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tWe 
ompare dis
riminative and generative learning as typi�ed bylogisti
 regression and naive Bayes. We show, 
ontrary to a widely-held belief that dis
riminative 
lassi�ers are almost always to bepreferred, that there 
an often be two distin
t regimes of per-forman
e as the training set size is in
reased, one in whi
h ea
halgorithm does better. This stems from the observation|whi
his borne out in repeated experiments|that while dis
riminativelearning has lower asymptoti
 error, a generative 
lassi�er may alsoapproa
h its (higher) asymptoti
 error mu
h faster.1 Introdu
tionGenerative 
lassi�ers learn a model of the joint probability, p(x; y), of the inputs xand the label y, and make their predi
tions by using Bayes rules to 
al
ulate p(yjx),and then pi
king the most likely label y. Dis
riminative 
lassi�ers model the pos-terior p(yjx) dire
tly, or learn a dire
t map from inputs x to the 
lass labels. Thereare several 
ompelling reasons for using dis
riminative rather than generative 
las-si�ers, one of whi
h, su

in
tly arti
ulated by Vapnik [6℄, is that \one should solvethe [
lassi�
ation℄ problem dire
tly and never solve a more general problem as anintermediate step [su
h as modeling p(xjy)℄." Indeed, leaving aside 
omputationalissues and matters su
h as handling missing data, the prevailing 
onsensus seemsto be that dis
riminative 
lassi�ers are almost always to be preferred to generativeones.Another pie
e of prevailing folk wisdom is that the number of examples needed to�t a model is often roughly linear in the number of free parameters of a model.This has its theoreti
al basis in the observation that for \many" models, the VCdimension is roughly linear or at most some low-order polynomial in the numberof parameters (see, e.g., [1, 3℄), and it is known that sample 
omplexity in thedis
riminative setting is linear in the VC dimension [6℄.In this paper, we study empiri
ally and theoreti
ally the extent to whi
h thesebeliefs are true. A parametri
 family of probabilisti
 models p(x; y) 
an be �t eitherto optimize the joint likelihood of the inputs and the labels, or �t to optimize the
onditional likelihood p(yjx), or even �t to minimize the 0-1 training error obtained



by thresholding p(yjx) to make predi
tions. Given a 
lassi�er hGen �t a

ordingto the �rst 
riterion, and a model hDis �t a

ording to either the se
ond or thethird 
riterion (using the same parametri
 family of models), we 
all hGen andhDis a Generative-Dis
riminative pair. For example, if p(xjy) is Gaussian and p(y)is multinomial, then the 
orresponding Generative-Dis
riminative pair is NormalDis
riminant Analysis and logisti
 regression. Similarly, for the 
ase of dis
reteinputs it is also well known that the naive Bayes 
lassi�er and logisti
 regressionform a Generative-Dis
riminative pair [4, 5℄.To 
ompare generative and dis
riminative learning, it seems natural to fo
us onsu
h pairs. In this paper, we 
onsider the naive Bayes model (for both dis
rete and
ontinuous inputs) and its dis
riminative analog, logisti
 regression/linear 
lassi�-
ation, and show: (a) The generative model does indeed have a higher asymptoti
error (as the number of training examples be
omes large) than the dis
riminativemodel, but (b) The generative model may also approa
h its asymptoti
 error mu
hfaster than the dis
riminative model|possibly with a number of training examplesthat is only logarithmi
, rather than linear, in the number of parameters. Thissuggests|and our empiri
al results strongly support|that, as the number of train-ing examples is in
reased, there 
an be two distin
t regimes of performan
e, the�rst in whi
h the generative model has already approa
hed its asymptoti
 error andis thus doing better, and the se
ond in whi
h the dis
riminative model approa
hesits lower asymptoti
 error and does better.2 PreliminariesWe 
onsider a binary 
lassi�
ation task, and begin with the 
ase of dis
rete data.Let X = f0; 1gn be the n-dimensional input spa
e, where we have assumed binaryinputs for simpli
ity (the generalization o�ering no diÆ
ulties). Let the outputlabels be Y = fT; Fg, and let there be a joint distribution D over X �Y from whi
ha training set S = fx(i); y(i)gmi=1 of m iid examples is drawn. The generative naiveBayes 
lassi�er uses S to 
al
ulate estimates p̂(xijy) and p̂(y) of the probabilitiesp(xijy) and p(y), as follows:p̂(xi = 1jy = b) = #Sfxi=1;y=bg+l#Sfy=bg+2l (1)(and similarly for p̂(y = b),) where #Sf�g 
ounts the number of o

