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Many Al problems can be
formulated as search.
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PROBLEM: http://xkcd. /1134/
THE BOAT ONLY HOLDS Two, BUT YoU pr/xiked.com

CANT (EAVE THE GOAT WITH THE
CABBAGE OR THE WOLF WITH THE GOAT.

1. TAKE THE GOAT ACROSS.

[ (

2. RETURN ALONE.

) )
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http://xkcd.com/1134/

4, LEAVE THE WOLE
WHY DID YOU HAVE A WOLF?
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The search problem

State space §': all valid configurations
Initial state I={(CSDF,)} c §

Goal state G={(,CSDF)} c §

Successor function succs(s)c S : states reachable in
one step from state s

* succs((CSDF,)) = {(CD, SF)}
* succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}
Cosft(s,s’)=1 for all steps. (weighted later)

The search problem: find a solution path from a state
In 1 to a state in G.

= Optionally minimize the cost of the solution.
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Search examples

¢ 8-puzzle
7 21| 4 1| 2
5 6 31|l 41| 5
8 ||| 3| 1 6 (|| 7 ||| 8

Start State Goal State

¢ States = 3x3 array configurations
® action = up to 4 kinds of movement
® Cost =1 for each move
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Search examples

Water jugs: how to get 1?

5 B

State = (X,y), where x = number of gallons of water in the 5-
gallon jug and y 1s gallons 1n the 2-gallon jug

Initial State = (5,0)

Goal State = (*,1), where * means any amount

slide 8



Search examples

Water jugs: how to get 1?

5 B

State = (X,y), where x = number of gallons of water in the 5-
gallon jug and y 1s gallons 1n the 2-gallon jug
Initial State = (5,0)
Goal State = (*,1), where * means any amount
Operators
(x,y) > (0,y) ; empty 5-gal jug
(X,y) -> (x,0) ; empty 2-gal jug
(x,2) and x<=3 -> (x+2,0) ; pour 2-gal into 5-gal
(x,0) and x>=2 -> (x-2,2) ; pour 5-gal into 2-gal
(1,0) > (0,1) ; empty 5-gal into 2-gal
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Search examples
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Search examples

Route finding (State”? Successors? Cost weighted)
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A directed graph in state space

sk
jeve
-

start ‘ 7 @ goal

In general there will be many generated, but un-
expanded states at any given time

One has to choose which one to expand next
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Different search strategies

The generated, but not yet expanded states form the
fringe (OPEN).

The essential difference is which one to expand first.
Deep or shallow?

start
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Uninformed search on trees

Uninformed means we only know:
— The goal test
— The succes() function

But not which non-goal states are better: that would
be informed search (next topic).

For now, we also assume succs() graph is a tree.
= Won't encounter repeated states.

=  We will relax it later.

Search strategies: BFS, UCS, DFS, IDS

Differ by what un-expanded nodes to expand
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Breadth-first search (BFS)

Expand the shallowest node first

¢ Examine states one step away from the initial states
¢ Examine states two steps away from the initial states
® andsoon...

ipple N/
S
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Breadth-first search (BFS)

Use a queue (First-in First-out) D@ Search tree
en_queue(Initial states)
While (queue not empty)
s = de_queue()
if (s==goal) success!
T = succs(s)
en_queue(T)
endWhile

Initial state: A
Goal state: G
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Breadth-first search (BFS)

Use a queue (First-in First-out) D@ Search tree
en_queue(Initial states)
While (queue not empty)
s = de_queue()
if (s==goal) success!
T = succs(s)
en_queue(T)

endWhile queue (fringe, OPEN)
-2 [A] 2

Initial state: A
Goal state: G
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Breadth-first search (BFS)

Use a queue (First-in First-out) o Search tree
en_queue(Initial states)
While (queue not empty)
s = de_queue() D 6 G
if (s==goal) success!
T = succs(s)
en_queue(T)
endWhile queue (fringe, OPEN)
- [CB] 2> A

Initial state: A
Goal state: G
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Breadth-first search (BFS)

Use a queue (First-in First-out)
1. en_queue(Initial states)
Z . While (queue not empty)
3. s= de_queueg()
AN (s==goal) success!
D, T= succs(s)

0. en_queue(T)

[ . endWhile queue (fringe, OPEN)
> [EDC] > B

Search tree

Initial state: A
Goal state: G
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Breadth-first search (BFS)

Use a queue (First-in First-out) o Search tree
1. en_queue(Initial states)

Z . While (queue not empty)
3. s= de_queueg()
4. if (s==goal) success!

