Homework 1:

Background Test

\gg NAME $\mathrm{HERE} \ll$

\gg ID HERE \ll

Minimum Background Test [80 pts]

1 Vectors and Matrices [20 pts]

Consider the matrix X and the vectors \mathbf{y} and \mathbf{z} below:

$$
X=\left(\begin{array}{ll}
9 & 8 \\
7 & 6
\end{array}\right) \quad \mathbf{y}=\binom{9}{8} \quad \mathbf{z}=\binom{7}{6}
$$

1. What is the inner product of the vectors \mathbf{y} and \mathbf{z} ? (this is also sometimes called the dot product, and is sometimes written as $\mathbf{y}^{T} \mathbf{z}$) Solution goes here.
2. What is the product $X \mathbf{y}$?

Solution goes here.
3. Is X invertible? If so, give the inverse, and if no, explain why not.

Solution goes here.
4. What is the rank of X ?

Solution goes here.

2 Calculus [20 pts]

1. If $y=4 x^{3}-x^{2}+7$ then what is the derivative of y with respect to x ?

Solution goes here.
2. If $y=\tan (z) x^{6 z}-\ln \left(\frac{7 x+z}{x^{4}}\right)$, what is the partial derivative of y with respect to x ?

Solution goes here.

3 Probability and Statistics [20 pts]

Consider a sample of data $S=\{0,1,1,0,0,1,1\}$ created by flipping a coin x seven times, where 0 denotes that the coin turned up heads and 1 denotes that it turned up tails.

1. What is the sample mean for this data?

Solution goes here.
2. What is the sample variance for this data?

Solution goes here.
3. What is the probability of observing this data, assuming it was generated by flipping a biased coin with $p(x=1)=0.7, p(x=0)=0.3$.
Solution goes here.
4. Note that the probability of this data sample would be greater if the value of $p(x=1)$ was not 0.7 , but instead some other value. What is the value that maximizes the probability of the sample S ? Please justify your answer.
Solution goes here.
5. Consider the following joint probability table where both A and B are binary random variables:

A	B	$P(A, B)$
0	0	0.1
0	1	0.4
1	0	0.2
1	1	0.3

(a) What is $P(A=0, B=0)$?

Solution goes here.
(b) What is $P(A=1)$?

Solution goes here.
(c) What is $P(A=0 \mid B=1)$?

Solution goes here.
(d) What is $P(A=0 \vee B=0)$?

Solution goes here.

4 Big-O Notation [20 pts]

For each pair (f, g) of functions below, list which of the following are true: $f(n)=O(g(n)), g(n)=O(f(n))$, both, or neither. Briefly justify your answers.

1. $f(n)=\frac{n}{2}, g(n)=\log _{2}(n)$.

Solution goes here.
2. $f(n)=\ln (n), g(n)=\log _{2}(n)$.

Solution goes here.
3. $f(n)=n^{100}, g(n)=100^{n}$.

Solution goes here.

Medium Background Test [20 pts]

5 Algorithm [5 pts]

Divide and Conquer: Assume that you are given a sorted array with n integers in the range $[-10,+10]$. Note that some integer values may appear multiple times in the array. Additionally, you are told that somewhere in the array the integer 0 appears exactly once. Provide an algorithm to locate the 0 which runs in $O(\log (n))$. Explain your algorithm in words, describe why the algorithm is correct, and justify its running time.

Solution goes here.

6 Probability and Random Variables [5 pts]

6.1 Probability

State true or false. Here Ω denotes the sample space and A^{c} denotes the complement of the event A.

1. For any $A, B \subseteq \Omega, P(A \mid B) P(B)=P(B \mid A) P(A)$.

Solution goes here.
2. For any $A, B \subseteq \Omega, P(A \cup B)=P(A)+P(B)-P(A \mid B)$.

Solution goes here.
3. For any $A, B, C \subseteq \Omega$ such that $P(B \cup C)>0, \frac{P(A \cup B \cup C)}{P(B \cup C)} \geq P(A \mid B \cup C) P(B \cup C)$.

Solution goes here.
4. For any $A, B \subseteq \Omega$ such that $P(B)>0, P\left(A^{c}\right)>0, P\left(B \mid A^{C}\right)+P(B \mid A)=1$.

Solution goes here.
5. For any n events $\left\{A_{i}\right\}_{i=1}^{n}$, if $P\left(\bigcap_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$, then $\left\{A_{i}\right\}_{i=1}^{n}$ are mutually independent. Solution goes here.

6.2 Discrete and Continuous Distributions

Match the distribution name to its probability density / mass function. Below, $|\boldsymbol{x}|=k$.
(f) $f(\boldsymbol{x} ; \boldsymbol{\Sigma}, \boldsymbol{\mu})=\frac{1}{\sqrt{(2 \pi)^{k} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$
(g) $f(x ; n, \alpha)=\binom{n}{x} \alpha^{x}(1-\alpha)^{n-x}$ for $x \in\{0, \ldots, n\} ; 0$ otherwise
(a) Laplace Solution goes here.
(h) $f(x ; b, \mu)=\frac{1}{2 b} \exp \left(-\frac{|x-\mu|}{b}\right)$
(b) Multinomial Solution here.
(i) $f(\boldsymbol{x} ; n, \boldsymbol{\alpha})=\frac{n!}{\Pi_{i=1}^{k} x_{i}!} \Pi_{i=1}^{k} \alpha_{i}^{x_{i}}$ for $x_{i} \in\{0, \ldots, n\}$ and
(c) Poisson Solution goes here. $\sum_{i=1}^{k} x_{i}=n ; 0$ otherwise
(d) Dirichlet Solution goes here.(j)
$f(x ; \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$ for $x \in(0,+\infty) ; 0$ oth-
(e) Gamma Solution goes here. erwise
(k) $f(\boldsymbol{x} ; \boldsymbol{\alpha})=\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{k} x_{i}^{\alpha_{i}-1}$ for $x_{i} \in(0,1)$ and $\sum_{i=1}^{k} x_{i}=1 ; 0$ otherwise
(l) $f(x ; \lambda)=\lambda^{x} \frac{e^{-\lambda}}{x!}$ for all $x \in Z^{+} ; 0$ otherwise

