CS540 Intro to Al
Uninformed Search

Yingyu Liang

University of Wisconsin-Madison

Slides created by Xiaojin Zhu (UW-Madison),
lightly edited by Anthony Gitter slide 1

Many Al problems can be
formulated as search.

slide 2

slide 3

PROBLEM: http://xkcd. /1134/
THE BOAT ONLY HOLDS Two, BUT YoU pr/xiked.com

CANT (EAVE THE GOAT WITH THE
CABBAGE OR THE WOLF WITH THE GOAT.

1. TAKE THE GOAT ACROSS.

[(

2. RETURN ALONE.

))

slide 4

http://xkcd.com/1134/

4, LEAVE THE WOLE
WHY DID YOU HAVE A WOLF?

slide 5

The search problem

State space §': all valid configurations
Initial state I={(CSDF,)} c §

Goal state G={(,CSDF)} c §

Successor function succs(s)c S : states reachable in
one step from state s

* succs((CSDF,)) = {(CD, SF)}
* succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}
Cosft(s,s’)=1 for all steps. (weighted later)

The search problem: find a solution path from a state
In 1 to a state in G.

= Optionally minimize the cost of the solution.

slide 6

Search examples

¢ 8-puzzle
7 21| 4 1| 2
5 6 31|l 41| 5
8 ||| 3| 1 6 (|| 7 ||| 8

Start State Goal State

¢ States = 3x3 array configurations
® action = up to 4 kinds of movement
® Cost =1 for each move

slide 7

Search examples

Water jugs: how to get 1?

5 B

State = (X,y), where x = number of gallons of water in the 5-
gallon jug and y 1s gallons 1n the 2-gallon jug

Initial State = (5,0)

Goal State = (*,1), where * means any amount

slide 8

Search examples

Water jugs: how to get 1?

5 B

State = (X,y), where x = number of gallons of water in the 5-
gallon jug and y 1s gallons 1n the 2-gallon jug
Initial State = (5,0)
Goal State = (*,1), where * means any amount
Operators
(x,y) > (0,y) ; empty 5-gal jug
(X,y) -> (x,0) ; empty 2-gal jug
(x,2) and x<=3 -> (x+2,0) ; pour 2-gal into 5-gal
(x,0) and x>=2 -> (x-2,2) ; pour 5-gal into 2-gal
(1,0) > (0,1) ; empty 5-gal into 2-gal

slide 9

Search examples

slide 10

Search examples

Route finding (State”? Successors? Cost weighted)

Y Geople Mags

e Ee

GOL)gle

Ve @

frome. 1210 W Dayton 52, Nadises, Wi 53706 1o: Stale 55, Nadisen

Gobrerds Took Hep

Sauch Ditections

Madson, W1 53706

Maps Locd
1Z10W Deyton £
SInt adwess

Wi 53103

= Bae B2 Madicon WI53703

Erel 53055

Nozilia Firefex

[Saarch | ek

‘32’_’1’ EEMNI o Lnkto {hx page

Star address: 1210 %W Dayton St
Madison, W A3705
Stae 22

Madon, W 53703

1 2miabout 2 mins)

End addiess

Distance

Reversn deachions

1 Haad east vom W Dayton S1-
oS5 mi

Tum Bt 3t N Frances S1- o 8.2 mi
Tum slght o W Gilman S1- go 0,5 mé
Tumn gight & N Hesey St o 8.0 mi
Tum eight o W Gorhass St- g0 &0 mi

LE N FUR L)

o

slide 11

A directed graph in state space

sk
jeve
-

start ‘ 7 @ goal

In general there will be many generated, but un-
expanded states at any given time

One has to choose which one to expand next

slide 13

Different search strategies

The generated, but not yet expanded states form the
fringe (OPEN).

The essential difference is which one to expand first.
Deep or shallow?

start

slide 14

Uninformed search on trees

Uninformed means we only know:
— The goal test
— The succes() function

But not which non-goal states are better: that would
be informed search (next topic).

For now, we also assume succs() graph is a tree.
= Won't encounter repeated states.

= We will relax it later.

