Reinforcement Learning
Part 2

Yingyu Liang
vliang@cs.wisc.edu
Computer Sciences Department
University of Wisconsin, Madison

[Based on slides from David Page, Mark Craven]

Goals for the lecture

you should understand the following concepts
« value functions and value iteration (review)
* Q functions and Q learning
« exploration vs. exploitation tradeoff
e compact representations of Q functions

Value function for a policy

e givenapolicy n:S— A define

o0
V7(s) = ZytE[rt] assuming action sequence chosen
=0 according to x starting at state s

« we want the optimal policy = where

p =argmax, V”(s) foralls

we’ll denote the value function for this optimal policy as V(s)

Value iteration for learning 7*(s)

Initialize V(s) arbitrarily
loop until policy good enough

{

loop fors €S

{

loop fora €4

{
Q(s,a) «r(s,a)+y) P(s'|s,aV (s')

} s'eS

V (s) « max, Q(s,a)
}

O functions

define a new function, closely related to J'*

Q(s,a) « E[r(s,a)]+ By V(5]

If agent knows QO(s, a), it can choose optimal action without
knowing P(s’ | s, a)

7 (s) «<argmax, Q(s,a) V' (s) <« max, Q(s,a)

and it can learn QO(s, a) without knowing P(s’| s, a)

O values

0
0 100 (,> 90 100 (P
> T G o g T G
0 0
Alo A0 A 2 2 A
ol ol [100 |y Iy |
0 0
—> = > —> 1>
T3 T 81 <+ 90 <= 100

r(s, a) (immediate reward) values

90 10| (D
b g T G
81 0
AL72 A8l A
81 |y 90 IV | 100
81 90
> —f>
= =
72 81

0(s, a) values

V*(s) values

O learning for deterministic worlds

for each s, a initialize table entry Q(s,a) <« 0
observe current state s
do forever
select an action ¢ and execute it
receive immediate reward r
observe the new state s’
update table entry
Q(s,a) « r+ymax..Q(s',a")

s — S’

Updating O

100

81

—

aright

©
| o

63

100

81

Q(Sl’ aright) I+ /4 maxa' Q(SZ 1 a')
« 0+ 0.9max{63,81,100}

«~— 90

By
QJsvs. l'’s Ql
,

* Which action do we choose when we’re in a given state?
* Vs (model-based)

— need to have a ‘next state’ function to generate all possible
states

— choose next state with highest 7 value.
« (O’s (model-free)
— need only know which actions are legal
— generally choose next state with highest O value.

Exploration vs. Exploitation

in order to learn about better alternatives, we shouldn’t always
follow the current policy (exploitation)

sometimes, we should select random actions (exploration)

one way to do this: select actions probabillistically according to:

CQ(S’ai)
Z CQ(slaj)
J

where ¢ > 0 is a constant that determines how strongly selection
favors actions with higher QO values

P(ai |S) —

10

O learning with a table

As described so far, Q learning entails filling in a huge table

states
Sog S 8, S, N
a
a . .
| ’ Atable is a very
actions a; |... 0(s,, a;)

verbose way to
represent a function

11

Representing O functions
more compactly

We can use some other function representation (e.g. a neural net)
to compactly encode a substitute for the big table

encoding of <
the state (s)

each input unit encodes or could have one net
a property of the state for each possible action
(e.g., a sensor value)

12

Why use a compact Q function?

1. Full O table may not fit in memory for realistic problems

2. Can generalize across states, thereby speeding up
convergence

I.e. one instance ‘fills’ many cells in the O table

Notes

1. When generalizing across states, cannot use o=1
2. Convergence proofs only apply to O tables
3.

Some work on bounding errors caused by using compact
representations (e.g. Singh & Yee, Machine Learning 1994)

13

O tables vs. O nets

Given: 100 Boolean-valued features
10 possible actions

Size of O table
10 x 2100 entries

Size of O net (assume 100 hidden units)
100 x 100 + 100 x 10 = 11,000 weights

weights between weights between
inputs and HU'’s HU’s and outputs

14

Representing O functions
more compactly

e Wwe can use other regression methods to represent O functions

k-NN
regression trees
support vector regression

etc.

15

O learning with function approximation

1. measure sensors, sense state So

2. predict Qn (s,,a) for each action a

3. select action «a to take (with randomization to
ensure exploration)

4. apply action « in the real world

5. sense new state s, and immediate reward r

6. calculate action a’ that maximizes Qn (s,,a')

7. train with new instance

y < (1—a)Q(s,,a) + a[r +ymax_. Q(s,, a')]

Calculate Q-value you would have put into Q-table,
and use it as the training label

16

