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Uninformed
Search
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The search problem

State space S : all valid configurations

Initial states (nodes) I={(CSDF,)} < S

o
= \WWhere’s the boat? @&%g%
C S D F

Goal states G={(,CSDF)} c S

Successor function succs(s)c S : states reachable In
one step (one arc) from s

= succs((CSDF,)) = {(CD, SF)}
= succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}
Cost(s,s’)=1 for all arcs. (weighted later)

The search problem: find a solution path from a state
In | to a state in G.

= Optionally minimize the cost of the solution.
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General State-Space Search Algorithm

function general-search(problem, QUEUEING-FUNCTION)
;; problem describes the start state, operators, goal test, and
;; operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or "failure”

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop
if EMPTY(nodes) then return "failure"
node = REMOVE-FRONT(nodes)
if problem.GOAL-TEST(node.STATE) succeeds
then return node
nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
problem.OPERATORYS))
;; succ(s)=EXPAND(s, OPERATORS)
;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops
end
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Search on Trees: Breadth-first search (BFS)

Expand the shallowest node first

® Examine states one step away from the initial states
® Examine states two steps away from the initial states
® andsoon...

ripple
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Depth-first search

Expand the deepest node first

1. select a direction, go deep to the end  —————
2. Slightly change the end
3. Slightly change the end some more... c—
fan
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Iterative deepening

1. DFs, but stop if path length > 1.
2. If goal not found, repeat DFS, stop if path length >2.

3. And so on... ;
fan within ripple 9
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What you should know

Problem solving as search: state, successors, goal test
Uninformed search

= Breadth-first search
« Uniform-cost search

= Depth-first search
= |terative deepening *

same algorithm, with different priority functions?
Performance measures

= Completeness, optimality, time complexity, space
complexity
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Example

13. Which order of goal check is impossible with Breadth First Search, without specifying
the order of successors when putting them in the queue?

(5
o ® © ®

(A) H before A (B) B before G (C) I before D
(D) all of the above (E) none of the above
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Example

13. Which order of goal check is impossible with Breadth First Search, without specifying
the order of successors when putting them in the queue?

QG
o b o o

(A) H before A (B) B before G (C) I before D
(D) all of the above (E) none of the above

A. For BFS we will always goal-check and expend a parent level before child level. So
a grandchild H cannot be goal-checked before the root.
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Informed Search



Uninformed vs. informed search

Uninformed search (BFS, uniform-cost, DFS, ID etc.)

Knows the actual path cost g(s) from start to a node s in
the fringe, but that’s it.

also has a heuristic h(s) of the cost from s to goal. (‘h’=
heuristic, non-negative)

Can be much faster than uninformed search.
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Third attempt: A* search

use g(s)+h(s), but the heuristic function h() has to
satisfy h(s) < h*(s), where h*(s) is the true cost from
node s to the goal.

Such heuristic function h() is called admissible.
An admissible heuristic never over-estimates

0o Itisalways
=/ |Optimistic

A search with admissible h() is called A* search.
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What you should know

Know why best-first greedy search is bad.
Thoroughly understand A*

Trace simple examples of A* execution.
Understand admissible heuristics.
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Example

4. Assume h and &' are any admissible heuristic functions. Consider any real number a
and the new heuristic 2”(s) = ah(s)+(1—a)h'(s). For what range of a is h” guaranteed
to be a heuristic function? (Clarification: h” must be admissible.)
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Example

4. Assume h and I’ are any admissible heuristic functions. Consider any real number a
and the new heuristic h”(s) = ah(s)+(1—a)h'(s). For what range of a is h” guaranteed
to be a heuristic function? (Clarification: A” must be admissible.)

The only a that will gnarantee h” to be admissible for any admissible A and A’ is in
the interval [0, 1].
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Advanced Search:
Optimization



Optimization problems

Previously we want a path from start to goal
Uninformed search: g(s): Iterative Deepening
Informed search: g(s)+h(s): A*

Now a different setting:

Each state s has a score f(s) that we can compute

The goal is to find the state with the highest score, or a
reasonably high score

Do not care about the path

This is an optimization problem

Enumerating the states is intractable

Even previous search algorithms are too expensive
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Hill climbing algorithm

Pick initial state s

Pick t in neighbors(s) with the largest f(t)
IF f(t) < f(s) THEN stop, return s

s=t. GOTO 2.

e

Not the most sophisticated algorithm ip~ e world.
Very greedy.
Easily stuck.

your enemy:

local
optima
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Repeated hill climbing with random restarts

Very simple modification

1. When stuck, pick a random new start, run basic
hill climbing from there.

2. Repeat this k times.
3. Return the best of the k local optima.

Can be very effective
Should be tried whenever hill climbing is used
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Example

8. Consider a state space where the states are all positive integers. State ¢ has two
neighbors 7 — 1 and 7 + 1 (except for 7 = 1 which only has one neighbor i = 2). State
i1 has score # If one runs the hill climbing algorithm, how many initial states can

reach the global maximum?
(A)O (B) 1 (C) 2 (D) 3 (E) none of the above
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Example

8. Consider a state space where the states are all positive integers. State ¢ has two
neighbors ¢ — 1 and i + 1 (except for 2 = 1 which only has one neighbor 7 = 2). State

i has score (_2—1)1 If one runs the hill climbing algorithm, how many initial states can
reach the global maximum?