O. T =succs(s) D @ e 6 O

0. en_queue(T)

/. endWhile queue (fringe, OPEN)
—2>[GFED] =2 C
Initial state: A If G is a goal, we've seen it, but

Goal state: G we don't stop!
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Breadth-first search (BFS)

Use a queue (First-in First-out)
1. en_queue(Initial states)

Z . While (queue not empty)

s = de_queue()

if (s==goal) success!

4.
5. T =succs(s) D ‘ G ‘
6.
/.

.

en_queue(T)
endWhile

queue
2[] 2G

[ ookine foolish? ... until much later we pop G.
ooking toolish’

Indeed. But let’s be We need back pointers to

recover the solution path.
slide 22
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Performance of BFS

¢ Assume:

* the graph may be infinite.

= Goal(s) exists and is only finite steps away.
® Will BFS find at least one goal?

® Will BFS find the least cost goal? \()/
® Time complexity?

= # states generated o’ ..
= Goal d edges away Y

= Branching factor b @ %
¢ Space complexity? / %

= # states stored
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Performance of BFS

Four measures of search algorithms:

Completeness (not finding all goals): yes, BFS will
find a goal.

Optimality: yes if edges cost 1 (more generally
positive non-decreasing in depth), no otherwise.

Time complexity (worst case): goal is the last node at
radius d.

= Have to generate all nodes at radius d.
= b+ B +... + b~ Or)
Space complexity (bad)
= Back pointers for all generated nodes O@")
= The queue / fringe (smaller, but still O@?))
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What’s in the fringe (queue) for BFS?

® Convince yourself this is O(b%)
: e
3\35 , @ X

2//l(\8
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Performance of search algorithms on trees

b: branching factor (assume finite)

d: goal depth

Complete

optimal

time

space

Breadth-first
search

Y

Y, if |

O(bd)

O(bd)

1. Edge cost constant, or positive non-decreasing in depth
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Performance of BFS

Four measures of search algorithms: Solution:
Uniform-cost

Completeness (not finding all goals):
find a goal.

Optimality: yes if edges cost 1 (more gendgally
positive non-decreasing with depth), no otherwise.

Time complexity (worst case): goal is the last node at
radius d.

= Have to generate all nodes at radius d.
» b+ +... + b~ O)
Space complexity (bad, Figure 3.11)
* Back points for all generated nodes O(#’)
= The queue (smaller, but still O@))

search
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Uniform-cost search

Find the least-cost goal

Each node has a path cost from start (= sum of edge
costs along the path).

Expand the least cost node first.
Use a priority queue instead of a normal queue
= Always take out the least cost item
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Example

@ Initial state

v

@ @ @Goal state

(All edges are directed, pointing downwards)
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Uniform-cost search (UCS)

® Complete and optimal (if edge costs > ¢ > 0)
® Time and space: can be much worse than BFS
* Let C* be the cost of the least-cost goal

m O(bC*/g)
N\
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Performance of search algorithms on trees

b: branching factor (assume finite)

d: goal depth

Complete optimal time space
Breadth-first ¢ 1 d q
search Y Y, if O(b%) O(b9)
Uniform-cost C¥e C¥e
search? Y Y O(b%"¢) O(b%#)

1. edge cost constant, or positive non-decreasing in depth

2. edge costs >e>0. C*is the best goal path cost.
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General State-Space Search Algorithm

function general-search(problem, QUEUEING-FUNCTION)
;; problem describes the start state, operators, goal test, and
,; operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or "failure”

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop
if EMPTY(nodes) then return "failure”
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
problem.OPERATORS))
;; succ(s)=EXPAND(s, OPERATORYS)
;; Note: The goal testis NOT done when nodes are generated
;; Note: This algorithm does not detect loops
end
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Recall the bad space complexity of BFS

Four measures of search algorithms: Solution:
Uniform-cost

Completeness (not finding all goals):
find a goal.

