
CS 540 Spring 2019

CS 540: Introduction to Artificial Intelligence
Homework Assignment # 7

Assigned: 3/26
Due: 4/9 before class

Hand in your homework:

If a homework has programming questions, please hand in the Java program. If a homework has written
questions, please hand in a PDF file. Regardless, please zip all your files into hwX.zip where X is the
homework number. Go to UW Canvas, choose your CS540 course, choose Assignment, click on Homework
X: this is where you submit your zip file.

Late Policy:

All assignments are due at the beginning of class on the due date. One (1) day late, defined as a 24-hour
period from the deadline (weekday or weekend), will result in 10% of the total points for the assignment
deducted. So, for example, if a 100-point assignment is due on a Wednesday 9:30 a.m., and it is handed in
between Wednesday 9:30 a.m. and Thursday 9:30 a.m., 10 points will be deducted. Two (2) days late, 25%
off; three (3) days late, 50% off. No homework can be turned in more than three (3) days late. Written
questions and program submission have the same deadline.

Assignment grading questions must be raised with the instructor within one week after the assignment
is returned.

Collaboration Policy:

You are to complete this assignment individually. However, you are encouraged to discuss the general
algorithms and ideas with classmates, TAs, and instructor in order to help you answer the questions. You
are also welcome to give each other examples that are not on the assignment in order to demonstrate how
to solve problems. But we require you to:

• not explicitly tell each other the answers

• not to copy answers or code fragments from anyone or anywhere

• not to allow your answers to be copied

• not to get any code on the Web

In those cases where you work with one or more other people on the general discussion of the assignment
and surrounding topics, we suggest that you specifically record on the assignment the names of the people
you were in discussion with.

CS 540 Spring 2019

Question 1: N-gram Language Modeling [60 points]

In this question you will implement a chatbot by generating random sentences from your HW1 corpus using
n-gram language models with Laplace smoothing.

We have created a vocabulary file vocabulary.txt for you to interpret the data, though you do not need it
for programming. The vocabulary is created by tokenizing the corpus, converting everything to lower case,
and keeping word types that appears three times or more. There are 4699 lines in the vocabulary.txt file.

Download the file corpus.txt from the homework website. This file has one word token per line, and we
have already converted the word to its index (line number) in vocabulary.txt. Thus you will see word indices
from 1 to 4699. In addition, we have a special word type OOV (out of vocabulary) which has index 0. All
word tokens that are not in the vocabulary map to OOV. For example, the first OOV in the corpus appears
as

392 are

1512 entirely

0 undermined

12 .

The words on the right are provided from the original essays for readability, they are not in the corpus. The
word “undermined” is not in the vocabulary, therefore it is mapped to OOV and have an index 0. OOV
represents a set of out-of-vocabulary words such as “undermined, extra-developed, metro, customizable,
optimizable” etc. But for this homework you can treat OOV as a single special word type. Therefore, the
vocabulary has v = 4700 word types. The corpus has 228548 tokens.

Note:
Please make sure the outputs are formatted exactly as described in this document. A sample test script

is provided which compares your outputs with the expected outputs. Please make sure that all the test cases
pass before submitting. No points will be awarded if the output doesn’t match exactly, even if the algorithm
is correctly implemented.

Write a program Chatbot.java with the following command line format, where the commandline input
has variable length1 and the numbers are integers:

$java Chatbot FLAG number1 [number2 number3 number4]

(Part a, 5 points) Denote the vocabulary by the v word types w0, w1, . . . , wv−1 in the order of their index (so w0 has
index 0 and represents OOV, and so on). For this homework it is important that you keep this order
so that we can automatically grade your code.

You will first create a unigram language model with add-one Laplace smoothing. This is a probability
distribution over the vocabulary, for word type w ∈ {0, . . . , v − 1} the estimated probability is

pi ≡ p(w = i) =
c(w = i) + 1

n + |V |
,

where c(w = i) is the count of word type i in the corpus (i.e. how many times wi appeared). Note you
need to estimate and store pi for all v word types, including OOV: p(w = OOV) is the fraction of 0’s
in the corpus. Your p(w) should sum to 1 over the vocabulary, including OOV.

