
CS 540 Spring 2019

CS 540: Introduction to Artificial Intelligence
Homework Assignment # 3

Assigned: 2/19
Due: 2/26 before class

Hand in your homework:

If a homework has programming questions, please hand in the Java program. If a homework has written
questions, please hand in a PDF file. Regardless, please zip all your files into hwX.zip where X is the
homework number. Go to UW Canvas, choose your CS540 course, choose Assignment, click on Homework
X: this is where you submit your zip file.

Late Policy:

All assignments are due at the beginning of class on the due date. One (1) day late, defined as a 24-hour
period from the deadline (weekday or weekend), will result in 10% of the total points for the assignment
deducted. So, for example, if a 100-point assignment is due on a Wednesday 9:30 a.m., and it is handed in
between Wednesday 9:30 a.m. and Thursday 9:30 a.m., 10 points will be deducted. Two (2) days late, 25%
off; three (3) days late, 50% off. No homework can be turned in more than three (3) days late. Written
questions and program submission have the same deadline.

Assignment grading questions must be raised with the instructor within one week after the assignment
is returned.

Collaboration Policy:

You are to complete this assignment individually. However, you are encouraged to discuss the general
algorithms and ideas with classmates, TAs, and instructor in order to help you answer the questions. You
are also welcome to give each other examples that are not on the assignment in order to demonstrate how
to solve problems. But we require you to:

• not explicitly tell each other the answers

• not to copy answers or code fragments from anyone or anywhere

• not to allow your answers to be copied

• not to get any code on the Web

In those cases where you work with one or more other people on the general discussion of the assignment
and surrounding topics, we suggest that you specifically record on the assignment the names of the people
you were in discussion with.

CS 540 Spring 2019

Question 1: A Water Jug Problem [60 points]

This is a programming question. The solution to the programming problem should be coded in Java, and
you are required to use only built-in libraries to complete this homework. Please submit a single zip file
named hw3.zip, which should contain a source code file named WaterJug.java with no package statements,
and make sure your program is runnable from command line on a department Linux machine. We provide
a skeleton WaterJug.java code that you can optionally use, or you can write your own.

The goal of this assignment is to become familiar with uninformed search – breadth-first search (BFS),
depth-first search (DFS) and iterative deepening search (IDDFS). The assignment tests your understanding
of AI concepts, and your ability to turn conceptual understanding into a computer program. All concepts
needed for this homework have been discussed in class, but there may not be existing pseudo-code for you
to directly follow. We ask you to implement your own stack for BFS/DFS/IDDFS as we did in class, rather
than writing a recursive program.

In this question, you will implement uninformed search for a water jug problem.
To illustrate, suppose you are given two containers: a 2-gallon water jug and a 1-gallon jug. Neither of

them have any measuring marks on them at all. Initially both jugs are empty. You have 3 types of action
available to you: 1) fill a jug up completely full (i.e. f1, f2) 2) empty a jug completely (i.e. e1, e2) 3) pour
as much water as possible from one jug into the other (i.e. p12 (pour water from jug1 into jug2), p21 (pour
water from jug2 into jug1)). The goal is you must end up with a jug having exactly 1 gallons of water.
Formally:

• State space S = {0, 1, 2} × {0, 1}

• Initial state s0 = (0, 0)

• Goal states G = {(0, 1), (1, 0), (1, 1), (2, 1)}

• Actions A = {f1, f2, e1, e2, p12, p21}

• Successor function is given by the table below

f1 f2 e1 e2 p12 p21
(0,0) (2,0) (0,1) - - - -
(1,0) (2,0) (1,1) (0,0) - (0,1) -
(2,0) - (2,1) (0,0) - (1,1) -
(0,1) (2,1) - - (0,0) - (1,0)
(1,1) (2,1) - (0,1) (1,0) - (2,0)
(2,1) - - (0,1) (2,0) - -

• Cost = 1 for all arcs

• The search problem: find a solution path from a state in s0 to a state in G

There are an infinite number of solutions. If a search algorithm is optimal, a solution to the water jug is
a path from the initial state to a goal state with the smallest path cost. Possible solutions of the example
above:

• ((0,0), (0,1))

CS 540 Spring 2019

• ((0,0), (2,0), (1,1))

• ((0,0), (2,0), (0,0), (2,0), (1,1))

Write a program WaterJug.java with the following command-line format:

$java WaterJug FLAG cap_jug1 cap_jug2 curr_jug1 curr_jug2 goal

where FLAG is an integer that specifies the output of the program (see below). cap jug1 and cap jug2
specify each jug’s capacity. curr jug1 and curr jug2 specify how much water each jug is initially filled
and cannot exceed its capacity. goal specifies how much water you must end up with in either jug1 or jug2,
or both jugs. These take values in integer 0-9 for command-line argument. For example, given the earlier
example and FLAG=100, the command line would be

$java WaterJug 100 2 1 0 0 1

(Part a, 5 points) When FLAG=100, print out the successor states of an initial state, in the order they are pushed into
the stack (see below). Each successor state should be printed as jug1 and jug2 state digits back-to-back
on a single line. For example,

$java WaterJug 100 2 1 0 0 1

01

20

$java WaterJug 100 5 7 3 1 2

01

04

30

37

40

51

Important: We ask you to implement the following order among successors. If we view a state as a
2-digit integer, then there is a natural order among states. Whenever you push successors into the
stack, push them from small 2-digit to large 2-digit. This order will be used throughout this program,
so that the output is well-defined.