urren
es of anevent in the training set S. Here, setting l = 0 
orresponds to taking the empiri
alestimates of the probabilities, and l is more traditionally set to a positive value su
has 1, whi
h 
orresponds to using Lapla
e smoothing of the probabilities. To 
lassifya test example x, the naive Bayes 
lassi�er hGen : X 7! Y predi
ts hGen(x) = T ifand only if the following quantity is positive:lGen(x) = log (Qni=1 p̂(xijy = T ))p̂(y = T )(Qni=1 p̂(xijy = F ))p̂(y = F ) = nXi=1 log p̂(xijy = T )p̂(xijy = F ) + log p̂(y = T )p̂(y = F ) : (2)In the 
ase of 
ontinuous inputs, almost everything remains the same, ex
ept thatwe now assume X = [0; 1℄n, and let p̂(xijy = b) be parameterized as a univariateGaussian distribution with parameters �̂ijy=b and �̂2i (note that the �̂'s, but notthe �̂'s, depend on y). The parameters are �t via maximum likelihood, so forexample �̂ijy=b is the empiri
al mean of the i-th 
oordinate of all the examples inthe training set with label y = b. Note that this method is also equivalent to NormalDis
riminant Analysis assuming diagonal 
ovarian
e matri
es. In the sequel, we alsolet �ijy=b = E[xijy = b℄ and �2i = Ey[Var(xijy)℄ be the \true" means and varian
es(regardless of whether the data are Gaussian or not).In both the dis
rete and the 
ontinuous 
ases, it is well known that the dis
rimina-tive analog of naive Bayes is logisti
 regression. This model has parameters [�; �℄,and posits that p(y = T jx;�; �) = 1=(1+ exp(��Tx� �)). Given a test example x,