1We provide code skeleton that already handles variable length input.

CS 540 Spring 2019

When FLAG=100, number1 specifies the word type index i for wi. You should print out two numbers
on two lines: c(w = i) and p(w = i). When printing the probabilities for this homework, keep 7 digits
after the decimal point and perform rounding. For example,

$java Chatbot 100 0

7467

0.0320174

$java Chatbot 100 1

36

0.0001586

$java Chatbot 100 2000

3

0.0000171

$java Chatbot 100 3001

140

0.0006045

$java Chatbot 100 4699

8

0.0000386

(Part b, 5 points) Now you implement random sampling from a probability distribution. That is, you will generate a
random word type according to its unigram probability. Here is how you do it:

1. Given the multinomial distribution parameter (p0, p1, . . . , pv−1), you split the interval [0, 1] into
v segments. Segment 0 is [l0 = 0, r0 = p0]. Note it is closed on the left. Segment i (for
i = 1, . . . , v − 1) is li =

i−1∑
j=0

pj , ri =

i∑
j=0

pj

 .

Note these segments are open on the left but closed on the right. Also recall that we want you to
order these segments by their word type index.

2. You generate a random number r uniformly in [0, 1].

3. You check which segment r falls into, and output the index of that segment.

In order to test your code in a reproducible way, we will specify the random number r from com-
mandline. Specifically, When FLAG=200, we provide number1 and number2 (we guarantee that
number2 ≥ number1), and you should let r = number1/number2 (remember to use Java ‘double’ here
so you don’t get an integer zero!) instead of a random r. Your code should output three numbers on
three lines: the word type index i that this r selects, li the left end of wi’s interval, and ri the right
end of wi’s interval.

CS 540 Spring 2019

$java Chatbot 200 32 1000

0

0.0000000

0.0320174

$java Chatbot 200 321 10000

1

0.0320174

0.0321761

$java Chatbot 200 5000 10000

2364

0.4999528

0.5144953

$java Chatbot 200 99997 100000

4699

0.9999614

1.0000000

(Part c, 10 points) Now you will create a bigram language model of the form p(w | h), where both w and h (the history)
are word types in the vocabulary. Fixing h, p(w | h) is a multinomial distribution over word types
w = 0, . . . , v − 1, and is estimated as follows:

p(w | h) =
c(h,w) + 1

(
∑v−1

u=0 c(h, u)) + |V |
,

where c(h,w) is the count of the bigram (adjacent word pair) h,w in the corpus. These counts are
obtained by letting the history start at the first word position in the corpus, then gradually moving
the history one position later, until finally the (history, word) pair “use up” the corpus. For bigrams,
that means history stops at the 2nd to last word position in the corpus. For example, if the corpus
is “cake cake cake you want cake cake” then c(cake, you) = 1, c(cake, cake) = 3, c(cake, want) = 0.
Note it is perfectly fine to estimate p(w = i | h = i) for the same word type i. It is also perfectly fine
if either w or h or both are OOV.

The above discussion is for a fixed h, where p(w | h) is a multinomial distribution. You will need to
do so for all possible h = 0, . . . , v − 1, so that you will end up with v multinomial distributions. This
is where the sparse storage becomes important.

When FLAG=300, number1 specifies the history word type index h, and number2 specifies the word
type index w. You should print out three numbers on three lines: c(h,w),

∑v−1
u=0 c(h, u), and p(w | h).

For example,

$java Chatbot 300 414 2297

1054

1082

0.1824628

CS 540 Spring 2019

$java Chatbot 300 0 0

406

7467

0.0334511

$java Chatbot 300 0 1

0

7467

0.0000822

$java Chatbot 300 2110 4240

115

917

0.0206516

$java Chatbot 300 4247 0

41

1435

0.0068460

(Part d, 10 points) Now you will use the same function in Part b to sample from a bigram given h. That is, instead of
using the unigram probability p(w), we fix some h and you will generate a random word type from
p(w | h). The method is the same, you just need to do more bookkeeping and record the segments
separately for each history h. Specifically, for history h the segments are:

[lh0 = 0, rh0 = p(w = 0 | h)]lhi =

i−1∑
j=0

p(w = j | h), rhi =

i∑
j=0

p(w = j | h)

 , i = 1, . . . , v − 1.

