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This note provides some example research topics for the final projects in the course CS 760 Machine
Learning. It should be emphasized that these examples are limited to the knowledge scope and interests
of the author, and only reflect a small fraction of the ongoing research topics in the active field of machine
learning. Also, these topics are discussed at a high level and should be regarded as general directions rather
than concrete research problems.

1 Theory

These topics focus on building formal models and providing theoretical analysis and guarantees.

1.1 Topic: Generalization bounds for deep learning

Recent studies showed some surprising observations about the generalization of deep neural networks (Zhang
et al., 2016): The same architecture and regularizations lead to small generalization gaps when trained on
natural images but large generalization gap when trained on random noisy inputs. The experimental results
suggest that for random inputs the deep neural networks are simply memorizing the input and thus have poor
generalization, while for natural images things are drastically different. However, traditional generalization
bounds are independent of data distributions and thus fail to clearly explain this phenomenon. How to
bound the generalization gap in a data-dependent or even training algorithm dependent way?
Example work: (Mou et al., |2017; Kawaguchi et al., |2017])

1.2 Topic: Distributed learning

Due to the explosion of data and the increasing capacity of learning models, many large scale machine
learning applications adopts distributed computing to speed up the training. Theoretical guarantees under
fairly mild conditions are known, and practical distributed learning platforms are deployed. However, much
remains unclear for distributed learning. In many scenarios (especially when the computation is distributed
over many machines), the speedup is far away from the ideal. Two key obstacles are the communication cost
and that some machines are lagging behind. How to model these in a clean way and design algorithms to
address them?
Example work: (Balcan et al., [2014; Pan et al.l |2016; Recht et al., 2011)

1.3 Topic: Privacy and Fairness in machine learning

Machine learning methods are usually designed with performance (accuracy, speed, robustness to noise, etc)
in mind. However, when they are deployed as practical systems, they may face social norms such as privacy
and fairness. How to formalize privacy and fairness in the machine learning setting? How can a machine
learning method be successfully deployed in applications without leaking sensitive information in the training
data? How can one build a machine learning system whose predictions will guarantee fairness for the people
affected? These are active research directions in recent years.



Privacy has been well understood to a deep extent. Especially, the notion of differential privacy is very
successful both theoretically and practically. See (Dwork and Rothl 2014; Dwork and Cynthiaj [2006)).

Fairness has been studied before but recently has attracted a lot more focus. There are still debates
about the formal definition, and much needs to be done to design efficient algorithms to achieve fairness.
See (Kusner et al.| |2017; Hardt et al., |2016; |Dwork et al.; [2011)).

2 Empirical Studies

These topics focus on the empirical properties and performance of machine learning methods, e.g., when and
why they work and how to improve them.

2.1 Topic: Unsupervised learning of representations

In supervised deep learning, the hidden layers are regarded as new representations of the input, which can
allow to learn better classifiers/predictors. By using sufficiently many labeled data, recent deep neural
network models can often get representations that leads to state-of-the-art performance. Sometimes the
representations are also semantically meaningful, e.g., over images, the lower level hidden layers can discover
line patterns that are also important for human vision systems, and higher level hidden layers can discover
more complicated patterns. Are there similar phenomena for other type of data? Are these representations a
summaries of the input data according to some general and unified principles? Can one design unsupervised
learning systems that do not require human knowledge but use the general principles to discover the same
representations?
Example work: (Hinton and Salakhutdinov, [2006; [Lel 2013} [Salakhutdinov, 2015))

2.2 Topic: Adversarial examples and robustness

Recent studies show a surprising weakness of some deep learning models: adding very small adversarial
noise to the input can lead to drastic change in the output of the model. This caught a lot of attention
since it presents an obstacle for the deployment of the such learning systems in practical scenarios, e.g.,
such adversarial attacks to the perception module of a self driving car can cause the machine to make severe
mistakes and lead to great threats to properties and humans. Can we improve the learning methods so that
the resulting systems are robust to such attacks? Will such robustness come with sacrifice of the performance
or improve the performance?
Example work: (Nguyen et al.l 2014} [Lu et al., Madry et al.))

2.3 Topic: Interpretability and model extraction

As the applications that use machine learning become more and more complicated, the machine learning
models used necessarily become more and more sophisticated (e.g., to encode more complicated prior knowl-
edge, to achieve better performance, etc.). However, this comes with a price: such machine learning are hard
to interpret and have to be treated mostly as black boxes even for the system designer. Can we design prin-
ciple methods to interpret the black boxes? Can this be done efficiently, exploiting existing understanding
about the models?

Example work: (Wei Koh and Liang; [Kim et al.; Ribeiro et al.))

2.4 Topic: GAN for discrete data

Generative Adversarial Network (GAN) is a recently proposed framework for training deep generative models,
whose goal is to take as input random noise and output data with distribution close to that of real world
data. This framework achieves promising results, especially for producing real looking images. However,
applying it to discrete data (such as those in Natural Language Processing) is much more difficult, and one



key reason is the difficulty to get meaningful gradient updates on discrete data. Can one design a general
principle, which can be used to upgrade the framework and achieve desired performance on discrete data?
Existing work: (Rajeswar et al., |2017; |Zhang et al., [2017)

3 Applications

These topics focus on practical applications on real world data, e.g., what are some useful properties of the
data from the application, how to design a new system or improve the performance of existing systems for
the application.

3.1 Topic: Sentence/paragraph/document embeddings

Many recent advances in Natural Language Processing build on top of word embeddings, i.e., mapping words
as vectors in some low dimensional space. These embeddings are built via unsupervised methods and are
(almost) universal in the sense that they can be used in many different NLP tasks. A natural question
is whether one can do embedding for larger piece of text like sentences, paragraphs, or even documents.
Although many existing methods implicitly get embeddings for them, they are either supervised or for
specific tasks. Unsupervised learning of a universal embedding scheme is a largely open question.

Example work: (Arora et all 2017, Wieting and Gimpel, 2017; |Gan et al.)

3.2 Topic: Sentiment analysis

Sentiment analysis aims to determine the sentiment in pieces of text. It is practically important in many
scenarios such as product recommendation, and is also theoretically interesting since it connects computers,
text, and the elusive emotions of humans. Recent popular approaches of using word embeddings have known
drawbacks due to that many word embedding approaches lead to similar embeddings for antonyms. And
much of the effort is devoted to analyzing simple sentiment types, such as negative and positive, but little has
been achieved for fine grain sentiment types. Can one develop word embeddings more suitable for sentiment
analysis? How to analyze fine grain sentiment types?
Example work: (Socher et al.; [Mozetic et al.l 2016])

3.3 Topic: Image stylization

An interesting application of deep neural networks is to transform a given image to one in a certain artistic
style, like that of Vincent Willem van Gogh. Besides a demonstration of the power of deep networks and a
piece of amusing anecdote, it also gives potential hints to how the networks decompose the styles and other
content of the images, and even raises the far reaching question about whether computers can do creative
tasks instead of just intelligent tasks. Are such stylization simply by imposing learned stylized patterns onto
the original images, or involving something deeper? Besides styles, can one extract and transfer even more
abstract contents like sentiment types out from images?
Example work: (Luan et al.l [2017} |Gatys et al., [2015)
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