
Introduction to Machine Learning
Part 2

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

[Based on slides from Jerry Zhu]



K-means clustering

• Very popular clustering method

• Don’t confuse it with the k-NN classifier 

• Input: 

– A dataset x1, …, xn, each point is a numerical 
feature vector

– Assume the number of clusters, k, is given



K-means clustering
• The dataset.  Input k=5



K-means clustering

• Randomly picking 5 
positions as initial cluster 
centers (not necessarily a 
data point)



K-means clustering

• Each point finds which 
cluster center it is closest 
to (very much like 1NN).  
The point belongs to that 
cluster.



K-means clustering

• Each cluster computes its 
new centroid, based on 
which points belong to it



K-means clustering

• Each cluster computes its 
new centroid, based on 
which points belong to it

• And repeat until 
convergence (cluster 
centers no longer move)…



K-means: initial cluster centers



K-means in action
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K-means in action



K-means stops



K-means algorithm

• Input: x1…xn, k

• Step 1: select k cluster centers c1 … ck

• Step 2: for each point x, determine its cluster: 
find the closest center in Euclidean space

• Step 3: update all cluster centers as the centroids

ci = {x in cluster i} x / SizeOf(cluster i)

• Repeat step 2, 3 until cluster centers no longer 
change



Questions on k-means

• What is k-means trying to optimize?

• Will k-means stop (converge)?

• Will it find a global or local optimum?

• How to pick starting cluster centers?

• How many clusters should we use?



Distortion

• Suppose for a point x, you replace its coordinates 
by the cluster center c(x) it belongs to (lossy 
compression)

• How far are you off?  Measure it with squared
Euclidean distance: x(d) is the d-th feature 
dimension, y(x) is the cluster ID that x is in.

d=1…D [x(d) – cy(x)(d)]2

• This is the distortion of a single point x.  For the 
whole dataset, the distortion is

x d=1…D [x(d) – cy(x)(d)]2



The minimization problem
min x d=1…D [x(d) – cy(x)(d)]2

y(x1)…y(xn)
c1(1)…c1(D)
…
ck(1)…ck(D)



Step 1

• For fixed cluster centers, if all you can do is to 
assign x to some cluster, then assigning x to its 
closest cluster center y(x) minimizes distortion

d=1…D [x(d) – cy(x)(d)]2

• Why?  Try any other cluster zy(x)

d=1…D [x(d) – cz(d)]2



Step 2

• If the assignment of x to clusters are fixed, and 
all you can do is to change the location of 
cluster centers

• Then this is a continuous optimization 
problem! 

x d=1…D [x(d) – cy(x)(d)]2

• Variables? 



Step 2

• If the assignment of x to clusters are fixed, and all you can do is to change the 
location of cluster centers

• Then this is an optimization problem!

• Variables? c1(1), …, c1(D), …, ck(1), …, ck(D)

min x d=1…D [x(d) – cy(x)(d)]2

= min z=1..k y(x)=z d=1…D [x(d) – cz(d)]2

• Unconstrained.  What do we do?



Step 2

• If the assignment of x to clusters are fixed, and all you can do is to change the 
location of cluster centers

• Then this is an optimization problem!

• Variables? c1(1), …, c1(D), …, ck(1), …, ck(D)

min x d=1…D [x(d) – cy(x)(d)]2

= min z=1..k y(x)=z d=1…D [x(d) – cz(d)]2

• Unconstrained.  

/cz(d) z=1..k y(x)=z d=1…D [x(d) – cz(d)]2 = 0



Step 2

• The solution is

cz(d) = y(x)=z x(d) / |nz|

• The d-th dimension of cluster z is the average of the d-th dimension of points 
assigned to cluster z

• Or, update cluster z to be the centroid of its points.  This is exact what we did 
in step 2.



Repeat (step1, step2)

• Both step1 and step2 minimizes the distortion

x d=1…D [x(d) – cy(x)(d)]2

• Step1 changes x assignments y(x)

• Step2 changes c(d) the cluster centers

• However there is no guarantee the distortion 
is minimized over all… need to repeat

• This is hill climbing (coordinate descent)

• Will it stop?



Repeat (step1, step2)

• Both step1 and step2 minimizes the distortion

x d=1…D [x(d) – c(x)(d)]2

• Step1 changes x assignments

• Step2 changes c(d) the cluster centers

• However there is no guarantee the distortion is minimized over all… need to 
repeat

• This is hill climbing (coordinate descent)

• Will it stop?

There are finite number of points

Finite ways of assigning points to clusters

In step1, an assignment that reduces distortion 
has to be a new assignment not used before

Step1 will terminate

So will step 2

So k-means terminates



What optimum does K-means find

• Will k-means find the global minimum in distortion? Sadly no guarantee…

• Can you think of one example?
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What optimum does K-means find

• Will k-means find the global minimum in distortion? Sadly no guarantee…

• Can you think of one example? (Hint: try k=3)



Picking starting cluster centers

• Which local optimum k-means goes to is 
determined solely by the starting cluster centers
– Be careful how to pick the starting cluster centers.  

Many ideas.  Here’s one neat trick:
1. Pick a random point x1 from dataset

2. Find the point x2 farthest from x1 in the dataset

3. Find x3 farthest from the closer of x1, x2

4. … pick k points like this, use them as starting cluster centers 
for the k clusters

– Run k-means multiple times with different starting 
cluster centers (hill climbing with random restarts)



Picking the number of clusters

• Difficult problem

• Domain knowledge?

• Otherwise, shall we find k which minimizes 
distortion?



Picking the number of clusters

• Difficult problem

• Domain knowledge?

• Otherwise, shall we find k which minimizes distortion? k = 
N, distortion = 0

• Need to regularize.  A common approach is to minimize 
the Schwarz criterion

distortion +  (#param) logN

= distortion +  D k logN

#dimensions #clusters #points



Beyond k-means

• In k-means, each point belongs to one cluster
• What if one point can belong to more than one 

cluster?
• What if the degree of belonging depends on the 

distance to the centers?

• This will lead to the famous EM algorithm, or 
expectation-maximization

• K-means is a discrete version of EM algorithm with 
Gaussian mixture models with infinitely small 
covariances… (not covered in this class)


