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The search problem

• State space S : all valid configurations

• Initial states (nodes) I={(CSDF,)}  S 

▪ Where’s the boat?

• Goal states G={(,CSDF)}  S

• Successor function succs(s) S : states reachable in 

one step (one arc) from s

▪ succs((CSDF,)) = {(CD, SF)}

▪ succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}

• Cost(s,s’)=1 for all arcs. (weighted later)

• The search problem: find a solution path from a state 

in I to a state in G.

▪ Optionally minimize the cost of the solution.

C    S       D       F
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General State-Space Search Algorithm
function general-search(problem, QUEUEING-FUNCTION)

;; problem describes the start state, operators, goal test, and

;;   operator costs

;; queueing-function is a comparator function that ranks two states

;; general-search returns either a goal node or "failure"

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

loop

if EMPTY(nodes) then return "failure"

node = REMOVE-FRONT(nodes)

if problem.GOAL-TEST(node.STATE) succeeds

then return node

nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))

;; succ(s)=EXPAND(s, OPERATORS)

;; Note: The goal test is NOT done when nodes are generated

;; Note: This algorithm does not detect loops

end
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Search on Trees: Breadth-first search (BFS)

Expand the shallowest node first

• Examine states one step away from the initial states

• Examine states two steps away from the initial states

• and so on…
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Depth-first search

Expand the deepest node first

1. Select a direction, go deep to the end

2. Slightly change the end

3. Slightly change the end some more…
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Iterative deepening

1. DFS, but stop if path length > 1. 

2. If goal not found, repeat DFS, stop if path length >2.

3. And so on…
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What you should know

• Problem solving as search: state, successors, goal test

• Uninformed search

▪ Breadth-first search

• Uniform-cost search

▪ Depth-first search

▪ Iterative deepening 

▪ Bidirectional search

• Can you unify them (except bidirectional) using the 

same algorithm, with different priority functions?

• Performance measures

▪ Completeness, optimality, time complexity, space 

complexity
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Example
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Example
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Informed Search
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Uninformed vs. informed search

Uninformed search (BFS, uniform-cost, DFS, ID etc.)

Knows the actual path cost g(s) from start to a node s in 

the fringe, but that’s it.

Informed search

also has a heuristic h(s) of the cost from s to goal. (‘h’= 

heuristic, non-negative)

Can be much faster than uninformed search.

start
s

goal
g(s)

start s
goal

g(s) h(s)
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Third attempt: A* search

• use g(s)+h(s), but the heuristic function h() has to 
satisfy h(s)  h*(s), where h*(s) is the true cost from 
node s to the goal.

• Such heuristic function h() is called admissible.

• An admissible heuristic never over-estimates

• A search with admissible h() is called A* search.

It is always 
optimistic
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What you should know

Know why best-first greedy search is bad.

Thoroughly understand A*

Trace simple examples of A* execution.

Understand admissible heuristics.
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Example
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Example
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Advanced Search: 

Optimization
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Optimization problems

Previously we want a path from start to goal

Uninformed search: g(s): Iterative Deepening

Informed search: g(s)+h(s): A*

Now a different setting:

Each state s has a score f(s) that we can compute

The goal is to find the state with the highest score, or a 

reasonably high score

Do not care about the path

This is an optimization problem

Enumerating the states is intractable

Even previous search algorithms are too expensive



slide 20

Hill climbing algorithm

1. Pick initial state s

2. Pick t in neighbors(s) with the largest f(t)

3. IF f(t)  f(s) THEN stop, return s

4. s = t.  GOTO 2.

• Not the most sophisticated algorithm in the world.

• Very greedy.  

• Easily stuck. 
your enemy: 

local 

optima
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Repeated hill climbing with random restarts

Very simple modification

1. When stuck, pick a random new start, run basic 

hill climbing from there.

2. Repeat this k times.

3. Return the best of the k local optima.

• Can be very effective

• Should be tried whenever hill climbing is used
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Example
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Example
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Simulated Annealing

1. Pick initial state s

2. Randomly pick t in neighbors(s) 

3. IF f(t) better THEN accept st.  

4. ELSE /* t is worse than s */

5. accept st with a small probability

6. GOTO 2 until bored.

How to choose the small probability?

idea: p decreases with time, also as the ‘badness’ 

|f(s)-f(t)| increases

Typical choice:
Boltzmann 
distribution







 
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Example
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Example
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Genetic algorithm

Genetic algorithm: a special way to generate 
neighbors, using the analogy of cross-over, mutation, 
and natural selection.