(A) 0O (B) 1 (C) 2 (D) 3 (E) none of the above

D. The scores for states 1,2,3,... are -1, 1/2, -1/3, 1/4, .... The only states that can
reach the global maximum 1/2 is 1,2,3.
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Simulated Annealing

Pick initial state s
Randomly pick t in neighbors(s)
IF f(t) better THEN accept s€-t.
ELSE /* tis worse than s */

accept s€t with a small probability
GOTO 2 until bored.

o0k owhE

How to choose the small probability?

idea: p decreases with time, also as the ‘badness’

[f(s)-f(t)| increases

Typical choice:

_ Boltzmann
exp(— [1(8) =) |) 4 distribution
Temp
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Example

11. In simulated annealing we move from s to an inferior neighbor ¢ with probability
—w where T' is the temperature. What is the probability we stay at s

instead of moving to t7
(A) exp (_ If(t);f(s)l) (B) exp (If(s);f(t)l) (C) exp (1 _ If(s);f(t)l) (D)
1 —exp (—'—f—(—s);—f@) (E) none of the above

exp (
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Example

11. In simulated annealing we move from s to an inferior neighbor ¢ with probability

exp (—M) where T' is the temperature. What is the probability we stay at s

instead of moving to ¢?
(A) exp (_ If(t);f(s)l) (B) exp (If(s);f(t)l) (C) exp (1 _ If(s);f(t)l) (D)
1 —exp (—W) (E) none of the above

D. It is just normalization.
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Genetic algorithm

Genetic algorithm: a special way to generate
neighbors, using the analogy of cross-over, mutation,
and natural selection.

24748552 | 24 31% [ 32752411 >_'_< 32748552 — 32749152

|

327752411 |23 2% 247548552 24752411 — 24752411

/

24415124 20 26% 32752411 H 32752124 — 3202124

32543213 11 14% 24415124 24415411 — 2441541[7]

(b) : (d) (e)
Initial Populatig Fitness Func Select_lon : Cross—Over Mutation

Number of non- prob. reproduction
attacking pairs oc fitness

—> Next generation
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Game Playing



Two-player zero-sum discrete finite deterministic
games of perfect information

Definitions:

Zero-sum: one player’s gain is the other player’s loss.
Does not mean fair.

Discrete: states and decisions have discrete values
Finite: finite number of states and decisions
Deterministic: no coin flips, die rolls — no chance

Perfect information: each player can see the complete
game state. No simultaneous decisions.
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The game tree for II-Nim
Two players:

Max and Min (i if) Max
(i i) MIn \ (- iy Min
“) Max (l I) Max (_ |) Max (_ I) Max (_‘_) Max
/ \ N
( ) Min ) Min (_ I) Min (_‘ _) Min (_‘ _) Min
-J. -1 -1
(_ _) Max (_ _) Max
+1 FI Max wants the largest score

Min wants the smallest score
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Game theoretic value

Game theoretic value (a.k.a. minimax value) of a node =
the score of the terminal node that will be reached if
both players play optimally.

= The numbers we filled in.
Computed bottom up

In Max’s turn, take the max of the children (Max will
pick that maximizing action)

In Min’s turn, take the min of the children (Min will
pick that minimizing action)

Implemented as a modified version of DFS: minimax
algorithm
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Minimax algorithm

function Max-Value(s) * Time complexity?
Inputs: m |

S. current state in game, Max about to play O(b™) < bad
output: best-score (for Max) available from s ¢ Space complexity?

if ( s is a terminal state ) O(bm)

then return ( terminal value of s )

else

a:=—o

for each s’ in Succ(s)
a := max( a, Min-value(s’))
return a

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state )
then return ( terminal value of s)
else

B =0

for each s’ in Succs(s)
B :=min( B, Max-value(s’))

return 3
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Example

3. Consider a game board consisting of two bits initially at 00. Each player can simulta-
neously flip 1 or 2 bits in a move, but needs to pay the other player one dollar for each
bit flipped. The player who achieves 11 wins and collects 10 dollars from the other

player. What is the game theoretic value of this game for the first player?
(A) 8 (B) 10 (C) -8 (D) -10 (E) none of the above
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Example

. Consider a game board consisting of two bits initially at 00. Each player can simulta-
neously flip 1 or 2 bits in a move, but needs to pay the other player one dollar for each
bit flipped. The player who achieves 11 wins and collects 10 dollars from the other

player. What is the game theoretic value of this game for the first player?
(A) 8 (B) 10 (C) -8 (D) -10 (E) none of the above

