Propositional Logic Part 1

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department University of Wisconsin, Madison

5 is even implies 6 is odd.

Is this sentence logical?
True or false?

Logic

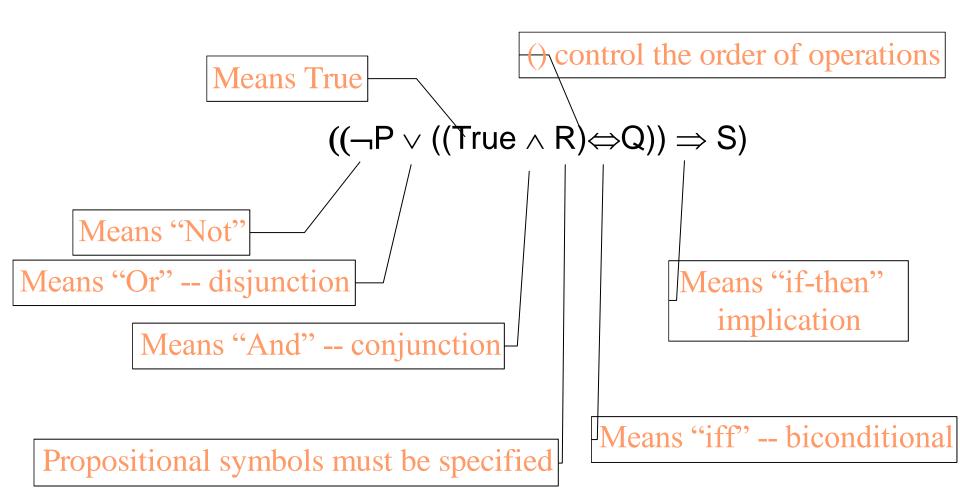
- If the rules of the world are presented formally, then a decision maker can use logical reasoning to make rational decisions.
- Several types of logic:
 - propositional logic (Boolean logic)
 - first order logic (first order predicate calculus)
- A logic includes:
 - syntax: what is a correctly formed sentence
 - semantics: what is the meaning of a sentence
 - Inference procedure (reasoning, entailment): what sentence logically follows given knowledge

Propositional logic syntax

```
Sentence
                           \rightarrow \Box AtomicSentence \mid ComplexSentence
AtomicSentence
                           \rightarrow \BoxTrue | False | Symbol
                           \rightarrow \Box P \mid Q \mid R \mid \dots
Symbol
ComplexSentence \rightarrow \Box \neg Sentence
                           (Sentence \( \) Sentence )
                           (Sentence V Sentence)
                           (Sentence \Rightarrow Sentence)
                           ( Sentence ⇔ Sentence )
BNF (Backus-Naur Form) grammar in propositional logic
```

$$((\neg P \lor ((True \land R) \Leftrightarrow Q)) \Rightarrow S$$
 well formed $(\neg (P \lor Q) \land \Rightarrow S)$ not well formed

Propositional logic syntax



Propositional logic syntax

Precedence (from highest to lowest):

$$\neg$$
, \wedge , \vee , \Rightarrow , \Leftrightarrow

If the order is clear, you can leave off parenthesis.

$$\neg P \lor True \land R \Leftrightarrow Q \Rightarrow S$$
 ok
 $P \Rightarrow Q \Rightarrow S$ not ok

Semantics

- An interpretation is a complete True / False assignment to propositional symbols
 - Example symbols: P means "It is hot", Q means "It is humid", R means "It is raining"
 - There are 8 interpretations (TTT, ..., FFF)
- The semantics (meaning) of a sentence is the set of interpretations in which the sentence evaluates to True.
- Example: the semantics of the sentence PVQ is the set of 6 interpretations
 - P=True, Q=True, R=True or False
 - P=True, Q=False, R=True or False
 - P=False, Q=True, R=True or False
- A model of a set of sentences is an interpretation in which all the sentences are true.

Evaluating a sentence under an interpretation

 Calculated using the meaning of connectives, recursively.

