
CS 540 Spring 2019

CS 540: Introduction to Artificial Intelligence
Homework Assignment # 4

Assigned: 2/26
Due: 3/5 before class

Hand in your homework:

If a homework has programming questions, please hand in the Java program. If a homework has written
questions, please hand in a PDF file. Regardless, please zip all your files into hwX.zip where X is the
homework number. Go to UW Canvas, choose your CS540 course, choose Assignment, click on Homework
X: this is where you submit your zip file.

Late Policy:

All assignments are due at the beginning of class on the due date. One (1) day late, defined as a 24-hour
period from the deadline (weekday or weekend), will result in 10% of the total points for the assignment
deducted. So, for example, if a 100-point assignment is due on a Wednesday 9:30 a.m., and it is handed in
between Wednesday 9:30 a.m. and Thursday 9:30 a.m., 10 points will be deducted. Two (2) days late, 25%
off; three (3) days late, 50% off. No homework can be turned in more than three (3) days late. Written
questions and program submission have the same deadline.

Assignment grading questions must be raised with the instructor within one week after the assignment
is returned.

Collaboration Policy:

You are to complete this assignment individually. However, you are encouraged to discuss the general
algorithms and ideas with classmates, TAs, and instructor in order to help you answer the questions. You
are also welcome to give each other examples that are not on the assignment in order to demonstrate how
to solve problems. But we require you to:

• not explicitly tell each other the answers

• not to copy answers or code fragments from anyone or anywhere

• not to allow your answers to be copied

• not to get any code on the Web

In those cases where you work with one or more other people on the general discussion of the assignment
and surrounding topics, we suggest that you specifically record on the assignment the names of the people
you were in discussion with.

CS 540 Spring 2019

Question 1: Eight Queens Puzzle [60 points]

This is a programming question. The solution to the programming problem should be coded in Java, and
you are required to use only built-in libraries to complete this homework. Please submit a single zip file
named hw4.zip, which should contain a source code file named EightQueen.java with no package statements,
and make sure your program is runnable from command line on a department Linux machine. We provide
a skeleton EightQueen.java code that you can optionally use, or you can write your own.

In this question you will implement heuristic search algorithms – hill climbing varieties and simulated
annealing – for the eight queens puzzle.

The eight queens puzzle is the problem of placing eight chess queens on an 8 × 8 chessboard in such
a way that no two queens attack each other. In other words, a solution requires that no two queens
share the same row, column, or diagonal. For more background on the eight queens puzzle see https:

//en.wikipedia.org/wiki/Eight_queens_puzzle.
Write a program EightQueen.java with the following command line format, where the command line

input has variable length1:

$java EightQueen FLAG [seed] board

where FLAG is an integer that specifies the output of the program (see below). seed is a seed of a
random number generator (only required in part c and e; discarded otherwise). board is a string of length 8
that specifies the board as an array where the index is the column and the value is the row. Each position in
the string takes values in integer 0-7. To illustrate, the board below is represented as 13572064. Note that
the board is a solution to the eight queens puzzle. That is, no two queens share the same row, column, or
diagonal.

| | | | | | Q | | |

| Q | | | | | | | |

| | | | | Q | | | |

| | Q | | | | | | |

| | | | | | | | Q |

| | | Q | | | | | |

| | | | | | | Q | |

| | | | Q | | | | |

(Part a, 5 points) You will first implement a heuristic function of an eight queens board. In particular, the function
returns the heuristic cost of a given board that is equal to the number of queen pairs sharing the same

1We provide code skeleton that already handles variable length input.

https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Eight_queens_puzzle

CS 540 Spring 2019

row, column, or diagonal. The board above, which is a solution, has a heuristic cost of 0, because there
are 0 pairs of queens attacking each other.

When FLAG=100, print the heuristic cost of a given board.

