
Neural Network Part 5:

Unsupervised Models

Yingyu Liang

Computer Sciences 760

Fall 2017

http://pages.cs.wisc.edu/~yliang/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed

by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad

Hazan, Tom Dietterich, and Pedro Domingos.

Goals for the lecture

you should understand the following concepts

• autoencoder

• restricted Boltzmann machine (RBM)

• Nash equilibrium

• minimax game

• generative adversarial network (GAN)

2

Autoencoder

• Neural networks trained to attempt to copy its input to its output

• Contain two parts:
• Encoder: map the input to a hidden representation

• Decoder: map the hidden representation to the output

Autoencoder

ℎ

𝑥 𝑟

Hidden representation (the code)

ReconstructionInput

Autoencoder

ℎ

𝑥 𝑟

Decoder 𝑔(⋅)Encoder 𝑓(⋅)

ℎ = 𝑓 𝑥 , 𝑟 = 𝑔 ℎ = 𝑔(𝑓 𝑥)

Why want to copy input to output

• Not really care about copying

• Interesting case: NOT able to copy exactly but strive to do so

• Autoencoder forced to select which aspects to preserve and thus
hopefully can learn useful properties of the data

• Historical note: goes back to (LeCun, 1987; Bourlard and Kamp, 1988;
Hinton and Zemel, 1994).

Undercomplete autoencoder

• Constrain the code to have smaller dimension than the input

• Training: minimize a loss function

𝐿 𝑥, 𝑟 = 𝐿(𝑥, 𝑔 𝑓 𝑥)

ℎ𝑥 𝑟

Undercomplete autoencoder

• Constrain the code to have smaller dimension than the input

• Training: minimize a loss function

𝐿 𝑥, 𝑟 = 𝐿(𝑥, 𝑔 𝑓 𝑥)

• Special case: 𝑓, 𝑔 linear, 𝐿 mean square error

• Reduces to Principal Component Analysis

Undercomplete autoencoder

• What about nonlinear encoder and decoder?

• Capacity should not be too large

• Suppose given data 𝑥1, 𝑥2, … , 𝑥𝑛
• Encoder maps 𝑥𝑖 to 𝑖

• Decoder maps 𝑖 to 𝑥𝑖

• One dim ℎ suffices for perfect reconstruction

Regularization

• Typically NOT
• Keeping the encoder/decoder shallow or

• Using small code size

• Regularized autoencoders: add regularization term that encourages
the model to have other properties

• Sparsity of the representation (sparse autoencoder)

• Robustness to noise or to missing inputs (denoising autoencoder)

Sparse autoencoder

• Constrain the code to have sparsity

• Training: minimize a loss function
𝐿𝑅 = 𝐿(𝑥, 𝑔 𝑓 𝑥) + 𝑅(ℎ)

ℎ𝑥 𝑟

Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝(ℎ, 𝑥)

• MLE on 𝑥

log 𝑝(𝑥) = log

ℎ′

𝑝(ℎ′, 𝑥)

• Hard to sum over ℎ′

Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝(ℎ, 𝑥)

• MLE on 𝑥

max log 𝑝(𝑥) = max log

ℎ′

𝑝(ℎ′, 𝑥)

• Approximation: suppose ℎ = 𝑓(𝑥) gives the most likely hidden
representation, and σℎ′ 𝑝(ℎ

′, 𝑥) can be approximated by 𝑝(ℎ, 𝑥)

Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝(ℎ, 𝑥)

• Approximate MLE on 𝑥, ℎ = 𝑓(𝑥)

max log 𝑝(ℎ, 𝑥) = max log 𝑝(𝑥|ℎ) + log 𝑝(ℎ)

RegularizationLoss

Sparse autoencoder

• Constrain the code to have sparsity

• Laplacian prior: 𝑝 ℎ =
𝜆

2
exp(−

𝜆

2
ℎ 1)

• Training: minimize a loss function

𝐿𝑅 = 𝐿(𝑥, 𝑔 𝑓 𝑥) + 𝜆 ℎ 1

Denoising autoencoder

• Traditional autoencoder: encourage to learn 𝑔 𝑓 ⋅ to be identity

• Denoising : minimize a loss function

𝐿 𝑥, 𝑟 = 𝐿(𝑥, 𝑔 𝑓 𝑥)

where 𝑥 is 𝑥 + 𝑛𝑜𝑖𝑠𝑒

Boltzmann machine

• Introduced by Ackley et al. (1985)

• General “connectionist” approach to learning arbitrary probability
distributions over binary vectors

• Special case of energy model: 𝑝 𝑥 =
exp(−𝐸 𝑥)

𝑍

Boltzmann machine

• Energy model:

𝑝 𝑥 =
exp(−𝐸 𝑥)

𝑍
• Boltzmann machine: special case of energy model with

𝐸 𝑥 = −𝑥𝑇𝑈𝑥 − 𝑏𝑇𝑥

where 𝑈 is the weight matrix and 𝑏 is the bias parameter

Boltzmann machine with latent variables

• Some variables are not observed

𝑥 = 𝑥𝑣, 𝑥ℎ , 𝑥𝑣 visible, 𝑥ℎ hidden

𝐸 𝑥 = −𝑥𝑣
𝑇𝑅𝑥𝑣 − 𝑥𝑣

𝑇𝑊𝑥ℎ − 𝑥ℎ
𝑇𝑆𝑥ℎ − 𝑏𝑇𝑥𝑣 − 𝑐𝑇𝑥ℎ

• Universal approximator of probability mass functions

Maximum likelihood

• Suppose we are given data 𝑋 = 𝑥𝑣
1, 𝑥𝑣

2, … , 𝑥𝑣
𝑛

• Maximum likelihood is to maximize

log 𝑝 𝑋 =

𝑖

log 𝑝(𝑥𝑣
𝑖)

where

𝑝 𝑥𝑣 =

𝑥ℎ

𝑝(𝑥𝑣, 𝑥ℎ) =

𝑥ℎ

1

𝑍
exp(−𝐸(𝑥𝑣, 𝑥ℎ))

