Reinforcement Learning
Part 1

Yingyu Liang
vliang@cs.wisc.edu
Computer Sciences Department
University of Wisconsin, Madison

[Based on slides from David Page, Mark Craven]

Goals for the lecture

you should understand the following concepts
* the reinforcement learning task
« Markov decision process
« value functions
« value iteration

Reinforcement learning (RL)

Task of an agent embedded in an environment

repeat forever
1) sense world
2) reason
3) choose an action to perform
4) get feedback (usually reward = 0)
5) learn

the environment may be the physical world or an artificial one

@ -

—

il

Example: RL Backgammon Player

[Tesauro, CACM 1995]

world

— 30 pieces, 24 locations
actions

— roll dice, e.g. 2,5

— move one piece 2

— move one piece 5
rewards

— win, lose
TD-Gammon 0.0

"

white pieces move
counterclockwise

o |

18 7 16 15 14 13

4 23 22 21 201§
1 /234 5 B

— trained against itself (300,000 games)
— as good as best previous BG computer program (also by Tesauro)

TD-Gammon 2
— beat human champion

7 8 9 10 N 12

black pieces
move clockwise

Example: AlphaGo
[Nature, 2017]

world

— 19x19 locations
actions

— Put one stone on some empty location
rewards

— win, lose
2016 beats World Champion
Lee Sedol by 4-1
Subsequent system (AlphaGo Master/zero)

shows superior performance than humans
Trained by supervised learning +
reinforcement learning

Reinforcement learning

set of states S
set of actions 4

at each time ¢, agent observes state
s, € S then chooses action q, € 4

then receives reward r, and changes
to state s,

agent

state/] /]reward \ action

environment

Reinforcement learning as a
Markov decision process (MDP)

« Markov assumption
agent

state/] /]reward \ action

I:)(St+1 | St’a‘t’St—l’at—li"') — P(St+l | St’at)

* also assume reward is Markovian

environment
P(ht 50805 108 1) = P | 5,2)

Goal: learn a policy n : S — A4 for choosing actions that maximizes

E[r +n1.,+7°r,,+..] where0<y<1

for every possible starting state s,

Reinforcement learning task

* Suppose we want to learn a control policy n : § — A4 that
maximizes ZVtE[rt] from every state s€ §

t=0
0
0 100 (7
—> ——>
G

@_
0
(L 1° 1
ol oly | 100
0 0
— —
<~ <~
0 0

each arrow represents an action ¢ and the associated
number represents deterministic reward r(s, a)

Value function for a policy

e givenapolicy n:S— A define

o0
V7(s) = ZytE[rt] assuming action sequence chosen
=0 according to x starting at state s

« we want the optimal policy = where

p =argmax, V”(s) foralls

we’ll denote the value function for this optimal policy as V(s)

Value function for a policy w

Suppose = is shown by red arrows, y=0.9

0
73 81 100
20 [
b e G
0 0
o 110 1
ol ol | 100
0 0
—1 > >
«—1— <
66 0 90 0 100

J*(s) values are shown in red

10

Value function for an optimal policy n*

e Suppose n* is shown by red arrows, y=0.9

0
90 100 100 ‘ >
20 > G
0

6_
0
10 11° 1
ol ol | 100
0 0
— > >
<1 <
81 0 90 0O 100

V*(s) values are shown in red

11

Using a value function

If we know V*(s), r(s, a), and P(s,| s, ;, a, ;)
we can compute m*(s)

7 (s,) =arg max{r(st a)+7) P(su: =5|s,aV (s)

aEA SES

|

12

Value iteration for learning 7*(s)

Initialize V(s) arbitrarily
loop until policy good enough

{

loop fors €S

{

loop fora €4

{
Q(s,a) «r(s,a)+y) P(s'|s,aV (s')

} s'eS

V (s) « max, Q(s,a)
}

13

Value iteration for learning 7*(s)

V(s) converges to V*(s)

works even if we randomly traverse environment instead of
looping through each state and action methodically

— but we must visit each state infinitely often
Implication: we can do online learning as an agent roams
around its environment
assumes we have a model of the world: i.e. know P(s, | s, ;, a, ;)

What if we don’t?

14

