Logic and machine learning review

CS 540

Yingyu Liang

Propositional logic

Logic

- If the rules of the world are presented formally, then a decision maker can use logical reasoning to make rational decisions.
- Several types of logic:
 - propositional logic (Boolean logic)
 - first order logic (first order predicate calculus)
- A logic includes:
 - syntax: what is a correctly formed sentence
 - semantics: what is the meaning of a sentence
 - Inference procedure (reasoning, entailment): what sentence logically follows given knowledge

Propositional logic syntax

Sentence	→ AtomicSentence ComplexSentence
AtomicSentence	\rightarrow True False Symbol
Symbol	$\rightarrow \Box P \mid Q \mid R \mid \ldots$
ComplexSentence	$\rightarrow \Box$ - <i>Sentence</i>
	(Sentence ^ Sentence)
	(Sentence ∨ Sentence)
	(Sentence \Rightarrow Sentence)
	(Sentence \Leftrightarrow Sentence)
BNF (Backus-Naur Form) grammar in propositional logic	

 $\begin{array}{ll} ((\neg P \lor ((True \land R) \Leftrightarrow Q)) \Rightarrow S & \text{well formed} \\ (\neg (P \lor Q) \land \Rightarrow S) & \text{not well formed} \end{array}$

Summary

- Interpretation, semantics, knowledge base
- Entailment
 - model checking
- Inference, soundness, completeness
- Inference methods
 - Sound inference, proof
 - Resolution, CNF
 - Chaining with Horn clauses, forward/backward chaining

8. (Resolution) Given knowledge base

(a) $P \Leftrightarrow Q$ (b) P

use resolution to prove query Q.

First order logic

FOL syntax Summary

- Short summary so far:
 - **Constants:** Bob, 2, Madison, ...
 - Variables: *x, y, a, b, c*, ...
 - Functions: Income, Address, Sqrt, ...
 - **Predicates:** Teacher, Sisters, Even, Prime...
 - Connectives: $\land \lor \neg \Rightarrow \Leftrightarrow$
 - Equality: =
 - Quantifiers: ∀∃

More summary

- Term: constant, variable, function. Denotes an object. (A ground term has no variables)
- Atom: the smallest expression assigned a truth value. Predicate and =
- Sentence: an atom, sentence with connectives, sentence with quantifiers. Assigned a truth value
- Well-formed formula (wff): a sentence in which all variables are quantified

9. (FOL) Which one is the translation of "Frodo has exactly one ring"?
(A) ∃x, y HasRing(Frodo, x) ∧ HasRing(Frodo, y) ∧ x = y
(B) ∀x HasRing(Frodo, x) ⇒ ∃y(HasRing(Frodo, y) ∧ x = y)
(C) ∃x HasRing(Frodo, x) ⇒ ∀y(HasRing(Frodo, y) ∧ x = y)
(D) ∃x HasRing(Frodo, x) ∧ ∀y(HasRing(Frodo, y) ⇒ x = y)
(E) none of the above

9. (FOL) Which one is the translation of "Frodo has exactly one ring"? (A) $\exists x, y \; HasRing(Frodo, x) \land HasRing(Frodo, y) \land x = y$ (B) $\forall x \; HasRing(Frodo, x) \Rightarrow \exists y(HasRing(Frodo, y) \land x = y)$ (C) $\exists x \; HasRing(Frodo, x) \Rightarrow \forall y(HasRing(Frodo, y) \land x = y)$ (D) $\exists x \; HasRing(Frodo, x) \land \forall y(HasRing(Frodo, y) \Rightarrow x = y)$ (E) none of the above

A: D

Machine learning basics

What is machine learning?

 "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T as measured by P, improves with experience E."

----- *Machine Learning*, Tom Mitchell, 1997

Example 1: image classification

Task: determine if the image is indoor or outdoor Performance measure: probability of misclassification

Example 1: image classification

Experience/Data: images with labels

Indoor

outdoor

Example 1: image classification

- A few terminologies
 - Training data: the images given for learning
 - Test data: the images to be classified
 - Binary classification: classify into two classes

Example 2: clustering images

Task: partition the images into 2 groups Performance: similarities within groups Data: a set of images

Example 2: clustering images

- A few terminologies
 - Unlabeled data vs labeled data
 - Supervised learning vs unsupervised learning

Unsupervised learning

Unsupervised learning

- Training sample x_1, x_2, \dots, x_n
- No teacher providing supervision as to how individual instances should be handled
- Common tasks:
 - clustering, separate the *n* instances into groups
 - novelty detection, find instances that are very different from the rest
 - dimensionality reduction, represent each instance with a lower dimensional feature vector while maintaining key characteristics of the training samples

Clustering

- Group training sample into k clusters
- How many clusters do you see?
- Many clustering algorithms
 - HAC (Hierarchical
 - Agglomerative Clustering)
 - k-means
 - ...

Hierarchical Agglomerative Clustering

Input: a training sample $\{\mathbf{x}_i\}_{i=1}^n$; a distance function d().

1. Initially, place each instance in its own cluster (called a singleton cluster).

2. while (number of clusters > 1) do:

- 3. Find the closest cluster pair A, B, i.e., they minimize d(A, B).
- 4. Merge A, B to form a new cluster.

Output: a binary tree showing how clusters are gradually merged from singletons to a root cluster, which contains the whole training sample.