• 𝑍 = σexp(−𝐸(𝑥𝑣, 𝑥ℎ)): partition function, difficult to compute

Restricted Boltzmann machine

• Invented under the name harmonium (Smolensky, 1986)

• Popularized by Hinton and collaborators to Restricted Boltzmann
machine

Restricted Boltzmann machine

• Special case of Boltzmann machine with latent variables:

𝑝 𝑣, ℎ =
exp(−𝐸 𝑣, ℎ)

𝑍
where the energy function is

𝐸 𝑣, ℎ = −𝑣𝑇𝑊ℎ − 𝑏𝑇𝑣 − 𝑐𝑇ℎ

with the weight matrix 𝑊 and the bias 𝑏, 𝑐

• Partition function

𝑍 =

𝑣

ℎ

exp(−𝐸 𝑣, ℎ)

Restricted Boltzmann machine

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Restricted Boltzmann machine

• Conditional distribution is factorial

𝑝 ℎ|𝑣 =
𝑝(𝑣, ℎ)

𝑝(𝑣)
=ෑ

𝑗

𝑝(ℎ𝑗|𝑣)

and
𝑝 ℎ𝑗 = 1|𝑣 = 𝜎 𝑐𝑗 + 𝑣𝑇𝑊:,𝑗

is logistic function

Restricted Boltzmann machine

• Similarly,

𝑝 𝑣|ℎ =
𝑝(𝑣, ℎ)

𝑝(ℎ)
=ෑ

𝑖

𝑝(𝑣𝑖|ℎ)

and
𝑝 𝑣𝑖 = 1|ℎ = 𝜎 𝑏𝑖 +𝑊𝑖,:ℎ

is logistic function

Prisoners’ Dilemma

Two suspects in a major crime are held in separate cells. There is enough

evidence to convict each of them of a minor offense, but not enough evidence

to convict either of them of the major crime unless one of them acts as an

informer against the other (defects). If they both stay quiet, each will be

convicted of the minor offense and spend one year in prison. If one and only

one of them defects, she will be freed and used as a witness against the other,

who will spend four years in prison. If they both defect, each will spend three

years in prison.

Players: The two suspects.

Actions: Each player’s set of actions is {Quiet, Defect}.

Preferences: Suspect 1’s ordering of the action profiles, from best to worst, is

(Defect, Quiet) (he defects and suspect 2 remains quiet, so he is freed),

(Quiet, Quiet) (he gets one year in prison), (Defect, Defect) (he gets three

years in prison), (Quiet, Defect) (he gets four years in prison). Suspect 2’s

ordering is (Quiet, Defect), (Quiet, Quiet), (Defect, Defect), (Defect, Quiet).

3 represents best outcome, 0 worst, etc.

Nash Equilibrium

Thanks, Wikipedia.

Another Example

Thanks, Prof. Osborne of U. Toronto, Economics

Minimax with Simultaneous Moves

• maximin value: largest value player can be assured of

without knowing other player’s actions

• minimax value: smallest value other players can force

this player to receive without knowing this player’s action

• minimax is an upper bound on maximin

Key Result

• Utility: numeric reward for actions

• Game: 2 or more players take turns or take

simultaneous actions. Moves lead to states, states have

utilities.

• Game is like an optimization problem, but each player

tries to maximize own objective function (utility function)

• Zero-sum game: each player’s gain or loss in utility is

exactly balanced by others’

• In zero-sum game, Minimax solution is same as Nash

Equilibrium

Generative Adversarial Networks

• Approach: Set up zero-sum game between deep nets to

– Generator: Generate data that looks like training set

– Discriminator: Distinguish between real and

synthetic data

• Motivation:

– Building accurate generative models is hard (e.g.,

learning and sampling from Markov net or Bayes net)

– Want to use all our great progress on supervised

learners to do this unsupervised learning task better

– Deep nets may be our favorite supervised learner,

especially for image data, if nets are convolutional

(use tricks of sliding windows with parameter tying,

cross-entropy transfer function, batch normalization)

Does It Work?

Thanks, Ian Goodfellow, NIPS 2016 Tutorial on GANS, for this and most of

what follows…

A Bit More on GAN Algorithm

The Rest of the Details

• Use deep convolutional neural networks for

Discriminator D and Generator G

• Let x denote trainset and z denote random, uniform input

• Set up zero-sum game by giving D the following

objective, and G the negation of it:

• Let D and G compute their gradients simultaneously,

each make one step in direction of the gradient, and

repeat until neither can make progress… Minimax

Not So Fast

• While preceding version is theoretically elegant, in

practice the gradient for G vanishes before we reach

best practical solution

• While no longer true Minimax, use same objective for D

but change objective for G to:

• Sometimes better if instead of using one minibatch at a

time to compute gradient and do batch normalization, we

also have a fixed subset of training set, and use

combination of fixed subset and current minibatch

Comments on GANs

• Potentially can use our high-powered supervised learners to build
better, faster data generators (can they replace MCMC, etc.?)

• While some nice theory based on Nash Equilibria, better results in
practice if we move a bit away from the theory

• In general, many in ML community have strong concern that we
don’t really understand why deep learning works, including GANs

• Still much research into figuring out why this works better than
other generative approaches for some types of data, how we can
improve performance further, how to take these from image data
to other data types where CNNs might not be the most natural
deep network structure

