
Reinforcement Learning
Part 1

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

[Based on slides from David Page, Mark Craven]



Goals for the lecture

you should understand the following concepts

• the reinforcement learning task

• Markov decision process

• value functions

• value iteration

2



Reinforcement learning (RL)

Task of an agent embedded in an environment

repeat forever

1) sense world

2) reason

3) choose an action to perform

4) get feedback (usually reward = 0)

5) learn

the environment may be the physical world or an artificial one

3



• world

– 30 pieces, 24 locations

• actions

– roll dice, e.g. 2, 5

– move one piece 2

– move one piece 5

• rewards

– win, lose

• TD-Gammon 0.0

– trained against itself (300,000 games)

– as good as best previous BG computer program (also by Tesauro)

• TD-Gammon 2

– beat human champion

Example: RL Backgammon Player
[Tesauro, CACM 1995]

4



• world

– 19x19 locations

• actions

– Put one stone on some empty location

• rewards

– win, lose

• 2016 beats World Champion 

Lee Sedol by 4-1

• Subsequent system (AlphaGo Master/zero ) 

shows superior performance than humans

• Trained by supervised learning + 

reinforcement learning 

Example: AlphaGo
[Nature, 2017]

5



Reinforcement learning

agent

environment

state reward action

s0 s1 s2

a0 a1 a2

r0 r1 r2

• set of states S

• set of actions A

• at each time t, agent observes state 

st∈ S then chooses action at ∈ A

• then receives reward rt and changes 

to state st+1

6



Reinforcement learning as a 

Markov decision process (MDP)

agent

environment

state reward action

s0 s1 s2

a0 a1 a2

r0 r1 r2

• Markov assumption

• also assume reward is Markovian

Goal: learn a policy π : S → A for choosing actions that maximizes

for every possible starting state s0

7

),|(,...),,,|( 1111 tttttttt assPasassP  

),|(,...),,,|( 1111 tttttttt asrPasasrP  

10     where...][ 2

2

1    ttt rrrE



Reinforcement learning task

• Suppose we want to learn a control policy π : S → A that 

maximizes                     from every state s∈ S

G

0

0

0

0

0

0

0

0

100

0

0

100

0

each arrow represents an action a and the associated

number represents deterministic reward r(s, a)

8




0

][
t

t

t rE



Value function for a policy

• given a policy π : S → A define

assuming action sequence chosen

according to π starting at state s

• we want the optimal policy π* where

 
p * = argmaxp V

p (s)   for all s

we’ll denote the value function for this optimal policy as V*(s)

9







0

][)(
t

t

t rEsV 



Value function for a policy π

• Suppose π is shown by red arrows, γ = 0.9

G

0

0

0

0

0

0

0

0

100

0

0

100

0

Vπ(s) values are shown in red

100

0

90

8173

66

10



Value function for an optimal  policy π*

• Suppose π*  is shown by red arrows, γ = 0.9

G

0

0

0

0

0

0

0

0

100

0

0

100

0

V*(s) values are shown in red

100

0

90

10090

81

11



Using a value function

If we know V*(s), r(st, a), and P(st | st-1, at-1) 

we can compute π*(s)

12









 




 Ss

ttt
Aa

t sVasssPasrs )(),|(),(maxarg)( *

1

* 



Value iteration for learning V*(s)

initialize V(s) arbitrarily

loop until policy good enough

{

loop for s ∈ S

{

loop for a ∈ A

{

}

}

}

13





Ss

sVassPasrasQ
'

)'(),|'(),(),( 

),(max)( asQsV a



Value iteration for learning V*(s)

• V(s) converges to V*(s)

• works even if we randomly traverse environment instead of 

looping through each state and action methodically

– but we must visit each state infinitely often

• implication: we can do online learning as an agent roams 

around its environment

• assumes we have a model of the world: i.e. know P(st | st-1, at-1) 

• What if we don’t?

14


