
slide 1

CS540
Midterm Review

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

slide 2

Uninformed

Search

slide 3

The search problem

• State space S : all valid configurations

• Initial states (nodes) I={(CSDF,)} S

▪ Where’s the boat?

• Goal states G={(,CSDF)} S

• Successor function succs(s) S : states reachable in

one step (one arc) from s

▪ succs((CSDF,)) = {(CD, SF)}

▪ succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}

• Cost(s,s’)=1 for all arcs. (weighted later)

• The search problem: find a solution path from a state

in I to a state in G.

▪ Optionally minimize the cost of the solution.

C S D F

slide 4

General State-Space Search Algorithm
function general-search(problem, QUEUEING-FUNCTION)

;; problem describes the start state, operators, goal test, and

;; operator costs

;; queueing-function is a comparator function that ranks two states

;; general-search returns either a goal node or "failure"

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

loop

if EMPTY(nodes) then return "failure"

node = REMOVE-FRONT(nodes)

if problem.GOAL-TEST(node.STATE) succeeds

then return node

nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))

;; succ(s)=EXPAND(s, OPERATORS)

;; Note: The goal test is NOT done when nodes are generated

;; Note: This algorithm does not detect loops

end

slide 5

Search on Trees: Breadth-first search (BFS)

Expand the shallowest node first

• Examine states one step away from the initial states

• Examine states two steps away from the initial states

• and so on…

ripple

g
o
a
l

slide 6

Depth-first search

Expand the deepest node first

1. Select a direction, go deep to the end

2. Slightly change the end

3. Slightly change the end some more…

fan

g
o
a
l

slide 7

Iterative deepening

1. DFS, but stop if path length > 1.

2. If goal not found, repeat DFS, stop if path length >2.

3. And so on…

fan within ripple

g
o
a
l

g
o
a
l

g
o
a
l

slide 9

What you should know

• Problem solving as search: state, successors, goal test

• Uninformed search

▪ Breadth-first search

• Uniform-cost search

▪ Depth-first search

▪ Iterative deepening

▪ Bidirectional search

• Can you unify them (except bidirectional) using the

same algorithm, with different priority functions?

• Performance measures

▪ Completeness, optimality, time complexity, space

complexity

slide 10

Example

slide 11

Example

slide 12

Informed Search

slide 13

Uninformed vs. informed search

Uninformed search (BFS, uniform-cost, DFS, ID etc.)

Knows the actual path cost g(s) from start to a node s in

the fringe, but that’s it.

Informed search

also has a heuristic h(s) of the cost from s to goal. (‘h’=

heuristic, non-negative)

Can be much faster than uninformed search.

start
s

goal
g(s)

start s
goal

g(s) h(s)

slide 14

Third attempt: A* search

• use g(s)+h(s), but the heuristic function h() has to
satisfy h(s) h*(s), where h*(s) is the true cost from
node s to the goal.

• Such heuristic function h() is called admissible.

• An admissible heuristic never over-estimates

• A search with admissible h() is called A* search.

It is always
optimistic

slide 15

What you should know

Know why best-first greedy search is bad.

Thoroughly understand A*

Trace simple examples of A* execution.

Understand admissible heuristics.

slide 16

Example

slide 17

Example

slide 18

Advanced Search:

Optimization

slide 19

Optimization problems

Previously we want a path from start to goal

Uninformed search: g(s): Iterative Deepening

Informed search: g(s)+h(s): A*

Now a different setting:

Each state s has a score f(s) that we can compute

The goal is to find the state with the highest score, or a

reasonably high score

Do not care about the path

This is an optimization problem

Enumerating the states is intractable

Even previous search algorithms are too expensive

slide 20

Hill climbing algorithm

1. Pick initial state s

2. Pick t in neighbors(s) with the largest f(t)

3. IF f(t) f(s) THEN stop, return s

4. s = t. GOTO 2.

• Not the most sophisticated algorithm in the world.

• Very greedy.

• Easily stuck.
your enemy:

local

optima

slide 21

Repeated hill climbing with random restarts

Very simple modification

1. When stuck, pick a random new start, run basic

hill climbing from there.