$java EightQueen 100 01234567

28

$java EightQueen 100 40057263

1

$java EightQueen 100 13572064

0

(Part b, 10 points) To solve this eight queens puzzle, we need to take steps to reduce the heuristic cost to zero. To evaluate
which moves are best, we will calculate the heuristic costs of the board after one move. For simplicity,
we will only move queens up or down vertically along individual columns.

When FLAG=200, perform calculation of all the heuristic costs of the board after one move, find moves
(i.e. successors) with the lowest heuristic cost (the steepest moves), and print corresponding resulting
boards after those moves. You will print the heuristic cost in the last line. If no move exists, you
should simply produce no output at all.

Important: We ask you to implement the following order among successors. Whenever you append
moves into a list, append them according to moves from small index to large index and from small
value to large value. That is, the list is sorted by new queen position’s index and value in ascending
order, with index having higher precedence than value. Recall that we are to represent the board as
an array where the index is the column and the value is the row. This order will be used throughout
the program, so that the output is well-defined. For example:

$java EightQueen 200 13572063

13572064

0

$java EightQueen 200 13572064 (note: produce no output)

$java EightQueen 200 01234567

11234567

31234567

51234567

71234567

00234567

02234567

04234567

06234567

01134567

CS 540 Spring 2019

01334567

01534567

01734567

01204567

01224567

01244567

01264567

01231567

01233567

01235567

01237567

01234067

01234267

01234467

01234667

01234517

01234537

01234557

01234577

01234560

01234562

01234564

01234566

22

(Part c, 15 points) Perform hill climbing (HC) algorithm by randomly choosing a steepest move from part b, print the
corresponding board and its heuristic cost (space-separated) with a current iteration number (starting
from 0 to XX) prefixed, then repeat the process for the number of iterations equal to XX. XX can
be 00 to 99. For example, if FLAG=300, the cutoff is 0. In HC, you will do a goal test, but will
NOT expand it. If FLAG=301, the cutoff is one. In HC, you will expand the initial state (i.e. put its
moves into a stack in the order we specified in Part b). You will randomly select a move out, perform
goal-check (and terminate the program if goal-check succeeds). But you will not expand any of these
moves. If a solution is reached, the algorithm should stop and print the word ”Solved”.

When FLAG=3XX, command line argument seed is required. If seed = −1, you actually do not set
the seed (this allows you to generate different random moves). Otherwise, you should set the seed to
seed. To set the seed in Java, use the following code:

Random rng = new Random();

if (seed != -1) rng.setSeed(seed);

To randomly choose a steepest move, you should generate a new random integer r ∈ [0, |A| − 1], where
A is a set of all steepest moves and |A| denotes the cardinality of A. The random integer is used as an
index to get the element at a specified position in a list. This should be done with:

CS 540 Spring 2019

// successors is an ArrayList instance containing all steepest moves

int r = rng.nextInt(successors.size());

State move = successors().get(r);

Important: We ask you to implement the order among successors like in part b, so that when the same
seed is set, the output is well-defined.

$java EightQueen 305 1 12375643

0:12375643 14

1:02375643 10

2:02175643 7

3:04175643 5

4:04175603 3

5:24175603 2

$java EightQueen 315 1 12375643

0:12375643 14

1:02375643 10

2:02175643 7

3:04175643 5

4:04175603 3

5:24175603 2

6:24175607 2

7:24175307 1

8:24175304 1

9:26175304 0

Solved

$java EightQueen 315 1 13572063

0:13572063 2

1:13572064 0

Solved

$java EightQueen 315 1 13572064

0:13572064 0

Solved

$java EightQueen 300 1 11111111

0:11111111 28

$java EightQueen 300 1 13572064

0:13572064 0

Solved

CS 540 Spring 2019

(Part d, 15 points) We will look at an additional way to solve eight queens puzzle. So far, we had to go through every
move and check every possible square. Now, we will perform first-choice hill climbing that, instead of
trying to find the best move at each step, we will simply try to find a better move. In particular, we
will choose the first move with a heuristic cost that is lower than a current heuristic cost. Again, we
iterate through elements in the list from first to last in order specified in part b and c.

