configurations
- action = up to 4 kinds of movement
- Cost = 1 for each move

Water jugs: how to get 1?

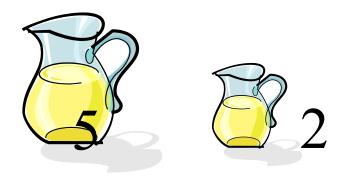


State = (x,y), where x = number of gallons of water in the 5-gallon jug and y is gallons in the 2-gallon jug

Initial State = (5,0)

Goal State = (*,1), where * means any amount

Water jugs: how to get 1?



State = (x,y), where x = number of gallons of water in the 5-gallon jug and y is gallons in the 2-gallon jug

Initial State = (5,0)

Goal State = (*,1), where * means any amount Operators

(x,y) -> (0,y); empty 5-gal jug

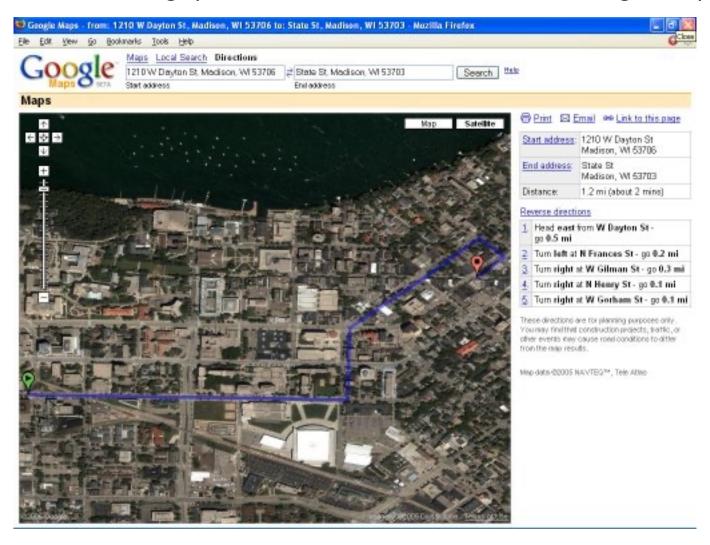
(x,y) -> (x,0); empty 2-gal jug

(x,2) and $x \le 3 -> (x+2,0)$; pour 2-gal into 5-gal

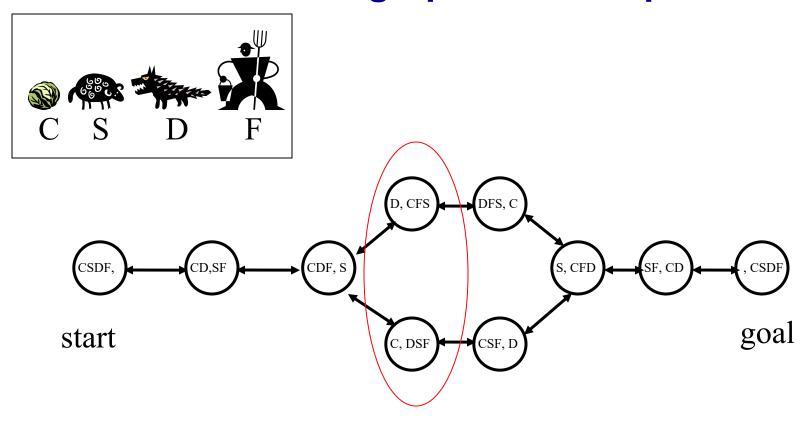
(x,0) and x>=2 -> (x-2,2); pour 5-gal into 2-gal

 $(1,0) \rightarrow (0,1)$; empty 5-gal into 2-gal

Route finding (State? Successors? Cost weighted)



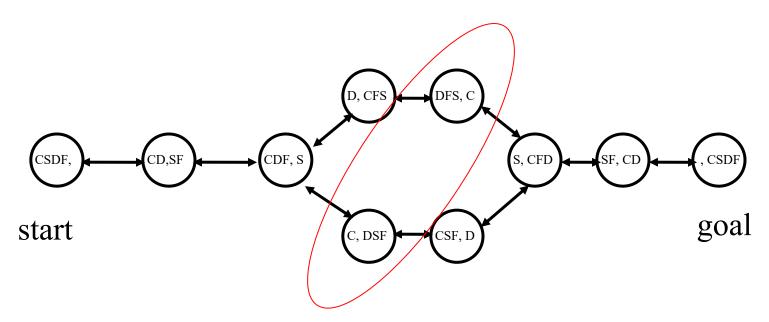
A directed graph in state space



- In general there will be many generated, but unexpanded states at any given time
- One has to choose which one to expand next

Different search strategies

- The generated, but not yet expanded states form the fringe (OPEN).
- The essential difference is which one to expand first.
- Deep or shallow?