6.3 Mean and Variance

1. Consider a random variable which follows a Binomial distribution: $X \sim \operatorname{Binomial}(n, p)$.
(a) What is the mean of the random variable?

Solution goes here.
(b) What is the variance of the random variable?

Solution goes here.
2. Let X be a random variable and $\mathbb{E}[X]=1, \operatorname{Var}(X)=1$. Compute the following values:
(a) $\mathbb{E}[3 X]$

Solution goes here.
(b) $\operatorname{Var}(3 X)$

Solution goes here.
(c) $\operatorname{Var}(X+3)$

Solution goes here.

6.4 Mutual and Conditional Independence

1. If X and Y are independent random variables, show that $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.

Solution goes here.
2. If X and Y are independent random variables, show that $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$. Hint: $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+2 \operatorname{Cov}(X, Y)+\operatorname{Var}(Y)$
Solution goes here.
3. If we roll two dice that behave independently of each other, will the result of the first die tell us something about the result of the second die?
Solution goes here.
If, however, the first die's result is a 1 , and someone tells you about a third event - that the sum of the two results is even - then given this information is the result of the second die independent of the first die?
Solution goes here.

6.5 Law of Large Numbers and the Central Limit Theorem

Provide one line justifications.

1. Suppose we simultaneously flip two independent fair coins (i.e., the probability of heads is $1 / 2$ for each coin) and record the result. After 40,000 repetitions, the number of times the result was two heads is close to 10,000 . (Hint: calculate how close.)
Solution goes here.
2. Let $X_{i} \sim \mathcal{N}(0,1)$ and $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, then the distribution of \bar{X} satisfies

$$
\sqrt{n} \bar{X} \xrightarrow{n \rightarrow \infty} \mathcal{N}(0,1)
$$

Solution goes here

7 Linear algebra [5 pts]

7.1 Norm-enclature

Draw the regions corresponding to vectors $\mathbf{x} \in \mathbb{R}^{2}$ with the following norms:

1. $\|\mathbf{x}\|_{1} \leq 1$ (Recall that $\left.\|\mathbf{x}\|_{1}=\sum_{i}\left|x_{i}\right|\right)$
2. $\|\mathbf{x}\|_{2} \leq 1$ (Recall that $\|\mathbf{x}\|_{2}=\sqrt{\sum_{i} x_{i}^{2}}$)
3. $\|\mathbf{x}\|_{\infty} \leq 1$ (Recall that $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$)

Solution figure goes here

7.2 Geometry

Prove that these are true or false. Provide all steps.

1. The smallest Euclidean distance from the origin to some point \mathbf{x} in the hyperplane $\mathbf{w}^{T} \mathbf{x}+b=0$ is $\frac{|b|}{\|\mathbf{w}\|_{2}}$. Solution goes here.
2. The Euclidean distance between two parallel hyperplane $\mathbf{w}^{T} \mathbf{x}+b_{1}=0$ and $\mathbf{w}^{T} \mathbf{x}+b_{2}=0$ is $\frac{\left|b_{1}-b_{2}\right|}{\|\mathbf{w}\|_{2}}$ (Hint: you can use the result from the last question to help you prove this one).
Solution goes here.

8 Programming Skills [5pts]

Sampling from a distribution. For each question, submit a scatter plot (you will have 5 plots in total). Make sure the axes for all plots have the same limits. (Hint: You can save the figure as a pdf, and then use includegraphics to include the pdf in your latex file. Suggest to use Python or Matlab.)

1. Draw 100 samples $\mathbf{x}=\left[x_{1}, x_{2}\right]^{T}$ from a 2-dimensional Gaussian distribution with mean $(0,0)^{T}$ and identity covariance matrix, i.e., $p(\mathbf{x})=\frac{1}{2 \pi} \exp \left(-\frac{\|\mathbf{x}\|^{2}}{2}\right)$, and make a scatter plot (x_{1} vs. x_{2}). For each question below, make each change separately to this distribution.
Solution figure goes here.
2. Make a scatter plot with a changed mean of $(1,-1)^{T}$.

Solution figure goes here.
3. Make a scatter plot with a changed covariance matrix of $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$.

Solution figure goes here.
4. Make a scatter plot with a changed covariance matrix of $\left(\begin{array}{cc}2 & 0.2 \\ 0.2 & 2\end{array}\right)$.

Solution figure goes here.
5. Make a scatter plot with a changed covariance matrix of $\left(\begin{array}{cc}2 & -0.2 \\ -0.2 & 2\end{array}\right)$.

Solution figure goes here.

