Introduction to Machine Learning Part 3: k-Nearest Neighbor and Linear Regression

CS 540

Yingyu Liang

Supervised Learning

Example: image classification

Task: determine if the image is indoor or outdoor Performance measure: probability of misclassification

Example: image classification

Experience/Data: images with labels

outdoor

Indoor

Example: image classification

- A few terminologies
 - Training data: the images given for learning
 - Test data: the images to be classified
 - Binary classification: classify into two classes

Example: image classification (multi-class)

ImageNet figure borrowed from vision.standford.edu

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$
- Find y = f(x) using training data
- s.t. f correct on test data

What kind of functions?

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. *f* correct on test data

Hypothesis class

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. f correct on test data

Connection between training data and test data?

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from some unknown distribution D
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. *f* correct on test data i.i.d. from distribution *D*

They have the same distribution

i.i.d.: independently identically distributed

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from some unknown distribution D
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. *f* correct on test data i.i.d. from distribution *D*
- If label y discrete: classification
- If label *y* continuous: regression

K-Nearest Neighbors

K-nearest neighbors

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Store the training data
- Given a new data point x, predict its label based on its neighbors

Little Green Man

- Little green men:
 - Predict gender (M,F) from weight, height?
 - Predict adult, juvenile from weight, height?

k-nearest-neighbor (kNN)

Input: Training data $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$; distance function d(); number of neighbors k; test instance \mathbf{x}^*

1. Find the k training instances $\mathbf{x}_{i_1}, \ldots, \mathbf{x}_{i_k}$ closest to \mathbf{x}^* under distance d(). 2. Output y^* as the majority class of y_{i_1}, \ldots, y_{i_k} . Break ties randomly.

kNN

- What if we want regression?
 - Instead of majority vote, take average of neighbors' y
- How to pick *k*?
 - Split data into training and tuning sets
 - Classify tuning set with different k
 - Pick k that produces least tuning-set error

What's the predicted label for the black dot using 1 neighbor? 2 neighbors? 3 neighbors?

Linear regression

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. f correct on test data i.i.d. from distribution D

What kind of performance measure?

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. the expected loss is small

 $L(f) = \mathbb{E}_{(x,y)\sim D}[l(f,x,y)] -$

Various loss functions

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. the expected loss is small

 $L(f) = \mathbb{E}_{(x,y)\sim D}[l(f, x, y)]$

- Examples of loss functions:
 - 0-1 loss: $l(f, x, y) = \mathbb{I}[f(x) \neq y]$ and $L(f) = \Pr[f(x) \neq y]$
 - l_2 loss: $l(f, x, y) = [f(x) y]^2$ and $L(f) = \mathbb{E}[f(x) y]^2$

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. the expected loss is small

 $L(f) = \mathbb{E}_{(x,y)\sim D}[l(f,x,y)]$

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ that minimizes $\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
- s.t. the expected loss is small

 $L(f) = \mathbb{E}_{(x,y)\sim D}[l(f, x, y)]$

Empirical loss

Machine learning 1-2-3

- Collect data and extract features
- Build model: choose hypothesis class ${m {\cal H}}$ and loss function l
- Optimization: minimize the empirical loss

Linear regression

• Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D

Linear regression: optimization

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $f_w(x) = w^T x$ that minimizes $\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i y_i)^2$
- Let X be a matrix whose *i*-th row is x_i^T , y be the vector $(y_1, \dots, y_n)^T$ $\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2 = \frac{1}{n} ||Xw - y||_2^2$

Linear regression: optimization

• Set the gradient to 0 to get the minimizer $\nabla_{w} \hat{L}(f_{w}) = \nabla_{w} \frac{1}{n} ||Xw - y||_{2}^{2} = 0$

$$\nabla_{w}[(Xw-y)^{T}(Xw-y)] = 0$$

$$\nabla_{w}[w^{T}X^{T}Xw - 2w^{T}X^{T}y + y^{T}y] = 0$$

$$2X^T X w - 2X^T y = 0$$
$$w = (X^T X)^{-1} X^T y$$

Linear regression: optimization

- Algebraic view of the minimizer
 - If X is invertible, just solve Xw = y and get $w = X^{-1}y$
 - But typically X is a tall matrix

Linear regression with bias

Bias term

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $f_{w,b}(x) = w^T x + b$ to minimize the loss
- Reduce to the case without bias:
 - Let w' = [w; b], x' = [x; 1]
 - Then $f_{w,b}(x) = w^T x + b = (w')^T (x')$

Linear regression with regularization: Ridge regression

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $f_w(x) = w^T x$ that minimizes $\widehat{L_R}(f_w) = \frac{1}{n} ||Xw y||_2^2 + \lambda ||w||_2^2$
- By setting the gradient to be zero, we have

 $\mathbf{w} = (X^T X + \lambda I)^{-1} X^T y$