A. Draw the game tree. It is clear that the first player should immediately flip both
bits and force a win, at a cost of 2 dollars but wins 10 dollars. Thus 10-2=8.
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Alpha-Beta Motivation

max
S
min

7
X

Depth-first order
After returning from A, Max can get at least 100 at S

After returning from F, Max can get at most 20 at B

At this point, Max losts interest in B
There is no need to explore G. The subtree at G is
pruned. Saves time.
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Alpha-beta pruning

function Max-Value (s,a,B)
Inputs:

S: current state in game, Max about to play

a: best score (highest) for Max along path to s

B: best score (lowest) for Min along path to s
output: min(p , best-score (for Max) available from s)

if (s is a terminal state )
then return ( terminal value of s )
else for each s’ in Succ(s)
a := max( a, Min-value(s’,a,3))
if (a=[()thenreturn f /* alpha pruning */
return a

function Min-Value(s,a,[3)
output: max(a , best-score (for Min) available from s )

if (s is a terminal state )
then return ( terminal value of s)
else for each s’ in Succs(s)

B := min( B, Max-value(s’,a,B))

if (a =B )then return a /* beta pruning */

return B

Starting from the root:
Max-Value(root, -oo, +00)
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Example

12. Which nodes are pruned by alpha-beta pruning? The max player moves first.

(A) 4,1,7 (B) 1,7 (C) 7 (D) C.4,1,7 (E) none of the above
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Example

12. Which nodes are pruned by alpha-beta pruning? The max player moves first.

(&
(8 ©
O @ ©» O O ©

(A) 4,1,7 (B) 1,7 (C) 7 (D) C.4,1,7 (E) none of the above

C. Run alpha-beta. It will prune 7 after seeing 1.
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Math Basics



Probability

AXioms:

= P(A) € [0,1]

* P(true)=1, P(false)=0

= P(AvB)=P(A) +P(B)-P(AAB)

Properties:

* P(-A)=1-P(A)

 If A can take k different values a;... a;:
P(A=a,) + ... P(A=a,) = 1

- P(B)=2._, P(BAA=a),ifAcan take k values
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Probability

Joint/marginal/conditional probability

Chain rule:
P(A, Ay, ... Ay)
= P(Al) X P(A2|A1) X P(A3|A2,A1) * .. .P(An‘Al,AQ, ce 7An—1)

Bayes' rule:

. P(F,H) P(H|F)P(F)
PEH) = "5y = Pl

Independence/conditional independence
Expectation
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Example

2. Let A€ {1,2,3,4} and B € {1,2,3}. To fully specify P(B | A) how many numbers
are needed?

(A) 7 (B) 8 (C)9 (D) 12 (E) none of the above

slide 42



Example

2. Let A € {1,2,3,4} and B € {1,2,3}. To fully specify P(B | A) how many numbers
are needed?

(A) 7 (B) 8 (C)9 (D) 12 (E) none of the above

B. For a fixed A, we need two numbers (the third value of B is given by normalization).
Thus 4*%(3-1)=8.
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Principal Component Analysis

Motivation: keep only important directions

Definition: the direction where the projections of the
data have largest variance

Equivalent definition: the direction where the
projections of the data have least reconstruction error

Math formulation: Assume data has zero mean.
n
m‘?XZ(vTX,,;V s.t. ||v]]e =1
1=1

Computation: reduces to eigen-decomposition of the
covariance, and further reduces to SVD of the data
matrix
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Example

. What is the projection of (0.6,0.8) along the direction of (1,0)7
. What is the projection of (1,0) along the direction of (0.6, 0.8)7

. Given four data points in R*: x; = (—=1,0),25 = (1,0), 23 = (0,—0.1),
x4 = (0,0.1). Which of the following directions is the first principal component?

(}X) (1:0) (13) (1?1) ((j) Ujfl) (I)) (‘1?1)

slide 45



NLP basics

Bag-of-Words representation
N-gram model
Estimate the N-gram model

Smoothing: Laplace add-one smoothing
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Example

7. In a corpus with n word tokens, the phrase “san francisco” appeared m times. If
we estimate probability by frequency (the maximum likelihood estimate), what is the
estimated probability P(francisco | san)?

(A)= (B) = (C)+ (D) % where v is the vocabulary size (E) none of the above
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Example

7. In a corpus with n word tokens, the phrase “san francisco” appeared m times. If
we estimate probability by frequency (the maximum likelihood estimate), what is the
estimated probability P(francisco | san)?

(A)= (B) = (C)+ (D) % where v is the vocabulary size (E) none of the above
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Example

7. In a corpus with n word tokens, the phrase “san francisco” appeared m times. If
we estimate probability by frequency (the maximum likelihood estimate), what is the
estimated probability P(francisco | san)?

(A)= (B) = (C)+ (D) % where v is the vocabulary size (E) none of the above

E. We don’t have enough information. We need to know how many times “san” appears
in the corpus.

slide 49