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Pay attention to ⇒
 - "5 is even implies 6 is odd" is True!
 - If P is False, regardless of Q, P⇒Q is True
 - No causality needed: "5 is odd implies the Sun is a star" is True.

$$\neg P \vee Q \wedge R \Rightarrow Q$$

$$\neg P \vee Q \wedge R \Rightarrow Q$$

F)	Q	R	~P	Q^R	~PvQ^R	~PvQ^R->Q
C)	0	0	1	0	1	0
)	0	1	1	0	1	0
()	1	0	1	0	1	1
)	1	1	1	1	1	1
1		0	0	0	0	0	1
1		0	1	0	0	0	1
1		1	0	0	0	0	1
1		1	1	0	1	1	1

Satisfiable: the sentence is true under some interpretations

Deciding satisfiability of a sentence is NP-complete

$$(P \land R \Rightarrow Q) \land P \land R \land \neg Q$$

$$(P \land R \Rightarrow Q) \land P \land R \land \neg Q$$

Р	Q	R	~Q	R^~Q	P^R^~Q	P^R	P^R->Q	final
0	0	0	1	0	0	0	1	0
0	0	1	1	1	0	0	1	0
0	1	0	0	0	0	0	1	0
0	1	1	0	0	0	0	1	0
1	0	0	1	0	0	0	1	0
1	0	1	1	1	1	1	0	0
1	1	0	0	0	0	0	1	0
1	1	1	0	0	0	1	1	0

Unsatisfiable: the sentence is false under all interpretations.

$$(P \Rightarrow Q) \lor P \land \neg Q$$

$$(P \Rightarrow Q) \lor P \land \neg Q$$

Р	Q	R	~Q	P->Q	P^~Q	$(P->Q)vP^{\sim}Q$
0	0	0	1	1	0	1
0	0	1	1	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	0	1	1	0	1	1
1	1	0	0	1	0	1
1	1	1	0	1	0	1

Valid: the sentence is true under all interpretations

Also called tautology.

Knowledge base

- A knowledge base KB is a set of sentences.
 Example KB:
 - TomGivingLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday)
 - TomGivingLecture
- It is equivalent to a single long sentence: the conjunction of all sentences
 - (TomGivingLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday)) ∧ ¬ TomGivingLecture
- The model of a KB is the interpretations in which all sentences in the KB are true.

Entailment

• Entailment is the relation of a sentence β logically follows from other sentences α (i.e. the KB).

$$\alpha = \beta$$

• $\alpha \models \beta$ if and only if, in every interpretation in which α is true, β is also true

All interpretations			
	β is true		
	α is true		

Method 1: model checking

- We can enumerate all interpretations and check this. This is called model checking or truth table enumeration. Equivalently...
- Deduction theorem: $\alpha \models \beta$ if and only if $\alpha \Rightarrow \beta$ is valid (always true)
- Proof by contradiction (refutation, *reductio ad absurdum*): $\alpha \models \beta$ if and only if $\alpha \land \neg \beta$ is unsatisfiable
- There are 2ⁿ interpretations to check, if the KB has n symbols

Inference

- Let's say you write an algorithm which, according to you, proves whether a sentence β is entailed by α , without the lengthy enumeration
- The thing your algorithm does is called inference
- We don't trust your inference algorithm (yet), so we write things your algorithm finds as

$$\alpha \mid -\beta$$

- It reads " β is derived from α by your algorithm"
- What properties should your algorithm have?
 - Soundness: the inference algorithm only derives entailed sentences. If $\alpha \mid -\beta$ then $\alpha \mid =\beta$
 - Completeness: all entailment can be inferred. If α |= β then α |- β

Method 2: Sound inference rules

- All the logical equivalences
- Modus Ponens (Latin: mode that affirms)

$$\alpha \Rightarrow \beta, \alpha$$
 β

And-elimination

$$\frac{\alpha \wedge \beta}{\alpha}$$

Logical equivalences

You can use these equivalences to modify sentences.