When FLAG=4XX, perform a first-choice hill climbing algorithm step, print the board and its heuristic
cost (space-separated), then repeat the process for the number of iterations equal to XX. XX can be
00 to 99. If a solution is reached, the algorithm should stop and print the word ”Solved” in the last
line. If the algorithm gets stuck on local optima, the algorithm should also terminate and print the
word ”Local optimum” in the last line. A current board is at local optima if all heuristic costs of the
board after one move are less than or equal to the current heuristic cost.

$java EightQueen 405 12375643

0:12375643 14

1:02375643 10

2:00375643 8

3:20375643 7

4:20175643 5

5:20135643 4

$java EightQueen 415 12375643

0:12375643 14

1:02375643 10

2:00375643 8

3:20375643 7

4:20175643 5

5:20135643 4

6:27135643 3

7:27135043 2

8:27135040 1

Local optimum

$java EightQueen 415 13572063

0:13572063 2

1:13572061 1

2:13572064 0

Solved

$java EightQueen 415 13572064

0:13572064 0

Solved

$java EightQueen 400 11111111

0:11111111 28

CS 540 Spring 2019

$java EightQueen 400 13572064

0:13572064 0

Solved

(Part e, 15 points) Perform simulated annealing algorithm2, print the board and its heuristic cost (space-separated), then
repeat the process for the number of iterations equal to XX. XX can be 00 to 99. If a solution is
reached, the algorithm should stop and print the word ”Solved” in the last line. For this part, we set
the anneal rate and initial temperature to be 0.95 and 100, respectively.

When FLAG=5XX, command line argument seed is required and setting seed can be done like in part
c. Recall that if seed = −1, you actually do not set the seed (this allows you to generate different
random moves). Otherwise, you should set the seed to seed.

Important: We ask you to use only one instance of Random with the same sequence of method calls
for each iteration, so that it generates and returns identical sequences of numbers, and the output is
well-defined. Formally, define the sequence of method calls as (i1, i2, d1, i3, i4, d2, i5, i6, d3, ...) where k
is positive integers, dk is the kth nextDouble() call for the kth iteration, and ik is the kth nextInt()
call. The new queen position picked at random at kth iteration is specified by i2k−1 as index and i2k
as value. This should be done with:

Random rng = new Random();

if (seed != -1) rng.setSeed(seed);

...

for each iteration:

int index = rng.nextInt(7);

int value = rng.nextInt(7);

double prob = rng.nextDouble();

...

where index and value are used to specify a new queen position picked at random. prob is used to
simulate the probability of acceptance.

Print results similar to part c. For example,

$java EightQueen 505 1 12375643

0:12375643 14

1:12374643 11

2:12374663 10

3:12364663 11

4:12364563 9

5:02364563 10

2Its pseudo-code is on slide 14 from ”Advanced search part 2: simulated annealing”.

CS 540 Spring 2019

$java EightQueen 515 1 12375643

0:12375643 14

1:12374643 11

2:12374663 10

3:12364663 11

4:12364563 9

5:02364563 10

6:02664563 11

7:02662563 8

8:02662263 7

9:02362263 7

10:02362263 7

11:02362263 7

12:02363263 8

13:02353263 7

14:02313263 7

15:02363263 8

$java EightQueen 515 1 13572063

0:13572063 2

1:13574063 3

2:13574063 3

3:13564063 4

4:13564563 8

5:03564563 11

6:03664563 12

7:03662563 8

8:03662263 6

9:03362263 6

10:03362263 6

11:03362263 6

12:03363263 9

13:03353263 9

14:03313263 9

15:03363263 9

$java EightQueen 515 1 13572064

0:13572064 0

Solved

$java EightQueen 500 1 11111111

0:11111111 28

$java EightQueen 500 1 13572064

0:13572064 0

CS 540 Spring 2019

Solved

