
Reinforcement Learning
Part 2

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department

University of Wisconsin, Madison

[Based on slides from David Page, Mark Craven]

Goals for the lecture

you should understand the following concepts

• value functions and value iteration (review)

• Q functions and Q learning

• exploration vs. exploitation tradeoff

• compact representations of Q functions

2

Value function for a policy

• given a policy π : S → A define

assuming action sequence chosen

according to π starting at state s

• we want the optimal policy π* where

p * = argmaxp V

p (s) for all s

we’ll denote the value function for this optimal policy as V*(s)

3







0

][)(
t

t

t rEsV 

Value iteration for learning V*(s)

initialize V(s) arbitrarily

loop until policy good enough

{

loop for s ∈ S

{

loop for a ∈ A

{

}

}

}

4





Ss

sVassPasrasQ
'

)'(),|'(),(),(

),(max)(asQsV a

Q functions

define a new function, closely related to V*

if agent knows Q(s, a), it can choose optimal action without

knowing P(s’ | s, a)

and it can learn Q(s, a) without knowing P(s’ | s, a)

5

   )'(),(),(*

,|' sVEasrEasQ ass

),(max)(* asQsV a),(maxarg)(* asQs a

Q values

G

0

0

0

0

0

0

0

0

100

0

0

100

0

r(s, a) (immediate reward) values

G

100

0

90

10090

81
81

72
81

81

72

90

81

Q(s, a) values

G

100

0

90

10090

81

V*(s) values

6

Q learning for deterministic worlds

for each s, a initialize table entry

observe current state s

do forever

select an action a and execute it

receive immediate reward r

observe the new state s’

update table entry

s ← s’

7

)','(ˆmax),(ˆ ' asQrasQ a

0),(ˆ asQ

Updating Q

10072

63
81

10090

63
81

aright

8

90

}100,81,63max{9.00

)',(ˆmax),(ˆ 2'1





 asQrasQ aright 

Q’s vs. V’s

• Which action do we choose when we’re in a given state?

• V’s (model-based)

– need to have a ‘next state’ function to generate all possible

states

– choose next state with highest V value.

• Q’s (model-free)

– need only know which actions are legal

– generally choose next state with highest Q value.

V V

V

Q

Q

9

Exploration vs. Exploitation

• in order to learn about better alternatives, we shouldn’t always

follow the current policy (exploitation)

• sometimes, we should select random actions (exploration)

• one way to do this: select actions probabilistically according to:

where c > 0 is a constant that determines how strongly selection

favors actions with higher Q values

10




j

asQ

asQ

i
j

i

c

c
saP

),(ˆ

),(ˆ

)|(

Q learning with a table

As described so far, Q learning entails filling in a huge table

A table is a very

verbose way to

represent a function

s0 s1 s2 . . . sn

a1

a2

a3

.

.

.

ak

. . . Q(s2, a3)

.

.

.

actions

states

11

Q(s, a1)

Q(s, a2)

Q(s, ak)

Representing Q functions

more compactly

We can use some other function representation (e.g. a neural net)

to compactly encode a substitute for the big table

encoding of

the state (s)

or could have one net

for each possible action

each input unit encodes

a property of the state

(e.g., a sensor value)

12

Why use a compact Q function?

1. Full Q table may not fit in memory for realistic problems

2. Can generalize across states, thereby speeding up
convergence

i.e. one instance ‘fills’ many cells in the Q table

Notes

1. When generalizing across states, cannot use α=1

2. Convergence proofs only apply to Q tables

3. Some work on bounding errors caused by using compact
representations (e.g. Singh & Yee, Machine Learning 1994)

13

Given: 100 Boolean-valued features

10 possible actions

Size of Q table

10 × 2100 entries

Size of Q net (assume 100 hidden units)

100 × 100 + 100 × 10 = 11,000 weights

Q tables vs. Q nets

weights between

inputs and HU’s
weights between

HU’s and outputs

14

Representing Q functions

more compactly

• we can use other regression methods to represent Q functions

k-NN

regression trees

support vector regression

etc.

15

Q learning with function approximation

1. measure sensors, sense state s0

2. predict for each action a

3. select action a to take (with randomization to

ensure exploration)

4. apply action a in the real world

5. sense new state s1 and immediate reward r

6. calculate action a’ that maximizes

7. train with new instance

Q̂n(s0,a)

Q̂n(s1,a ')

16

 )',(ˆmax),(ˆ)1(1'0

0

asQrasQy

s

a 

x

Calculate Q-value you would have put into Q-table,

and use it as the training label