Again, you should use sparse storage.

When FLAG=400, we provide number1 and number2 (we guarantee that number2 ≥ number1), num-
ber3 is the word type for history h, and you should let r = number1/number2 to pick the corresponding
word type w from p(w | h). Your code should output three numbers on three lines: the word type
index i that this r selects, lhi the left end of wi’s interval conditioned on h, and rhi the right end of
wi’s interval conditioned on h.

$java Chatbot 400 0 100 414

0

0.0000000

0.0003459

$java Chatbot 400 1 100 414

54

CS 540 Spring 2019

0.0096852

0.0100311

$java Chatbot 400 98 100 414

4584

0.9799377

0.9801107

$java Chatbot 400 81 100 4697

3807

0.8099894

0.8102019

$java Chatbot 400 15 100 4442

710

0.1499684

0.1501793

(Part e, 10 points) Finally you create a trigram language model of the form p(w | h1, h2), where now the history is the
pair of word types h1, h2 in that order. Fixing h1, h2, p(w | h1, h2) is a multinomial distribution over
word types w = 0, . . . , v − 1, and is estimated as follows:

p(w | h1, h2) =
c(h1, h2, w) + 1

(
∑v−1

u=0 c(h1, h2, u)) + |V |
,

where c(h1, h2, w) is the count of the trigram (adjacent word triple) h1, h2, w in the corpus. For the cake
corpus c(cake, cake, you) = 1, c(cake, cake, cake) = 1, c(cake, cake, want) = 0, c(cake, you, want) = 1
and for u 6= want we have c(cake, you, u) = 0, c(want, cake, cake) = 1 and for u 6= cake we have
c(want, cake, u) = 0.

When FLAG=500, number1 specifies the history word type index h1, number2 is h2, and number3 is
w. You should print out three numbers on three lines: c(h1, h2, w),

∑v−1
u=0 c(h1, h2, u), and p(w | h1, h2).

For example,

$java Chatbot 500 23 12 123

0

0

0.0002128

$java Chatbot 500 5 660 3425

10

402

0.0021560

$java Chatbot 500 2799 556 2364

CS 540 Spring 2019

1

3

0.0004253

$java Chatbot 500 414 2297 2364

99

1054

0.0173792

$java Chatbot 500 0 0 0

35

406

0.0070505

(Part f, 10 points) Now you will sample from the trigram model p(w | h1, h2). When FLAG=600, we provide number1
and number2 (we guarantee that number2 ≥ number1), number3 is h1 and number4 is h2, and you
should let r = number1/number2 to pick the corresponding word type w from p(w | h1, h2). When
this conditional probability is defined, your code should output three numbers on three lines: the word
type index i that this r selects, lh1,h2,i the left end of wi’s interval conditioned on h1, h2, and rh1,h2,i

the right end of wi’s interval conditioned on the history. Otherwise, your code should output a single
line with text undefined.

$java Chatbot 600 2 5 660 3425

1881

0.3999151

0.4001274

$java Chatbot 600 2 5 3001 104

1880

0.3998304

0.4000424

java Chatbot 600 50 100 496 4517

2340

0.4997911

0.5000000

$java Chatbot 600 33 100 2591 2473

1530

0.3298473

0.3300565

$java Chatbot 600 0 100 2297 414

0

0.0000000

CS 540 Spring 2019

0.0002128

$java Chatbot 600 0 100 496 4517

0

0.0000000

0.0002089

(Part g, 10 points) Now the fun begins! You will generate random sentences using your n-gram language models. But for
building a chatbot, we will specify a sentence prefix s1, s2, . . . , st which are t initial words (represented
by word type indices) in the sentence. Your code will complete this sentence as follows:

1. set seed for randomizer

2. Repeat:

(a) h1 = st−1, h2 = st

(b) generate a random word st+1 from p̃(w | h1, h2)

(c) t = t + 1 // shifts the trigram history by one position in the next iteration.

