Homework 4:
 Written Exercise Part

1 Balls and Bins [25/3 pts]

Suppose we throw balls into n bins. Each ball is thrown independently and uniformly at random.
(1) [Birthday Paradox] Suppose we throw m balls. What is the probability that at least one bin has more than one balls? Write down the expression and then use the inequality $1-x \leq e^{-x}$ to give a lower bound.
Solution goes here.
(2) [Coupon Collecting] Let X denote the number of balls thrown until every bin has at least one ball. What is the expectation of X ? Express it using the harmonic number $H_{n}=\sum_{i=1}^{n} 1 / i$.
Solution goes here.

2 VC-dimension of Rectangles [25/3 pts]

What is the VC-dimension d of axis-parallel rectangles in R^{3} ? Specifically, a legal target function is specified by three intervals $\left[x_{\min }, x_{\max }\right],\left[y_{\min }, y_{\max }\right],\left[z_{\min }, z_{\max }\right]$, and classifies an example (x, y, z) as positive if and only if $x \in\left[x_{\min }, x_{\max }\right], y \in\left[y_{\min }, y_{\max }\right]$, and $z \in\left[z_{\min }, z_{\max }\right]$. Justify your answer. Solution goes here.

3 Mistake Bound Model [25/3 pts]

CNF is the class of Conjunctive Normal Form formulas in the form $C_{1} \wedge C_{2} \wedge \ldots$, where each clause C_{i} is in the form $L_{1} \vee L_{2} \ldots$, and each Boolean literal L_{i} is either a boolean feature x or its negation $\neg x$. k-CNF is the class of CNF in which each clause has size at most k. For example, $x_{4} \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{5}\right)$ is a 3-CNF. Give an algorithm to learn 3-CNF formulas over n boolean features in the mistake-bound model. Your algorithm should run in polynomial-time per example (so the "halving algorithm" is not allowed). How many mistakes does it make at most? (Hint: modify the FIND-S algorithm.)
Solution goes here.

4 Extra Credit: VC-dimension of Linear Separators [20 pts]

In this problem, you will prove that the VC-dimension of the class H_{n} of halfspaces (another term for linear threshold functions $f_{w, b}(x)=\operatorname{sign}\left(w^{\top} x+b\right)$) in n dimensions is $n+1$. We will use the following definition: The convex hull of a set of points S is the set of all convex combinations of points in S; this is the set of all points that can be written as $\sum_{x_{i} \in S} \lambda_{i} x_{i}$, where each $\lambda_{i} \geq 0$, and $\sum_{i} \lambda_{i}=1$. It is not hard to see that if a halfspace has all points from a set S on one side, then the entire convex hull of S must be on that side as well.
(a) [lower bound] Prove that VC- $\operatorname{dim}\left(H_{n}\right) \geq n+1$ by presenting a set of $n+1$ points in n-dimension space such that one can partition that set with halfspaces in all possible ways, i.e., the set of points are shattered by H_{n}. (And, show how one can partition the set in any desired way.)
(b) [upper bound part 1] The following is Radon's Theorem, from 1920's.

Theorem 1. Let S be a set of $n+2$ points in n dimensions. Then S can be partitioned into two (disjoint) subsets S_{1} and S_{2} whose convex hulls intersect.

Show that Radon's Theorem implies that the VC-dimension of halfspaces is at most $n+1$. Conclude that VC-dim $\left(H_{n}\right)=n+1$.
(c) [upper bound part 2] Now we prove Radon's Theorem. We will need the following standard fact from linear algebra. If x_{1}, \ldots, x_{n+1} are $n+1$ points in n-dimensional space, then they are linearly dependent. That is, there exist real values $\lambda_{1}, \ldots, \lambda_{n+1}$ not all zero such that $\lambda_{1} x_{1}+\ldots+\lambda_{n+1} x_{n+1}=0$. You may now prove Radon's Theorem however you wish. However, as a suggested first step, prove the following. For any set of $n+2$ points x_{1}, \ldots, x_{n+2} in n-dimensional space, there exist $\lambda_{1}, \ldots, \lambda_{n+2}$ not all zero such that $\sum_{i} \lambda_{i} x_{i}=0$ and $\sum_{i} \lambda_{i}=0$. (This is called affine dependence.)
Solution goes here.

