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Read Chapter 1 of this book:

Xiaojin Zhu and Andrew B. Goldberg.

Introduction to Semi-Supervised Learning.
http://www.morganclaypool.com/doi/abs/10.2200/S00196ED1V01Y200906AIM006

Morgan & Claypool Publishers, 2009.
(download from UW computers)


http://www.morganclaypool.com/doi/abs/10.2200/S00196ED1V01Y200906AIM006
http://www.morganclaypool.com/doi/abs/10.2200/S00196ED1V01Y200906AIM006
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* Representing “things”
— Feature vector
— Training sample

* Unsupervised learning

— Clustering

* Supervised learning
— Classification
— Regression



Little green men

 The weight and height of 100 little green men
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 What can you learn from this data?



A less alien example

10
5
-~ 8
)
X e
Qb
K, 6
i

4

$
" ¢0 %o
°
& ar
f
6 8 10
width /cm

Oranges: e
Lemons: ¢

From lain Murray http://homepages.inf.ed.ac.uk/imurray2/



http://homepages.inf.ed.ac.uk/imurray2/

Representing “things” in machine learning

An instance x represents a specific object
(“thing”)

x often represented by a D-dimensional feature
vectorx=(x,, ..., x,) ERP

Each dimension is called a feature. Continuous or
discrete.

x is a dot in the D-dimensional feature space

Abstraction of object. Ignores any other aspects
(two men having the same weight, height will be
identical)



Feature representation example

Text document
— Vocabulary of size D (~100,000): “aardvark ... zulu”

“bag of word”: counts of each vocabulary entry

— To marry my true love = (3531:1 13788:1 19676:1)

— | wish that | find my soulmate this year = (3819:1 13448:1
19450:1 20514:1)

Often remove stopwords: the, of, at, in, ...

Special “out-of-vocabulary” (OOV) entry catches
all unknown words



More feature representations

Image
— Color histogram

Software

— Execution profile: the number of times each line is
executed

Bank account

— Credit rating, balance, #deposits in last day, week,
month, year, #withdrawals ...

You and me
— Medical testl, test2, test3, ...



Training sample

* Atraining sample is a collection of instances
X, ..., X, which is the input to the learning
process.

* X.=(Xiyy ..., Xip)
* Assume these instances are sampled

independently from an unknown (population)
distribution P(x)

* We denote this by x. i'fif'P(x), where i.i.d. stands
for independent and identically distributed.



Training sample

e Atraining sample is the “experience” given to
a learning algorithm

 What the algorithm can learn from it varies

 We introduce two basic learning paradigms:
— unsupervised learning
— supervised learning



UNSUPERVISED LEARNING



Unsupervised learning

* Training samplex,, ..., x,, that’s it

* No teacher providing supervision as to how
individual instances should be handled

e Common tasks:
— clustering, separate the n instances into groups

— novelty detection, find instances that are very
different from the rest

— dimensionality reduction, represent each instance
with a lower dimensional feature vector while
maintaining key characteristics of the training samples



Clustering

* Group training sample into k clusters
* How many clusters do you see?

e Many clustering algorithms . g
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Example 1: music island

* Organizing and visualizing music collection
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Example 3: your digital photo
collection

* You probably have >1000 digital photos, ‘neatly’ stored in
various folders...

» After this class you’ll be about to organize them better
— Simplest idea: cluster them using image creation time (EXIF tag)
— More complicated: extract image features

; g

TR v - i + S
2B 1 o
W f g '3 ;~




Two most frequently used methods

* Many clustering algorithms. We’ll look at the
two most frequently used ones:
— Hierarchical clustering
Where we build a binary tree over the dataset

— K-means clustering

Where we specify the desired number of clusters, and
use an iterative algorithm to find them



Hierarchical clustering

* Very popular clustering algorithm
* |nput:

— A dataset x, ..., X, each point is a numerical
feature vector

— Does NOT need the number of clusters



Hierarchical Agglomerative Clustering

Input: a training sample {x; }’le; a distance function d ().

1. Initially, place each instance in its own cluster (called a singleton cluster).

2. while (number of clusters > 1) do:

3. Find the closest cluster pair A, B, 1.e., they minimize d(A, B).

4. Merge A, B to form a new cluster.

Qutput: a binary tree showing how clusters are gradually merged from singletons
to a root cluster, which contains the whole training sample.

e Euclidean (L2) distance

D
dxi,xj) =[x —xjl| = | ) (xis — xjs)?.
\ s=1




Hierarchical clustering

* Initially every pointis in its own cluster



Hierarchical clustering

Find the pair of clusters that are the closest
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Hierarchical clustering

Merge the two into a single cluster



®  Repeat...

Hierarchical clustering



®  Repeat...

Hierarchical clustering



Hierarchical clustering

Repeat...until the whole dataset is one giant cluster

You get a binary tree (not shown here)

.. : ..... .



Hierarchical clustering

* How do you measure the closeness between
two clusters?



Hierarchical clustering

* How do you measure the closeness between
two clusters? At least three ways:
— Single-linkage: the shortest distance from any

member of one cluster to any member of the
other cluster. Formula?

— Complete-linkage: the greatest distance from any
member of one cluster to any member of the
other cluster

— Average-linkage: you guess it!



Hierarchical clustering

The binary tree you get is often called a

dendrogram, or taxonomy, or a hierarchy of data
points

The tree can be cut at various levels to produce
different numbers of clusters: if you want k
clusters, just cut the (k-1) longest links

Sometimes the hierarchy itself is more interesting
than the clusters

However there is not much theoretical
justification to it...



Advance topics

* Constrained clustering: What if an expert looks at
the data, and tells you
— “I think x1 and x2 must be in the same cluster” (must-links)

— “l think x3 and x4 cannot be in the same cluster” (cannot-
links)



Advance topics

This is clustering with supervised information (must-links and cannot-links).
We can

Change the clustering algorithm to fit constraints
Or, learn a better distance measure
See the book

Constrained Clustering: Advances in Algorithms, Theory, and Applications
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