Optimality: yes if edges cost 1 (more gendgally
positive non-decreasing with depth), no otherwise.

Time comple S°|”ti°_“: ): goal is the last node at
radius d Depth-first

search

search

* Have to g s at radius d.
b+ +... b~
Space complexity (bad, Figure 3.11)
* Back points for all generated nodes O(#’)

= The queue (smaller, but still O@))
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Depth-first search

Expand the deepest node first

1. Selecta direction, go deep to the end  ———————
2. Slightly change the end
3. Slightly change the end some more... c—
fan

=
5
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Depth-first search (DFS)

Use a stack (First-in Last-out) D@
push(Initial states)
While (stack not empty)
s = pop()
if (s==goal) success!
T = succs(s)
push(T)

endWhile stack (fringe)
[l
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What’s in the fringe for DFS?

° m = maximum depth of graph from start
® m(b-1) ~ O(mb) }
(Space complexity) \‘y

Q'
IS
~

S ‘ o.f. BFS O(b%

® “backtracking search” even less space
® generate siblings (if applicable)
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What’s wrong with DFS?

® Infinite tree: may A not find goal (incomplete)

¢ May not be optimal

® Finite tree: may visity almost all nodes, time
complexity Ob™)

c.f. BFS O(b9)
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Performance of search algorithms on trees
b: branching factor (assume finite) d: goal depth m: graph depth

Complete optimal time space
preadih-first Y Y, if 1 O(b) O(bd)
somrone | Y Y O | O

Deptri-first N N O(b™) O(bm)

1. edge cost constant, or positive non-decreasing in depth
2. edge costs >e>0. C*is the best goal path cost.
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How about this?

1. DFS, but stop if path length > 1.
2. If goal not found, repeat DFS, stop if path length > 2.

3. And soon...
fan within ripple

=
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Iterative deepening

Search proceeds like BFS, but fringe is like DFS
= Complete, optimal like BFS
= Small space complexity like DFS
= Time complexity like BFS

Preferred uninformed search method
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Performance of search algorithms on trees
b: branching factor (assume finite) d: goal depth m: graph depth

Complete optimal time space
preadih-first Y Y, if 1 O(b) O(bd)
somrone Y Y O | O

Deptr-first N N O(b™) O(bm)
deanonng | Y Y, if o(b) O(bd)

1. edge cost constant, or positive non-decreasing in depth
2. edge costs >e>0. C*is the best goal path cost.
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If state space graph is not a tree

The problem: repeated states

Ignore the danger of repeated states: wasteful (BFS)
or impossible (DFS). Can you see why?

How to prevent it?
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If state space graph is not a tree

We have to remember already-expanded states
(CLOSED).

When we take out a state from the fringe (OPEN),
check whether it is in CLOSED (already expanded).

= |If yes, throw it away.

* If no, expand it (add successors to OPEN), and
move it to CLOSED.

slide 48



Nodes expanded by:

1 5 8
Breadth-First Search: SABCDE G G
Solution found: SAG 3/ 71 \9 |4 5

Uniform-Cost Search. SADBCEG @ @ @

Solution found: S B G (This is the only uninformed
search that worries about costs.)

Depth-First Search: SADE G
Solution found: SA G

lterative-Deepening Search. SABC SADEG
Solution found: SAG
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What you should know

Problem solving as search: state, successors, goal test
Uninformed search
* Breadth-first search
 Uniform-cost search
= Depth-first search

= |terative deepening * D B N

Can you unify them using the same algorithm, with
different priority functions?

Performance measures

= Completeness, optimality, time complexity, space
complexity
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