the dis
riminative logisti
 regression 
lassi�er hDis : X 7! Y predi
ts hDis(x) = T ifand only if the linear dis
riminant fun
tionlDis(x) =Pni=1 �ixi + � (3)is positive. Being a dis
riminative model, the parameters [�; �℄ 
an be �t either tomaximize the 
onditional likelikood on the training setPni=1 log p(y(i)jx(i);�; �), orto minimize 0-1 training errorPni=1 1fhDis(x(i)) 6= y(i)g, where 1f�g is the indi
atorfun
tion (1fTrueg = 1; 1fFalseg = 0). Insofar as the error metri
 is 0-1 
lassi�
ationerror, we view the latter alternative as being more truly in the \spirit" of dis
rim-inative learning, though the former is also frequently used as a 
omputationallyeÆ
ient approximation to the latter. In this paper, we will largely ignore the di�er-en
e between these two versions of dis
riminative learning and, with some abuse ofterminology, will loosely use the term \logisti
 regression" to refer to either, thoughour formal analyses will fo
us on the latter method.Finally, let H be the family of all linear 
lassi�ers (maps from X to Y); and given a
lassi�er h : X 7! Y , de�ne its generalization error to be "(h) = Pr(x;y)�D[h(x) 6= y℄.3 Analysis of algorithmsWhen D is su
h that the two 
lasses are far from linearly separable, neither logisti
regression nor naive Bayes 
an possibly do well, sin
e both are linear 
lassi�ers.Thus, to obtain non-trivial results, it is most interesting to 
ompare the performan
eof these algorithms to their asymptoti
 errors (
f. the agnosti
 learning setting).More pre
isely, let hGen;1 be the population version of the naive Bayes 
lassi�er; i.e.hGen;1 is the naive Bayes 
lassi�er with parameters p̂(xjy) = p(xjy); p̂(y) = p(y).Similarly, let hDis;1 be the population version of logisti
 regression. The followingtwo propositions are then 
ompletely straightforward.Proposition 1 Let hGen and hDis be any generative-dis
riminative pair of 
las-si�ers, and hGen;1 and hDis;1 be their asymptoti
/population versions. Then1"(hDis;1) � "(hGen;1).Proposition 2 Let hDis be logisti
 regression in n-dimensions. Then with highprobability "(hDis) � "(hDis;1) +O �p nm log mn �Thus, for "(hDis) � "(hDis;1)+�0 to hold with high probability (here, �0 > 0 is some�xed 
onstant), it suÆ
es to pi
k m = 
(n).Proposition 1 states that aymptoti
ally, the error of the dis
riminative logisti
 re-gression is smaller than that of the generative naive Bayes. This is easily shownby observing that, sin
e "(hDis) 
onverges to infh2H "(h) (where H is the 
lass ofall linear 
lassi�ers), it must therefore be asymptoti
ally no worse than the linear
lassi�er pi
ked by naive Bayes. This proposition also provides a basis for whatseems to be the widely held belief that dis
riminative 
lassi�ers are better thangenerative ones.Proposition 2 is another standard result, and is a straightforward appli
ation ofVapnik's uniform 
onvergen
e bounds to logisti
 regression, and using the fa
t thatH has VC dimension n. The se
ond part of the proposition states that the sample
omplexity of dis
riminative learning|that is, the number of examples needed toapproa
h the asymptoti
 error|is at most on the order of n. Note that the worst
ase sample 
omplexity is also lower-bounded by order n [6℄.1Under a te
hni
al assumption (that is true for most 
lassi�ers, in
luding logisti
 re-gression) that the family of possible 
lassi�ers hDis (in the 
ase of logisti
 regression, thisis H) has �nite VC dimension.



The pi
ture for dis
riminative learning is thus fairly well-understood: The error
onverges to that of the best linear 
lassi�er, and 
onvergen
e o