Uninformed search on trees

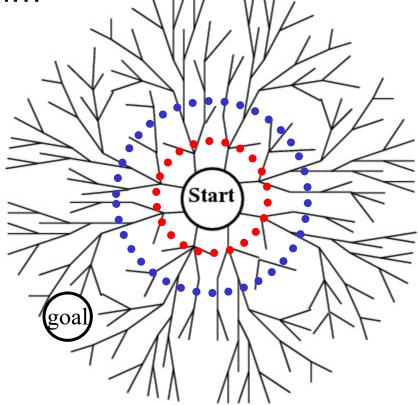
- Uninformed means we only know:
 - The goal test
 - The succs() function
- But not which non-goal states are better: that would be informed search (next topic).
- For now, we also assume succs() graph is a tree.
 - Won't encounter repeated states.
 - We will relax it later.
- Search strategies: BFS, UCS, DFS, IDS
- Differ by what un-expanded nodes to expand

Expand the shallowest node first

- Examine states one step away from the initial states
- Examine states two steps away from the initial states

and so on...

ripple



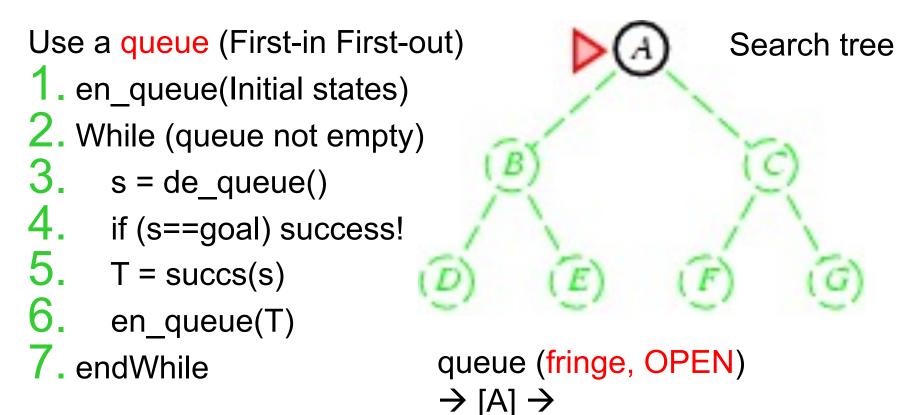
Use a queue (First-in First-out)

- 1. en_queue(Initial states)
- 2. While (queue not empty)
- 3. s = de_queue()
- 4. if (s==goal) success!
- 5. T = succs(s)
- 6. en_queue(T)
- 7. endWhile

Initial state: A

Goal state: G

Search tree



Initial state: A

Goal state: G

Use a queue (First-in First-out)

- 1. en_queue(Initial states)
- 2. While (queue not empty)
- 3. $s = de_queue()$
- 4. if (s==goal) success!
- 5. T = succs(s)
- 6. en_queue(T)
- 7. endWhile

queue (fringe, OPEN)

 \rightarrow [CB] \rightarrow A

Initial state: A

Goal state: G

Search tree

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. $s = de_queue()$

4. if (s==goal) success!