Number of non-
attacking pairs

prob. reproduction 

 fitness

 Next generation
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Game Playing
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Two-player zero-sum discrete finite deterministic 
games of perfect information

Definitions:

Zero-sum: one player’s gain is the other player’s loss.  

Does not mean fair.

Discrete: states and decisions have discrete values

Finite: finite number of states and decisions

Deterministic: no coin flips, die rolls – no chance

Perfect information: each player can see the complete 

game state.  No simultaneous decisions.
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The game tree for II-Nim

(ii ii) Max

(i  ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max

+1

(- i) Min (- -) Min

-1
(- i) Min (- -) Min

-1
(- -) Min

-1

(- -) Max

+1
(- -) Max

+1

Two players: 

Max and Min

Max wants the largest score

Min wants the smallest score
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Game theoretic value

Game theoretic value (a.k.a. minimax value) of a node = 
the score of the terminal node that will be reached if 
both players play optimally.

= The numbers we filled in.

Computed bottom up

In Max’s turn, take the max of the children (Max will 

pick that maximizing action)

In Min’s turn, take the min of the children (Min will 

pick that minimizing action)

Implemented as a modified version of DFS: minimax 

algorithm



slide 32

Minimax algorithm

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if ( s is a terminal state )
then return ( terminal value of s )
else 

α := – 
for each s’ in Succ(s)

α := max( α , Min-value(s’))
return α

function Min-Value(s)
output: best-score (for Min) available from s

if ( s is a terminal state )
then return ( terminal value of s)
else 

β := 
for each s’ in Succs(s)

β := min( β , Max-value(s’))
return β

• Time complexity?
O(bm)  bad

• Space complexity? 

O(bm)
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Example
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Example
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Alpha-Beta Motivation

S

A
100

C
200

D
100

B

E
120

F
20

max

min

Depth-first order

After returning from A, Max can get at least 100 at S

After returning from F, Max can get at most 20 at B

At this point, Max losts interest in B

There is no need to explore G.  The subtree at G is 

pruned.  Saves time.

G
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Alpha-beta pruning

function Max-Value (s,α,β)
inputs:

s: current state in game, Max about to play
α: best score (highest) for Max along path to s
β: best score (lowest) for Min along path to s

output: min(β , best-score (for Max) available from s)

if ( s is a terminal state )
then return ( terminal value of s )
else for each s’ in Succ(s)
α := max( α , Min-value(s’,α,β))
if ( α ≥ β ) then return β   /* alpha pruning */

return α

function Min-Value(s,α,β)
output: max(α , best-score (for Min) available from s )

if ( s is a terminal state )
then return ( terminal value of s)
else for each s’ in Succs(s)
β := min( β , Max-value(s’,α,β))

if (α ≥ β ) then return α   /* beta pruning */
return β

Starting from the root:

Max-Value(root, -, +)
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Example
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Example
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Math Basics
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Probability

Axioms:

▪ P(A)  [0,1]

▪ P(true)=1, P(false)=0

▪ P(A  B) = P(A) + P(B) – P(A  B)

Properties:

• P(A) = 1 – P(A)

• If A can take k different values a1… ak:

P(A=a1) + … P(A=ak) = 1

• P(B) = i=1…kP(B  A=ai), if A can take k values
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Probability

• Joint/marginal/conditional probability

• Chain rule:

• Bayes’ rule:

• Independence/conditional independence

• Expectation
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Example
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Example



slide 44

Principal Component Analysis

• Motivation: keep only important directions

• Definition: the direction where the projections of the 
data have largest variance 

• Equivalent definition: the direction where the 
projections of the data have least reconstruction error

• Math formulation: Assume data has zero mean.

• Computation: reduces to eigen-decomposition of the 
covariance, and further reduces to SVD of the data 
matrix



slide 45

Example
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NLP basics

• Bag-of-Words representation 

• N-gram model

• Estimate the N-gram model

• Smoothing: Laplace add-one smoothing
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Example
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Example
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Example