• Euclidean (L2) distance

$$d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\| = \sqrt{\sum_{s=1}^{D} (x_{is} - x_{js})^2}.$$

K-means algorithm

- Input: x₁...x_n, k
- Step 1: select k cluster centers c₁ ... c_k
- Step 2: for each point x, determine its cluster: find the closest center in Euclidean space
- Step 3: update all cluster centers as the centroids

$$c_i = \sum_{\{x \text{ in cluster }i\}} x / SizeOf(cluster i)$$

• Repeat step 2, 3 until cluster centers no longer change

17. (Clustering) There are five points in one-dimensional space: a = 0, b = 1, c = 3, d = 7, e = 9. Perform Hierarchical Agglomerative Clustering with complete linkage. Complete the resulting clustering tree diagram (i.e., the dendrogram).

$$a = 0$$
 $b = 1$ $c = 3$ $d = 7$ $e = 9$

17. (Clustering) There are five points in one-dimensional space: a = 0, b = 1, c = 3, d = 7, e = 9. Perform Hierarchical Agglomerative Clustering with complete linkage. Complete the resulting clustering tree diagram (i.e., the dendrogram).

$$a = 0$$
 $b = 1$ $c = 3$ $d = 7$ $e = 9$

Supervised learning

Math formulation

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from some unknown distribution D
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. *f* correct on test data i.i.d. from distribution *D*
- If label y discrete: classification
- If label *y* continuous: regression

k-nearest-neighbor (kNN)

Input: Training data $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$; distance function d(); number of neighbors k; test instance \mathbf{x}^*

1. Find the k training instances $\mathbf{x}_{i_1}, \ldots, \mathbf{x}_{i_k}$ closest to \mathbf{x}^* under distance d(). 2. Output y^* as the majority class of y_{i_1}, \ldots, y_{i_k} . Break ties randomly.

Math formulation

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ that minimizes $\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
- s.t. the expected loss is small

 $L(f) = \mathbb{E}_{(x,y)\sim D}[l(f, x, y)]$

- Examples of loss functions:
 - 0-1 loss for classification: $l(f, x, y) = \mathbb{I}[f(x) \neq y]$ and $L(f) = \Pr[f(x) \neq y]$
 - l_2 loss for regression: $l(f, x, y) = [f(x) y]^2$ and $L(f) = \mathbb{E}[f(x) y]^2$

Maximum likelihood Estimation (MLE)

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Let $\{P_{\theta}(x, y): \theta \in \Theta\}$ be a family of distributions indexed by θ
- MLE: negative log-likelihood loss

 $\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \sum_{i} \log(P_{\theta}(x_i, y_i))$

$$l(P_{\theta}, x_i, y_i) = -\log(P_{\theta}(x_i, y_i))$$
$$\hat{L}(P_{\theta}) = -\sum_i \log(P_{\theta}(x_i, y_i))$$

MLE: conditional log-likelihood

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Let $\{P_{\theta}(y|x): \theta \in \Theta\}$ be a family of distributions indexed by θ
- MLE: negative conditional log-likelihood loss $\theta_{ML} = \operatorname{argmax}_{\theta \in \Theta} \sum_{i} \log(P_{\theta}(y_{i}|x_{i}))$

Only care about predicting y from x; do not care about p(x)

 $l(P_{\theta}, x_i, y_i) = -\log(P_{\theta}(y_i|x_i))$ $\hat{L}(P_{\theta}) = -\sum_i \log(P_{\theta}(y_i|x_i))$

Linear regression with regularization: Ridge regression

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $f_w(x) = w^T x$ that minimizes $\widehat{L_R}(f_w) = \frac{1}{n} ||X_w y||_2^2$
- By setting the gradient to be zero, we have

 $\mathbf{w} = (X^T X)^{-1} X^T y$

 l_2 loss: Normal + MLE

Linear classification: logistic regression

• Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D

• Assume
$$P_w(y = 1|x) = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)}$$

 $P_w(y = 0|x) = 1 - P_w(y = 1|x) = 1 - \sigma(w^T x)$

• Find *w* that minimizes

$$\widehat{L}(w) = -\frac{1}{n} \sum_{i=1}^{n} \log P_w(y_i | x_i)$$

11. (Linear regression) Long time ago, a primate researcher gave you a data set to predict the label y (monkey daily diet weight) from a number of features x_1, \ldots, x_d . You built a linear regression model for him:

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_d x_d.$$

Yesterday, the monkey researcher realized that his RA mixed things up: x_d was actually the label, while y was the d-th feature! Alas, neither him nor you have the data set anymore, and the RA was long gone to start up a monkey intelligence company and does not respond to emails. All you have are the coefficients $\beta_0 \dots \beta_d$, all non-zero. How do you fix the linear regression model? (One line math)

11. (Linear regression) Long time ago, a primate researcher gave you a data set to predict the label y (monkey daily diet weight) from a number of features x_1, \ldots, x_d . You built a linear regression model for him:

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_d x_d.$$

Yesterday, the monkey researcher realized that his RA mixed things up: x_d was actually the label, while y was the d-th feature! Alas, neither him nor you have the data set anymore, and the RA was long gone to start up a monkey intelligence company and does not respond to emails. All you have are the coefficients $\beta_0 \dots \beta_d$, all non-zero. How do you fix the linear regression model? (One line math)

A:

$$(y - \beta_0 - \beta_1 x_1 - \ldots - \beta_{d-1} x_{d-1}) / \beta_d = x_d.$$