Search strategies: BFS, UCS, DFS, IDS

Differ by what un-expanded nodes to expand

slide 15

Breadth-first search (BFS)

Expand the shallowest node first

¢ Examine states one step away from the initial states
¢ Examine states two steps away from the initial states
® andsoon...

ipple N/
S

slide 16

Breadth-first search (BFS)

Use a queue (First-in First-out) D@ Search tree
en_queue(Initial states)
While (queue not empty)
s = de_queue()
if (s==goal) success!
T = succs(s)
en_queue(T)
endWhile

Initial state: A
Goal state: G

slide 17

Breadth-first search (BFS)

Use a queue (First-in First-out) D@ Search tree
en_queue(Initial states)
While (queue not empty)
s = de_queue()
if (s==goal) success!
T = succs(s)
en_queue(T)

endWhile queue (fringe, OPEN)
-2 [A] 2

Initial state: A
Goal state: G

slide 18

Breadth-first search (BFS)

Use a queue (First-in First-out) o Search tree
en_queue(Initial states)
While (queue not empty)
s = de_queue() D 6 G
if (s==goal) success!
T = succs(s)
en_queue(T)
endWhile queue (fringe, OPEN)
- [CB] 2> A

Initial state: A
Goal state: G

slide 19

Breadth-first search (BFS)

Use a queue (First-in First-out)
1. en_queue(Initial states)
Z . While (queue not empty)
3. s= de_queueg()
AN (s==goal) success!
D, T= succs(s)

0. en_queue(T)

[. endWhile queue (fringe, OPEN)
> [EDC] > B

Search tree

Initial state: A
Goal state: G

slide 20

Breadth-first search (BFS)

Use a queue (First-in First-out) o Search tree
1. en_queue(Initial states)

Z . While (queue not empty)
3. s= de_queueg()
4. if (s==goal) success!

O. T =succs(s) D @ e 6 O

0. en_queue(T)

/. endWhile queue (fringe, OPEN)
—2>[GFED] =2 C
Initial state: A If G is a goal, we've seen it, but

Goal state: G we don't stop!

slide 21

Breadth-first search (BFS)

Use a queue (First-in First-out)
1. en_queue(Initial states)

Z . While (queue not empty)

s = de_queue()

if (s==goal) success!

4.
5. T =succs(s) D ‘ G ‘
6.
/.

.

en_queue(T)
endWhile

queue
2[] 2G

[ookine foolish? ... until much later we pop G.
ooking toolish’

Indeed. But let’s be We need back pointers to

recover the solution path.
slide 22

consistent...

Performance of BFS

¢ Assume:

* the graph may be infinite.

= Goal(s) exists and is only finite steps away.
® Will BFS find at least one goal?

® Will BFS find the least cost goal? \()/
® Time complexity?

= # states generated o’ ..
= Goal d edges away Y

= Branching factor b @ %
¢ Space complexity? / %

= # states stored

slide 23

Performance of BFS

Four measures of search algorithms:

Completeness (not finding all goals): yes, BFS will
find a goal.

Optimality: yes if edges cost 1 (more generally
positive non-decreasing in depth), no otherwise.

Time complexity (worst case): goal is the last node at
radius d.

= Have to generate all nodes at radius d.
= b+ B +... + b~ Or)
Space complexity (bad)
= Back pointers for all generated nodes O@")
= The queue / fringe (smaller, but still O@?))

slide 24

What’s in the fringe (queue) for BFS?

® Convince yourself this is O(b%)
: e
3\35 , @ X

2//l(\8

slide 25

Performance of search algorithms on trees

b: branching factor (assume finite)

d: goal depth

Complete

optimal

time

space

Breadth-first
search

Y

Y, if |

O(bd)

O(bd)

1. Edge cost constant, or positive non-decreasing in depth

slide 26

Performance of BFS

Four measures of search algorithms: Solution:
Uniform-cost

Completeness (not finding all goals):
find a goal.

Optimality: yes if edges cost 1 (more gendgally
positive non-decreasing with depth), no otherwise.

Time complexity (worst case): goal is the last node at
radius d.

= Have to generate all nodes at radius d.
» b+ +... + b~ O)
Space complexity (bad, Figure 3.11)
* Back points for all generated nodes O(#’)
= The queue (smaller, but still O@))

search

slide 28

Uniform-cost search

Find the least-cost goal

Each node has a path cost from start (= sum of edge
costs along the path).