Proof

- Series of inference steps that leads from α (or KB) to β
- This is exactly a search problem

KB:

- 1. TomGivingLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday)
- 2. ¬ TomGivingLecture

β:

¬ TodayIsTuesday

Proof

KB:

- 1. TomGivingLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday)
- 2. ¬ TomGivingLecture
- 3. TomGivingLecture \Rightarrow (TodayIsTuesday \vee TodayIsThursday) \wedge (TodayIsTuesday \vee TodayIsThursday) \Rightarrow TomGivingLecture biconditional-elimination to 1.
- 4. (TodayIsTuesday ∨ TodayIsThursday) ⇒ TomGivingLecture and-elimination to 3.
- 5. \neg TomGivingLecture $\Rightarrow \neg$ (TodayIsTuesday \lor TodayIsThursday) contraposition to 4.
- 6. ¬(TodayIsTuesday ∨ TodayIsThursday) Modus Ponens 2,5.
- 7. ¬TodayIsTuesday ∧ ¬TodayIsThursday de Morgan to 6.
- 8. TodayIsTuesday and-elimination to 7.

Method 3: Resolution

- Your algorithm can use all the logical equivalences, Modus Ponens, and-elimination to derive new sentences.
- Resolution: a single inference rule
 - Sound: only derives entailed sentences
 - Complete: can derive any entailed sentence
 - Resolution is only refutation complete: if KB $|= \beta$, then KB $\land \neg \beta$ |- empty. It cannot derive empty $|- (P \lor \neg P)$
 - But the sentences need to be preprocessed into a special form
 - But all sentences can be converted into this form

Conjunctive Normal Form (CNF)

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

- Replace all ⇔ using biconditional elimination
- Replace all ⇒ using implication elimination
- Move all negations inward using
 - -double-negation elimination
 - -de Morgan's rule
- Apply distributivity of v over A

Convert example sentence into CNF

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$
 starting sentence

$$(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$$

biconditional elimination

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1}$$
) implication elimination

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$
 move negations inward

$$(\neg \mathsf{B_{1,1}} \lor \mathsf{P_{1,2}} \lor \mathsf{P_{2,1}}) \land (\neg \mathsf{P_{1,2}} \lor \mathsf{B_{1,1}}) \land (\neg \mathsf{P_{2,1}} \lor \mathsf{B_{1,1}}) \\ \text{distribute} \lor \text{over} \land$$

Resolution steps

- Given KB and β (query)
- Add $\neg \beta$ to KB, show this leads to empty (False. Proof by contradiction)
- Everything needs to be in CNF
- Example KB:
 - $\bullet \quad \mathsf{B}_{1.1} \Leftrightarrow (\mathsf{P}_{1.2} \vee \mathsf{P}_{2.1})$
 - ¬B_{1.1}
- Example query: ¬P_{1,2}

Resolution preprocessing

• Add $\neg \beta$ to KB, convert to CNF:

a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

a2: $(\neg P_{1,2} \lor B_{1,1})$
a3: $(\neg P_{2,1} \lor B_{1,1})$
b: $\neg B_{1,1}$
c: $P_{1,2}$

Want to reach goal: empty

Resolution

 Take any two clauses where one contains some symbol, and the other contains its complement (negative)

$$P \lor Q \lor R$$
 $\neg Q \lor S \lor T$

 Merge (resolve) them, throw away the symbol and its complement

- If two clauses resolve and there's no symbol left, you have reached *empty* (False). KB \mid = β
- If no new clauses can be added, KB does not entail β

Resolution example

a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

a2:
$$(\neg P_{1,2} \vee B_{1,1})$$

a3:
$$(\neg P_{2,1} \vee B_{1,1})$$

Resolution example

a1:
$$(\neg B_{1.1} \lor P_{1.2} \lor P_{2.1})$$

a2:
$$(\neg P_{1,2} \vee B_{1,1})$$

a3:
$$(\neg P_{2,1} \vee B_{1,1})$$

Step 1: resolve a2, c: $B_{1,1}$

Step 2: resolve above and b: *empty*

Efficiency of the resolution algorithm

- Run time can be exponential in the worst case
 - Often much faster
- Factoring: if a new clause contains duplicates of the same symbol, delete the duplicates

$$P \lor R \lor P \lor T \rightarrow P \lor R \lor T$$

 If a clause contains a symbol and its complement, the clause is a tautology and useless, it can be thrown away

a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

a2:
$$(\neg P_{1,2} \vee B_{1,1})$$

$$\rightarrow$$
 $P_{1,2} \vee P_{2,1} \vee \neg P_{1,2}$ (valid, throw away)