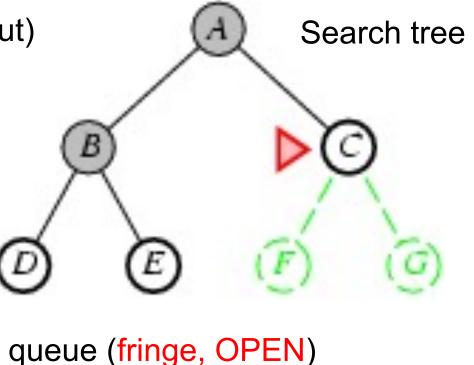
5. T = succs(s)

6. en_queue(T)

7. endWhile

Initial state: A

Goal state: **G**



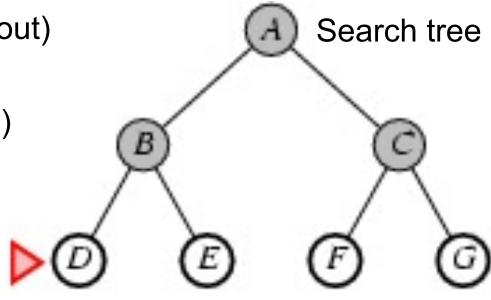
queue (tringe, OPEN) → [EDC] → B

Use a queue (First-in First-out)

- 1. en_queue(Initial states)
- 2. While (queue not empty)
- 3. $s = de_queue()$
- 4. if (s==goal) success!
- 5. T = succs(s)
- 6. en_queue(T)
- 7. endWhile

Initial state: A

Goal state: G



queue (fringe, OPEN)

 \rightarrow [GFED] \rightarrow C

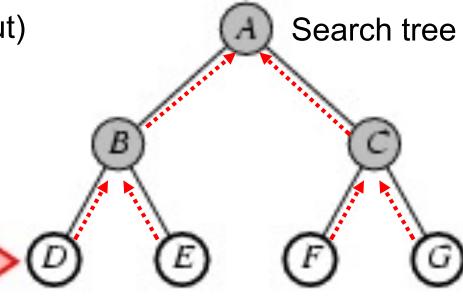
If G is a goal, we've seen it, but

we don't stop!

Use a queue (First-in First-out)

- 1. en_queue(Initial states)
- 2. While (queue not empty)
- 3. $s = de_queue()$
- 4. if (s==goal) success!
- 5. T = succs(s)
- 6. en_queue(T)
- 7. endWhile

Looking foolish?
Indeed. But let's be consistent...



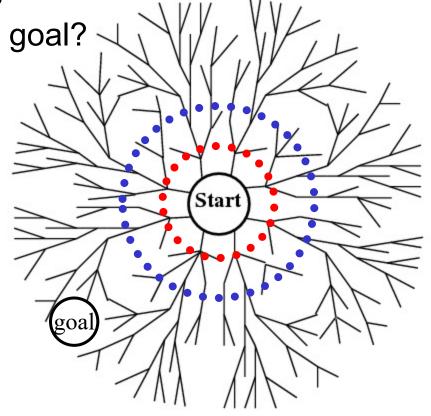
queue \rightarrow [] \rightarrow G

... until much later we pop G.

We need back pointers to recover the solution path.

Performance of BFS

- Assume:
 - the graph may be infinite.
 - Goal(s) exists and is only finite steps away.
- Will BFS find at least one goal?
- Will BFS find the least cost goal?
- Time complexity?
 - # states generated
 - Goal d edges away
 - Branching factor b
- Space complexity?
 - # states stored



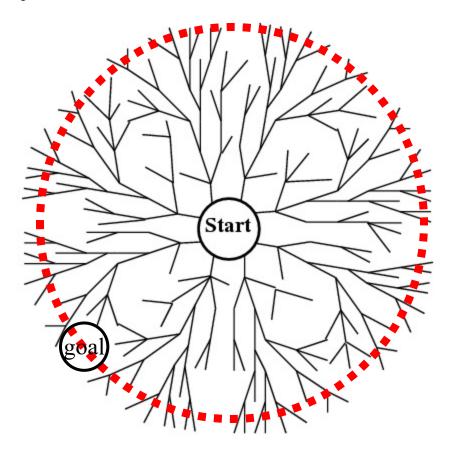
Performance of BFS

Four measures of search algorithms:

- Completeness (not finding all goals): yes, BFS will find a goal.
- Optimality: yes if edges cost 1 (more generally positive non-decreasing in depth), no otherwise.
- Time complexity (worst case): goal is the last node at radius d.
 - Have to generate all nodes at radius d.
 - $b + b^2 + ... + b^d \sim O(b^d)$
- Space complexity (bad)
 - Back pointers for all generated nodes O(b^d)
 - The queue / fringe (smaller, but still O(b^d))

What's in the fringe (queue) for BFS?