2. Repeat this k times.

3. Return the best of the k local optima.

• Can be very effective

• Should be tried whenever hill climbing is used

slide 22

Example

slide 23

Example

slide 24

Simulated Annealing

1. Pick initial state s

2. Randomly pick t in neighbors(s)

3. IF f(t) better THEN accept st.

4. ELSE /* t is worse than s */

5. accept st with a small probability

6. GOTO 2 until bored.

How to choose the small probability?

idea: p decreases with time, also as the ‘badness’

|f(s)-f(t)| increases

Typical choice:
Boltzmann
distribution

Temp

tfsf |)()(|
exp

slide 25

Example

slide 26

Example

slide 27

Genetic algorithm

Genetic algorithm: a special way to generate
neighbors, using the analogy of cross-over, mutation,
and natural selection.

Number of non-
attacking pairs

prob. reproduction

 fitness

 Next generation

slide 28

Game Playing

slide 29

Two-player zero-sum discrete finite deterministic
games of perfect information

Definitions:

Zero-sum: one player’s gain is the other player’s loss.

Does not mean fair.

Discrete: states and decisions have discrete values

Finite: finite number of states and decisions

Deterministic: no coin flips, die rolls – no chance

Perfect information: each player can see the complete

game state. No simultaneous decisions.

slide 30

The game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max

+1

(- i) Min (- -) Min

-1
(- i) Min (- -) Min

-1
(- -) Min

-1

(- -) Max

+1
(- -) Max

+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

slide 31

Game theoretic value

Game theoretic value (a.k.a. minimax value) of a node =
the score of the terminal node that will be reached if
both players play optimally.

= The numbers we filled in.

Computed bottom up

In Max’s turn, take the max of the children (Max will

pick that maximizing action)

In Min’s turn, take the min of the children (Min will

pick that minimizing action)

Implemented as a modified version of DFS: minimax

algorithm

slide 32

Minimax algorithm

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if (s is a terminal state)
then return (terminal value of s)
else

α := –
for each s’ in Succ(s)

α := max(α , Min-value(s’))
return α

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state)
then return (terminal value of s)
else

β :=
for each s’ in Succs(s)

β := min(β , Max-value(s’))
return β

• Time complexity?
O(bm) bad

• Space complexity?

O(bm)

slide 33

Example

slide 34

Example

slide 35

Alpha-Beta Motivation

S

A
100

C
200

D
100

B

E
120

F
20

max

min

Depth-first order

After returning from A, Max can get at least 100 at S

After returning from F, Max can get at most 20 at B

At this point, Max losts interest in B

There is no need to explore G. The subtree at G is

pruned. Saves time.

G

slide 36

Alpha-beta pruning

function Max-Value (s,α,β)
inputs:

s: current state in game, Max about to play
α: best score (highest) for Max along path to s
β: best score (lowest) for Min along path to s

output: min(β , best-score (for Max) available from s)

if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succ(s)
α := max(α , Min-value(s’,α,β))
if (α ≥ β) then return β /* alpha pruning */

return α

function Min-Value(s,α,β)
output: max(α , best-score (for Min) available from s)

if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succs(s)
β := min(β , Max-value(s’,α,β))

if (α ≥ β) then return α /* beta pruning */
return β

Starting from the root:

Max-Value(root, -, +)

slide 37

Example

slide 38

Example

slide 39

Math Basics

slide 40

Probability

Axioms:

▪ P(A) [0,1]

▪ P(true)=1, P(false)=0

▪ P(A B) = P(A) + P(B) – P(A B)

Properties:

• P(A) = 1 – P(A)

• If A can take k different values a1… ak:

P(A=a1) + … P(A=ak) = 1

• P(B) = i=1…kP(B A=ai), if A can take k values

slide 41

Probability

• Joint/marginal/conditional probability

• Chain rule:

• Bayes’ rule:

• Independence/conditional independence

• Expectation

slide 42

Example

slide 43

Example

slide 44

Principal Component Analysis

• Motivation: keep only important directions

• Definition: the direction where the projections of the
data have largest variance

• Equivalent definition: the direction where the
projections of the data have least reconstruction error

• Math formulation: Assume data has zero mean.

• Computation: reduces to eigen-decomposition of the
covariance, and further reduces to SVD of the data
matrix

slide 45

Example

slide 46

NLP basics

• Bag-of-Words representation

• N-gram model

• Estimate the N-gram model

• Smoothing: Laplace add-one smoothing

slide 47

Example

slide 48

Example

slide 49

Example

