Introduction to Machine Learning Part 4: Linear Classification

CS 540
Yingyu Liang

Review: machine learning basics

Math formulation

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Find $y=f(x) \in \mathcal{H}$ that minimizes $\hat{L}(f)=\frac{1}{n} \sum_{i=1}^{n} l\left(f, x_{i}, y_{i}\right)$
- s.t. the expected loss is small

$$
L(f)=\mathbb{E}_{(x, y) \sim D}[l(f, x, y)]
$$

Machine learning 1-2-3

- Collect data and extract features
- Build model: choose hypothesis class \mathcal{H} and loss function l
- Optimization: minimize the empirical loss

Machine learning 1-2-3

Experience

- Collect data and extract features
- Build model: choose hypothesis class \mathcal{H} and loss function l
- Optimization: minimize the empirical loss

Example: Linear regression

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Find $f_{w}(x)=w^{T} x$ that minimizes $\hat{L}\left(f_{w}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}$

Why l_{2} loss

- Why not choose another loss
- l_{1} loss, hinge loss, exponential loss, ...
- Empirical: easy to optimize
- For linear case: $w=\left(X^{T} X\right)^{-1} X^{T} y$
- Theoretical: a way to encode prior knowledge

Questions:

- What kind of prior knowledge?
- Principal way to derive loss?

Maximum likelihood Estimation

Maximum likelihood Estimation (MLE)

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Let $\left\{P_{\theta}(x, y): \theta \in \Theta\right\}$ be a family of distributions indexed by θ
- Would like to pick θ so that $P_{\theta}(x, y)$ fits the data well

Maximum likelihood Estimation (MLE)

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Let $\left\{P_{\theta}(x, y): \theta \in \Theta\right\}$ be a family of distributions indexed by θ
- "fitness" of θ to one data point $\left(x_{i}, y_{i}\right)$

$$
\operatorname{likelihood}\left(\theta ; x_{i}, y_{i}\right):=P_{\theta}\left(x_{i}, y_{i}\right)
$$

Maximum likelihood Estimation (MLE)

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Let $\left\{P_{\theta}(x, y): \theta \in \Theta\right\}$ be a family of distributions indexed by θ
- "fitness" of θ to i.i.d. data points $\left\{\left(x_{i}, y_{i}\right)\right\}$

$$
\operatorname{likelihood}\left(\theta ;\left\{x_{i}, y_{i}\right\}\right):=P_{\theta}\left(\left\{x_{i}, y_{i}\right\}\right)=\prod_{i} P_{\theta}\left(x_{i}, y_{i}\right)
$$

Maximum likelihood Estimation (MLE)

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Let $\left\{P_{\theta}(x, y): \theta \in \Theta\right\}$ be a family of distributions indexed by θ
- MLE: maximize "fitness" of θ to i.i.d. data points $\left\{\left(x_{i}, y_{i}\right)\right\}$

$$
\theta_{M L}=\operatorname{argmax}_{\theta \in \Theta} \prod_{i} P_{\theta}\left(x_{i}, y_{i}\right)
$$

Maximum likelihood Estimation (MLE)

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Let $\left\{P_{\theta}(x, y): \theta \in \Theta\right\}$ be a family of distributions indexed by θ
- MLE: maximize "fitness" of θ to i.i.d. data points $\left\{\left(x_{i}, y_{i}\right)\right\}$

$$
\begin{aligned}
\theta_{M L} & =\operatorname{argmax}_{\theta \in \Theta} \log \left[\prod_{i} P_{\theta}\left(x_{i}, y_{i}\right)\right] \\
\theta_{M L} & =\operatorname{argmax}_{\theta \in \Theta} \sum_{i} \log \left[P_{\theta}\left(x_{i}, y_{i}\right)\right]
\end{aligned}
$$

Maximum likelihood Estimation (MLE)

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Let $\left\{P_{\theta}(x, y): \theta \in \Theta\right\}$ be a family of distributions indexed by θ
- MLE: negative log-likelihood loss

$$
\begin{aligned}
& \theta_{M L}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i} \log \left(P_{\theta}\left(x_{i}, y_{i}\right)\right) \\
& l\left(P_{\theta}, x_{i}, y_{i}\right)=-\log \left(P_{\theta}\left(x_{i}, y_{i}\right)\right) \\
& \hat{L}\left(P_{\theta}\right)=-\sum_{i} \log \left(P_{\theta}\left(x_{i}, y_{i}\right)\right)
\end{aligned}
$$

MLE: conditional log-likelihood

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Let $\left\{P_{\theta}(y \mid x): \theta \in \Theta\right\}$ be a family of distributions indexed by θ
- MLE: negative conditional log-likelihood loss

Only care about predicting y from x; do not care about $p(x)$

$$
\begin{aligned}
& \theta_{M L}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i} \log \left(P_{\theta}\left(y_{i} \mid x_{i}\right)\right) \\
& l\left(P_{\theta}, x_{i}, y_{i}\right)=-\log \left(P_{\theta}\left(y_{i} \mid x_{i}\right)\right) \\
& \hat{L}\left(P_{\theta}\right)=-\sum_{i} \log \left(P_{\theta}\left(y_{i} \mid x_{i}\right)\right)
\end{aligned}
$$