Expand the least cost node first.
Use a priority queue instead of a normal queue
= Always take out the least cost item

slide 29

Example

@ Initial state

v

@ @ @Goal state

(All edges are directed, pointing downwards)

slide 30

Uniform-cost search (UCS)

® Complete and optimal (if edge costs > ¢ > 0)
® Time and space: can be much worse than BFS
* Let C* be the cost of the least-cost goal

m O(bC*/g)
N\

/ % slide 31

Performance of search algorithms on trees

b: branching factor (assume finite)

d: goal depth

Complete optimal time space
Breadth-first ¢ 1 d q
search Y Y, if O(b%) O(b9)
Uniform-cost C¥e C¥e
search? Y Y O(b%"¢) O(b%#)

1. edge cost constant, or positive non-decreasing in depth

2. edge costs >e>0. C*is the best goal path cost.

slide 32

General State-Space Search Algorithm

function general-search(problem, QUEUEING-FUNCTION)
;; problem describes the start state, operators, goal test, and
,; operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or "failure”

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop
if EMPTY(nodes) then return "failure”
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
problem.OPERATORS))
;; succ(s)=EXPAND(s, OPERATORYS)
;; Note: The goal testis NOT done when nodes are generated
;; Note: This algorithm does not detect loops
end

slide 35

Recall the bad space complexity of BFS

Four measures of search algorithms: Solution:
Uniform-cost

Completeness (not finding all goals):
find a goal.

Optimality: yes if edges cost 1 (more gendgally
positive non-decreasing with depth), no otherwise.

Time comple S°|”ti°_“:): goal is the last node at
radius d Depth-first

search

search

* Have to g s at radius d.
b+ +... b~
Space complexity (bad, Figure 3.11)
* Back points for all generated nodes O(#’)

= The queue (smaller, but still O@))

slide 36

Depth-first search

Expand the deepest node first

1. Selecta direction, go deep to the end ———————
2. Slightly change the end
3. Slightly change the end some more... c—
fan

=
5

slide 37

Depth-first search (DFS)

Use a stack (First-in Last-out) D@
push(Initial states)
While (stack not empty)
s = pop()
if (s==goal) success!
T = succs(s)
push(T)

endWhile stack (fringe)
[l

slide 38

What’s in the fringe for DFS?

° m = maximum depth of graph from start
® m(b-1) ~ O(mb) }
(Space complexity) \‘y

Q'
IS
~

S ‘ o.f. BFS O(b%

® “backtracking search” even less space
® generate siblings (if applicable)

slide 39

What’s wrong with DFS?

® Infinite tree: may A not find goal (incomplete)

¢ May not be optimal

® Finite tree: may visity almost all nodes, time
complexity Ob™)

c.f. BFS O(b9)

slide 40

Performance of search algorithms on trees
b: branching factor (assume finite) d: goal depth m: graph depth

Complete optimal time space
preadih-first Y Y, if 1 O(b) O(bd)
somrone | Y Y O | O

Deptri-first N N O(b™) O(bm)

1. edge cost constant, or positive non-decreasing in depth
2. edge costs >e>0. C*is the best goal path cost.

slide 41

How about this?

1. DFS, but stop if path length > 1.
2. If goal not found, repeat DFS, stop if path length > 2.

3. And soon...
fan within ripple

=

slide 44

Iterative deepening

Search proceeds like BFS, but fringe is like DFS
= Complete, optimal like BFS
= Small space complexity like DFS
= Time complexity like BFS

Preferred uninformed search method

slide 45

Performance of search algorithms on trees
b: branching factor (assume finite) d: goal depth m: graph depth

Complete optimal time space
preadih-first Y Y, if 1 O(b) O(bd)
somrone Y Y O | O

Deptr-first N N O(b™) O(bm)
deanonng | Y Y, if o(b) O(bd)

1. edge cost constant, or positive non-decreasing in depth
2. edge costs >e>0. C*is the best goal path cost.

slide 46

If state space graph is not a tree

The problem: repeated states

Ignore the danger of repeated states: wasteful (BFS)
or impossible (DFS). Can you see why?

How to prevent it?

slide 47

If state space graph is not a tree

We have to remember already-expanded states
(CLOSED).

When we take out a state from the fringe (OPEN),
check whether it is in CLOSED (already expanded).

= |If yes, throw it away.

* If no, expand it (add successors to OPEN), and
move it to CLOSED.

slide 48

Nodes expanded by:

1 5 8
Breadth-First Search: SABCDE G G
Solution found: SAG 3/ 71 \9 |4 5

Uniform-Cost Search. SADBCEG @ @ @

Solution found: S B G (This is the only uninformed
search that worries about costs.)

Depth-First Search: SADE G
Solution found: SA G

lterative-Deepening Search. SABC SADEG
Solution found: SAG

slide 49

What you should know

Problem solving as search: state, successors, goal test
Uninformed search
* Breadth-first search
 Uniform-cost search
= Depth-first search

= |terative deepening * D B N

Can you unify them using the same algorithm, with
different priority functions?

Performance measures

= Completeness, optimality, time complexity, space
complexity

slide 56