3. Until the generated word is a period, or a question mark, or an exclamation mark.

Note in step 1(b) a complication arises from the sentence prefix, and we introduced a placeholder p̃:

– The sentence prefix is empty. In this case, simply let p̃(w | h1, h2) be the unigram model p(w)
which does not require any history.

– The sentence prefix has only one word s1. In this case, let p̃(w | h1, h2) = p(w | h = s1) the
bigram model.

– The sentence prefix h1 = st−1, h2 = st as history is undefined for a trigram model. If so, let
p̃(w | h1, h2) = p(w | h2) the bigram model.

– Otherwise, let p̃(w | h1, h2) = p(w | h1, h2) the trigram model.

When FLAG=700, number1=seed, which is the seed of the random number generator; number2=t
(which only needs to be 0, 1, or 2), and the next t numbers on the commandline specify the sentence
prefix s1, s2, . . . , st. We will guarantee that si is not period, or a question mark, or an exclamation
mark.

If seed = −1, you actually do not set the seed (this allows you to generate different random sentences).
Otherwise you should set the seed to seed. To set the seed in Java, use the following code:

Random rng = new Random();

if (seed != -1) rng.setSeed(seed);

In step 1(b) each time you should generate a new random number r ∈ [0, 1] in order to generate the
random word. This should be done with

CS 540 Spring 2019

rng.nextDouble();

You should try your code multiple times with the same sentence prefix: when seed = −1 your code
should complete the sentence in different ways; otherwise it should be the same completion.

Your code will output the completed sentence (starting at st+1), one word index per line.

Because of Laplace smoothing, the generated sentences can be too long. This is because Laplace
smoothing assigns a default prior probability to all the terms even if they never appear. Hence, only
partial sample outputs are shown below. For the complete outputs, please refer to the provided sample
test case files.

$java Chatbot 700 0 0

3693

1118

2995

2587

2808

1566

1810

4628

4132

4423

...

$java Chatbot 700 1 1 523

3433

1927

976

1563

4548

28

4529

4417

4451

4404

...

$java Chatbot 700 31 2 2110 311

3434

1846

3693

3003

3508

4553

2315

985

CS 540 Spring 2019

2533

4521

...

(Part h, no points) For this part you do not need to develop your code any further, but you will test out the Chatbot that
you have developed by actually “talking” to it.

Please download ChatbotDriver.java and place this file together with your Chatbot.java in the same
directory. This driver class basically takes the user input, apply some rules to generate a prefix based
on the input (or just use the input itself as the prefix), and call “java Chatbot 700 -1 prefix” to
generate a response and visualize it as actual words (“OOV” will be displayed for OOV indices). You
can compile both files and try chatting with your Chatbot. Also make sure you have the txt files in
the directory as well.

Note: because of randomness, your results will differ.

$javac Chatbot.java ChatbotDriver.java

$java ChatbotDriver

You: What’s your opinion on self-driving cars?

Chatbot: self-driving cars similar apply desired rarely describing unique behavior

proposal contributing inventions failing tolerance self-driven battle conjunction

center aspect space difficulties person population user promising 12 billion ...

You: healthcare system

Chatbot: healthcare system suggests unfair takes underlying validation corporation

investment capital falling or database professionals protocol relationships broadly

animal selection .

You: tell me a joke

Chatbot: attempts analyzed conversation amount complete accent data gone integrate

require distance parts switch else doubts enacted ct at believes happening apparent

arrive forever subjects racial x-ray screens norm 2 alter eliminating ai exercise

surgical perception consent autonomy ...

You: say anything

Chatbot: simplified household refers regulatory processing differently executive

knows carpooling face choosing unlikely sold published peer state-of-the-art cultures

healthcare start tested hired devastating boston transition questionable staple fails

collisions portability compromised true prejudices kate crisis highways ...

You: what is your idea of an ideal world?

Chatbot: my idea of an ideal world choosing individualized home/service mentions

infinite knowledge 1999 things flint year disruptions switching professional mistake

uneven compatibility direction cited developing argues eliminating brains virtually

vehicles businesses accountability attract promise involves can shut buttons ...

Have fun and try to make it more intelligent by modifying ChatbotDriver.java! (e.g. adding more
rules to the generateCommand method.)