MLE: conditional log-likelihood

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Let $\left\{P_{\theta}(y \mid x): \theta \in \Theta\right\}$ be a family of distributions indexed by θ
- MLE: negative conditional log-likelihood loss
$\mathrm{P}(\mathrm{y} \mid \mathrm{x})$: discriminative;
$P(x, y)$: generative

$$
\begin{aligned}
& \theta_{M L}=\operatorname{argmax}_{\theta \in \Theta} \sum_{i} \log \left(P_{\theta}\left(y_{i} \mid x_{i}\right)\right) \\
& l\left(P_{\theta}, x_{i}, y_{i}\right)=-\log \left(P_{\theta}\left(y_{i} \mid x_{i}\right)\right) \\
& \hat{L}\left(P_{\theta}\right)=-\sum_{i} \log \left(P_{\theta}\left(y_{i} \mid x_{i}\right)\right)
\end{aligned}
$$

Example: l_{2} loss

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Find $f_{\theta}(x)$ that minimizes $\hat{L}\left(f_{\theta}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(f_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}$

Example: l_{2} loss

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Find $f_{\theta}(x)$ that minimizes $\hat{L}\left(f_{\theta}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(f_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}$
- Define $P_{\theta}(y \mid x)=\widehat{\operatorname{Normal}\left(y ; f_{\theta}(x), \sigma^{2}\right)}$
- $\log \left(P_{\theta}\left(y_{i} \mid x_{i}\right)\right)=\frac{-1}{2 \sigma^{2}}\left(f_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}-\log (\sigma)-\frac{1}{2} \log (2 \pi)$
- $\theta_{M L}=\operatorname{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n}\left(f_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}$

Linear classification

Example 1: image classification

Indoor

Example 2: Spam detection

	\#"\$"	\#"Mr."	\#"sale"	...	Spam?
Email 1	2	1	1		Yes
Email 2	0	1	0		No
Email 3	1	1	1		Yes
...					
Email n	0	0	0		No
New email	0	0	1		??

Why classification

- Classification: a kind of summary
- Easy to interpret
- Easy for making decisions

Linear classification

Linear classification: natural attempt

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Hypothesis $f_{w}(x)=w^{T} x$
- $y=1$ if $w^{T} x>0$
- $y=0$ if $w^{T} x<0$
- Prediction: $y=\operatorname{step}\left(f_{w}(x)\right)=\operatorname{step}\left(w^{T} x\right)$

Linear model \mathcal{H}

Linear classification: natural attempt

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Find $f_{w}(x)=w^{T} x$ to minimize $\hat{L}\left(f_{w}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left[\operatorname{step}\left(w^{T} x_{i}\right) \neq y_{i}\right]$
- Drawback: difficult to optimize
- NP-hard in the worst case

$$
0-1 \text { loss }
$$

Linear classification: simple approach

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Find $f_{w}(x)=w^{T} x$ that minimizes $\hat{L}\left(f_{w}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}$ ignore the fact $y \in\{0,1\}$

Linear classification: simple approach

Drawback: not robust to "outliers"

Figure borrowed from Pattern Recognition and Machine Learning, Bishop

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive to outliers, unlike logistic regression.

Compare the two

Between the two

- Prediction bounded in [0,1]
- Smooth
- Sigmoid: $\sigma(a)=\frac{1}{1+\exp (-a)}$

Figure borrowed from Pattern Recognition and Machine Learning, Bishop

Linear classification: sigmoid prediction

- Squash the output of the linear function

$$
\operatorname{Sigmoid}\left(w^{T} x\right)=\sigma\left(w^{T} x\right)=\frac{1}{1+\exp \left(-w^{T} x\right)}
$$

- Find w that minimizes $\hat{L}\left(f_{w}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\sigma\left(w^{T} x_{i}\right)-y_{i}\right)^{2}$

Linear classification: logistic regression

- Squash the output of the linear function

$$
\text { Sigmoid }\left(w^{T} x\right)=\sigma\left(w^{T} x\right)=\frac{1}{1+\exp \left(-w^{T} x\right)}
$$

- A better approach: Interpret as a probability

$$
\begin{gathered}
P_{w}(y=1 \mid x)=\sigma\left(w^{T} x\right)=\frac{1}{1+\exp \left(-w^{T} x\right)} \\
P_{w}(y=0 \mid x)=1-P_{w}(y=1 \mid x)=1-\sigma\left(w^{T} x\right)
\end{gathered}
$$

Linear classification: logistic regression

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Find w that minimizes

$$
\begin{gathered}
\hat{L}(w)=-\frac{1}{n} \sum_{i=1}^{n} \log P_{w}\left(y_{i} \mid x_{i}\right) \\
\hat{L}(w)=-\frac{1}{n} \sum_{y_{i}=1} \log \sigma\left(w^{T} x_{i}\right)-\frac{1}{n} \sum_{y_{i}=0} \log \left[1-\sigma\left(w^{T} x_{i}\right)\right] \\
\text { Logistic regression: } \\
\text { MLE with sigmoid }
\end{gathered}
$$

Linear classification: logistic regression

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Find w that minimizes

$$
\hat{L}(w)=-\frac{1}{n} \sum_{y_{i}=1} \log \sigma\left(w^{T} x_{i}\right)-\frac{1}{n} \sum_{y_{i}=0} \log \left[1-\sigma\left(w^{T} x_{i}\right)\right]
$$

No close form solution;
Need to use gradient descent

Properties of sigmoid function

- Bounded

$$
\sigma(a)=\frac{1}{1+\exp (-a)} \in(0,1)
$$

- Symmetric

$$
1-\sigma(a)=\frac{\exp (-a)}{1+\exp (-a)}=\frac{1}{\exp (a)+1}=\sigma(-a)
$$

- Gradient

$$
\sigma^{\prime}(a)=\frac{\exp (-a)}{(1+\exp (-a))^{2}}=\sigma(a)(1-\sigma(a))
$$