• Convince yourself this is $O(b^d)$



Performance of search algorithms on trees

b: branching factor (assume finite) d: goal depth

	Complete	optimal	time	space
Breadth-first search	Υ	Y, if ¹	O(b ^d)	O(b ^d)

1. Edge cost constant, or positive non-decreasing in depth

Performance of BFS

Four measures of search algorithms:

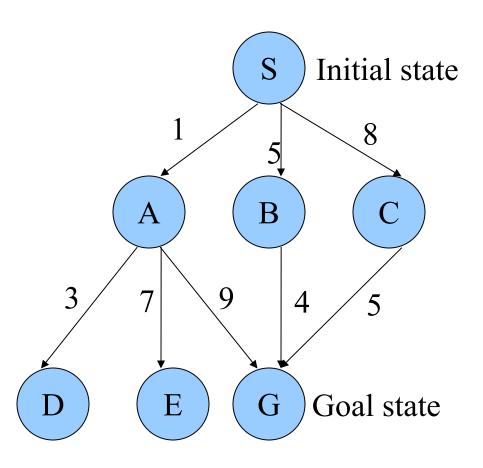
Solution: Uniform-cost search

- Completeness (not finding all goals): find a goal.
- Optimality: yes if edges cost 1 (more generally positive non-decreasing with depth), no otherwise.
- Time complexity (worst case): goal is the last node at radius d.
 - Have to generate all nodes at radius d.
 - $b + b^2 + ... + b^d \sim O(b^d)$
- Space complexity (bad, Figure 3.11)
 - Back points for all generated nodes O(b^d)
 - The queue (smaller, but still $O(b^d)$)

Uniform-cost search

- Find the least-cost goal
- Each node has a path cost from start (= sum of edge costs along the path).
- Expand the least cost node first.
- Use a priority queue instead of a normal queue
 - Always take out the least cost item

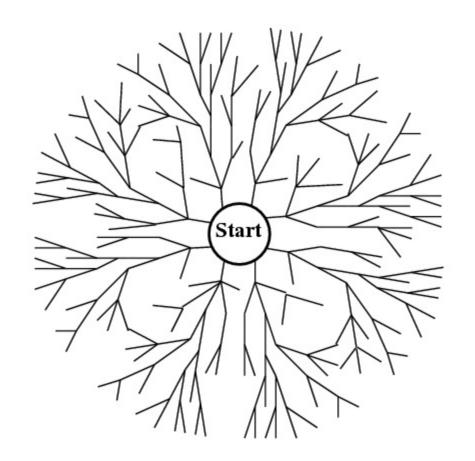
Example



(All edges are directed, pointing downwards)

Uniform-cost search (UCS)

- Complete and optimal (if edge costs ≥ ε > 0)
- Time and space: can be much worse than BFS
 - Let C* be the cost of the least-cost goal
 - $O(b^{C*/\varepsilon})$



Performance of search algorithms on trees

b: branching factor (assume finite) d: goal depth

	Complete	optimal	time	space
Breadth-first search	Y	Y, if ¹	O(b ^d)	O(b ^d)
Uniform-cost search ²	Y	Y	$O(b^{C^*/\epsilon})$	O(b ^{C*/ε})

- 1. edge cost constant, or positive non-decreasing in depth
- 2. edge costs $\geq \varepsilon > 0$. C* is the best goal path cost.

General State-Space Search Algorithm

```
function general-search(problem, QUEUEING-FUNCTION)
 ;; problem describes the start state, operators, goal test, and
   operator costs
 ;; queueing-function is a comparator function that ranks two states
 ;; general-search returns either a goal node or "failure"
 nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
 loop
  if EMPTY(nodes) then return "failure"
  node = REMOVE-FRONT(nodes)
  if problem.GOAL-TEST(node.STATE) succeeds then return node
  nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
                     problem.OPERATORS))
  ;; succ(s)=EXPAND(s, OPERATORS)
  ;; Note: The goal test is NOT done when nodes are generated
  ;; Note: This algorithm does not detect loops
 end
```

Recall the bad space complexity of BFS

Four measures of search algorithms:

Solution: Uniform-cost search

- Completeness (not finding all goals): find a goal.
- Optimality: yes if edges cost 1 (more generally positive non-decreasing with depth), no otherwise.
- Time comple radius d.
 Depth-first search

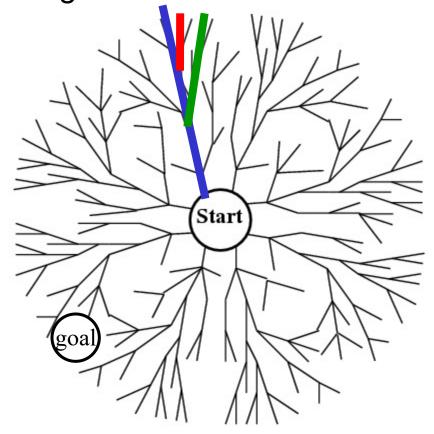
): goal is the last node at search
 - Have to g
 s at radius d.
 - $b + b^2 + ... + b^d \sim Q^{-1}$
- Space complexity (bad, Figure 3.11)
 - Back points for all generated nodes O(b^d)
 - The queue (smaller, but still *O(b^d)*)

Depth-first search

Expand the deepest node first

- 1. Select a direction, go deep to the end
- 2. Slightly change the end ———
- 3. Slightly change the end some more...

fan

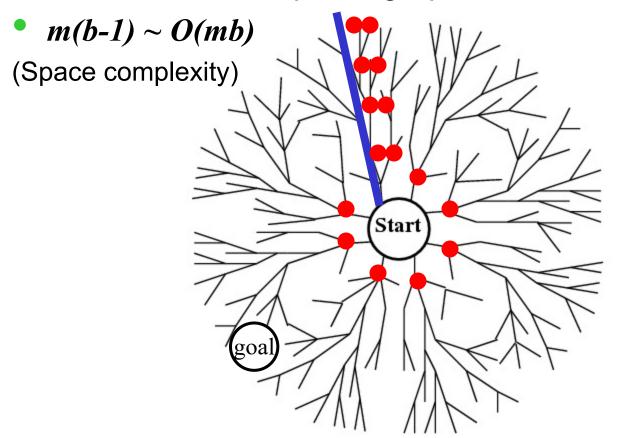


Depth-first search (DFS)

Use a stack (First-in Last-out) 1. push(Initial states) 2. While (stack not empty) s = pop()4. if (s==goal) success! 5. T = succs(s)6. push(T) 7. endWhile stack (fringe)

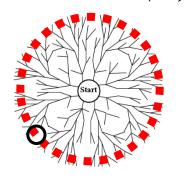
What's in the fringe for DFS?

m = maximum depth of graph from start



- "backtracking search" even less space
 - generate siblings (if applicable)

c.f. BFS $O(b^d)$

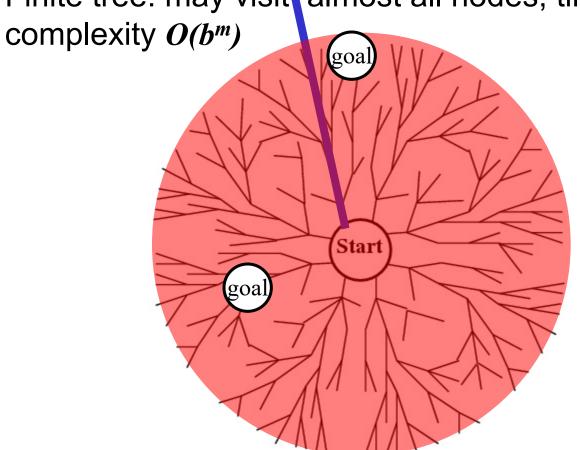


What's wrong with DFS?