(Part b, 5 points) When FLAG=200, verify if each of the successor states is a goal node. Recall this is true only when
either jug1 or jug2, or both have exactly goal gallon. Print each successor state following by either
true or false, separated by a whitespace.

$java WaterJug 200 2 1 0 0 1

01 true

20 false

$java WaterJug 200 5 7 3 1 2

01 false

CS 540 Spring 2019

04 false

30 false

37 false

40 false

51 false

(Part c, 15 points) When FLAG=300, perform a breadth-first search till a goal state is reached. You will need to implement
BFS using OPEN and CLOSED lists to keep track of progress through the state space. On the first
line, print the initial state. During each iteration step, take out a state from the fringe, verify whether
it is a goal node. If so, print it, followed by the word ”Goal” and terminate. Else, check whether it
is already expanded. If yes, discard it. Otherwise, expand the state, add its successors to the fringe,
and mark that state as already-expanded. At the end of each iteration step, print the expanded state,
OPEN list, and CLOSED list with the following format:

sexpanded [o1, o2, ..., om] [c1, c2, ..., cn]

The last line, you will print the word ”Path”, followed by a sequence of states from the initial to the
goal (all space-separated). For example,

$java WaterJug 300 4 3 0 0 2

00

00 [03,40] [00]

03 [40,30,43] [00,03]

40 [30,43,13] [00,03,40]

30 [43,13,33] [00,03,40,30]

43 [13,33] [00,03,40,30,43]

13 [33,10] [00,03,40,30,43,13]

33 [10,42] [00,03,40,30,43,13,33]

10 [42,01] [00,03,40,30,43,13,33,10]

42 Goal

Path 00 03 30 33 42

(Part d, 15 points) When FLAG=400, perform a depth-first search till a goal state is reached. Again, you will need to
implement DFS using OPEN and CLOSED lists to keep track of progress through the state space.
Print results like in part c. For example,

$java WaterJug 400 4 3 0 0 2

00

00 [03,40] [00]

40 [03,13,43] [00,40]

43 [03,13] [00,40,43]

13 [03,10] [00,40,43,13]

10 [03,01] [00,40,43,13,10]

01 [03,41] [00,40,43,13,10,01]

41 [03,23] [00,40,43,13,10,01,41]

23 Goal

Path 00 40 13 10 01 41 23

CS 540 Spring 2019

(Part e, 20 points) When FLAG=5XX, perform a depth-limited depth-first search with cutoff depth XX (i.e. this is one
outer-loop of iterative deepening). For example, if FLAG=500, the cutoff depth is 0. In DFS, you will
push the initial state in the stack, pop it out, do a goal test, but will NOT expand it. If FLAG=501,
the cutoff depth is one. In DFS, you will expand the initial state (i.e. put its successors into the
stack in the order we specified in Part a). You will pop each successor out, perform goal-check (and
terminate the program if goal-check succeeds). But you will not expand any of these successors.

XX can be 00 to 99. If depth-limited DFS finds a goal before the cutoff, it should stop.

Print results similar to part d with a current depth parameter prefixed. For example,

$java WaterJug 555 4 3 0 0 2

0:00

0:00 [] [00]

1:00

1:00 [03,40] [00]

1:40 [03] [00,40]

1:03 [] [00,40,03]

2:00

2:00 [03,40] [00]

2:40 [03,13,43] [00,40]

2:43 [03,13] [00,40,43]

2:13 [03] [00,40,43,13]

2:03 [30] [00,40,43,13,03]

2:30 [] [00,40,43,13,03,30]

3:00

3:00 [03,40] [00]

3:40 [03,13,43] [00,40]

3:43 [03,13] [00,40,43]

3:13 [03,10] [00,40,43,13]

3:10 [03] [00,40,43,13,10]

3:03 [30] [00,40,43,13,10,03]

3:30 [33] [00,40,43,13,10,03,30]

3:33 [] [00,40,43,13,10,03,30,33]

4:00

4:00 [03,40] [00]

4:40 [03,13,43] [00,40]

4:43 [03,13] [00,40,43]

4:13 [03,10] [00,40,43,13]

4:10 [03,01] [00,40,43,13,10]

4:01 [03] [00,40,43,13,10,01]

4:03 [30] [00,40,43,13,10,01,03]

4:30 [33] [00,40,43,13,10,01,03,30]

4:33 [42] [00,40,43,13,10,01,03,30,33]

4:42 Goal

Path 00 03 30 33 42