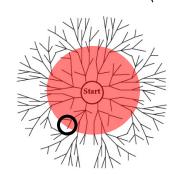
Infinite tree: may not find goal (incomplete)

May not be optimal

Finite tree: may visit almost all nodes, time



c.f. BFS $O(b^d)$



Performance of search algorithms on trees

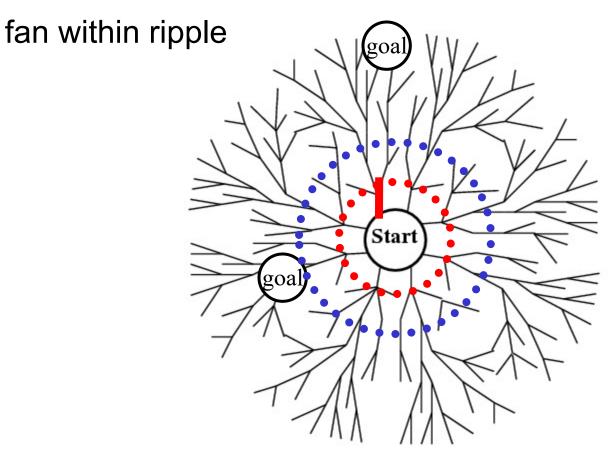
b: branching factor (assume finite) d: goal depth m: graph depth

	Complete	optimal	time	space
Breadth-first search	Y	Y, if ¹	O(b ^d)	O(b ^d)
Uniform-cost search ²	Y	Υ	$O(b^{C^*/\epsilon})$	O(b ^{C*/ε})
Depth-first search	Ν	N	O(b ^m)	O(bm)

- 1. edge cost constant, or positive non-decreasing in depth
- 2. edge costs $\geq \varepsilon > 0$. C* is the best goal path cost.

How about this?

- 1. DFS, but stop if path length > 1.
- 2. If goal not found, repeat DFS, stop if path length > 2.
- 3. And so on...



Iterative deepening

- Search proceeds like BFS, but fringe is like DFS
 - Complete, optimal like BFS
 - Small space complexity like DFS
 - Time complexity like BFS
- Preferred uninformed search method

Performance of search algorithms on trees

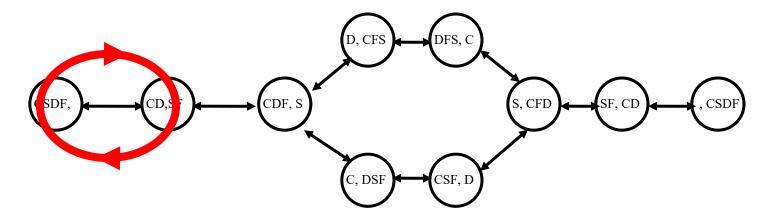
b: branching factor (assume finite) d: goal depth m: graph depth

	Complete	optimal	time	space
Breadth-first search	Υ	Y, if ¹	O(b ^d)	O(b ^d)
Uniform-cost search ²	Y	Y	$O(b^{C^*/\epsilon})$	O(b ^{C*/ε})
Depth-first search	N	N	O(b ^m)	O(bm)
Iterative deepening	Y	Y, if ¹	O(b ^d)	O(bd)

- edge cost constant, or positive non-decreasing in depth
- 2. edge costs $\geq \varepsilon > 0$. C* is the best goal path cost.

If state space graph is not a tree

• The problem: repeated states



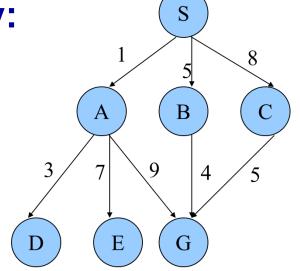
- Ignore the danger of repeated states: wasteful (BFS) or impossible (DFS). Can you see why?
- How to prevent it?

If state space graph is not a tree

- We have to remember already-expanded states (CLOSED).
- When we take out a state from the fringe (OPEN), check whether it is in CLOSED (already expanded).
 - If yes, throw it away.
 - If no, expand it (add successors to OPEN), and move it to CLOSED.

Nodes expanded by:

Breadth-First Search: S A B C D E G
 Solution found: S A G



- Uniform-Cost Search: S A D B C E G
 Solution found: S B G (This is the only uninformed search that worries about costs.)
- Depth-First Search: S A D E G
 Solution found: S A G
- Iterative-Deepening Search: S A B C S A D E G
 Solution found: S A G

What you should know

- Problem solving as search: state, successors, goal test
- Uninformed search
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Iterative deepening

- Can you unify them using the same algorithm, with different priority functions?
- Performance measures
 - Completeness, optimality, time complexity, space complexity