urs after on theorder of n examples. How about generative learning, spe
i�
ally the 
ase of thenaive Bayes 
lassi�er? We begin with the following lemma.Lemma 3 Let any �1; Æ > 0 and any l � 0 be �xed. Assume that for some �xed�0 > 0, we have that �0 � p(y = T ) � 1� �0. Let m = O �(1=�21) log(n=Æ)�. Thenwith probability at least 1� Æ:1. In 
ase of dis
rete inputs, jp̂(xijy = b) � p(xijy = b)j � �1 and jp̂(y =b)� p(y = b)j � �1, for all i = 1; : : : ; n and b 2 Y.2. In the 
ase of 
ontinuous inputs, j�̂ijy=b � �ijy=bj � �1, j�̂2i � �2i j � �1, andjp̂(y = b)� p(y = b)j � �1 for all i = 1; : : : ; n and b 2 Y.Proof (sket
h). Consider the dis
rete 
ase, and let l = 0 for now. Let �1 � �0=2.By the Cherno� bound, with probability at least 1 � Æ1 = 1 � 2 exp(�2�21m), thefra
tion of positive examples will be within �1 of p(y = T ), whi
h implies jp̂(y =b) � p(y = b)j � �1, and we have at least 
m positive and 
m negative examples,where 
 = �0 � �1 = 
(1). So by the Cherno� bound again, for spe
i�
 i, b, the
han
e that jp̂(xijy = b)� p(xijy = b)j > �1 is at most Æ2 = 2 exp(�2�21
m). Sin
ethere are 2n su
h probabilities, the overall 
han
e of error, by the Union bound, isat most Æ1 +2nÆ2. Substituting in Æ1 and Æ2's de�nitions, we see that to guaranteeÆ1+2nÆ2 � Æ, it suÆ
es that m is as stated. Lastly, smoothing (l > 0) adds at mosta small, O(1=m) perturbation to these probabilities, and using the same argumentas above with (say) �1=2 instead of �1, and arguing that this O(1=m) perturbationis at most �1=2 (whi
h it is as m is at least order 1=�21), again gives the result. Theresult for the 
ontinuous 
ase is proved similarly using a Cherno�-bounds basedargument (and the assumption that xi 2 [0; 1℄). �Thus, with a number of samples that is only logarithmi
, rather than linear, in n, theparameters of the generative 
lassi�er hGen are uniformly 
lose to their asymptoti
values in hGen;1. Is is tempting to 
on
lude therefore that "(hGen), the error of thegenerative naive Bayes 
lassi�er, also 
onverges to its asymptoti
 value of "(hGen;1)after this many examples, implying only O(logn) examples are required to �t anaive Bayes model. We will shortly establish some simple 
onditions under whi
hthis intuition is indeed 
orre
t. Note that this implies that, even though naive Bayes
onverges to a higher asymptoti
 error of "(hGen;1) 
ompared to logisti
 regression's"(hDis;1), it may also approa
h it signi�
antly faster|after O(logn), rather thanO(n), training examples.One way of showing "(hGen) approa
hes "(hGen;1) is by showing that the parame-ters' 
onvergen
e implies that hGen is very likely to make the same predi
tions ashGen;1. Re
all hGen makes its predi
tions by thresholding the dis
riminant fun
-tion lGen de�ned in (2). Let lGen;1 be the 
orresponding dis
riminant fun
tionused by hGen;1. On every example on whi
h both lGen and lGen;1 fall on the sameside of zero, hGen and hGen;1 will make the same predi
tion. Moreover, as long aslGen;1(x) is, with fairly high probability, far from zero, then lGen(x), being a smallperturbation of lGen;1(x), will also be usually on the same side of zero as lGen;1(x).Theorem 4 De�ne G(�) = Pr(x;y)�D[(lGen;1(x) 2 [0; �n℄ ^ y = T ) _ (lGen;1(x) 2[��n; 0℄ ^ y = F )℄. Assume that for some �xed �0 > 0, we have �0 � p(y = T ) �1 � �0, and that either �0 � p(xi = 1jy = b) � 1 � �0 for all i; b (in the 
ase ofdis
rete inputs), or �2i � �0 (in the 
ontinuous 
ase). Then with high probability,"(hGen) � "(hGen;1) +G�O �q 1m logn�� : (4)Proof (sket
h). "(hGen) � "(hGen;1) is upperbounded by the 
han
e thathGen;1 
orre
tly 
lassi�es a randomly 
hosen example, but hGen mis
lassi�es it.



Lemma 3 ensures that, with high probability, all the parameters of hGen are withinO(p(logn)=m) of those of hGen;1. This in turn implies that every one of the n+1terms in the sum in lGen (as in Equation 2) is within O(p(logn)=m) of the 
orre-sponding term in lGen;1, and hen
e that jlGen(x)� lGen;1(x)j � O(np(logn)=m).Letting � = O(p(logn)=m), we therefore see that it is possible for hGen;1 to be 
or-re
t and hGen to be wrong on an example (x; y) only if y = T and lGen;1(x) 2 [0; �n℄(so that it is possible that lGen;1(x) � 0, lGen(x) � 0), or if y = F andlGen;1(x) 2 [��n; 0℄. The probability of this is exa
tly G(�), whi
h therefore up-perbounds "(hGen)� "(hGen;1). �The key quantity in the Theorem is the G(�), whi
h must be small when � issmall in order for the bound to be non-trivial. Note G(�) is upper-bounded byPrx[lGen;1(x) 2 [��n; �n℄℄|the 
han
e that lGen;1(x) (a random variable whosedistribution is indu
ed by x � D) falls near zero. To gain intuition about the s
alingof these random variables, 
onsider the following:Proposition 5 Suppose that, for at least an 
(1) fra
tion of the features i (i =1; : : : ; n), it holds true that jp(xi = 1jy = T ) � p(xi = 1jy = F )j � 
 for some�xed 
 > 0 (or j�ijy=T � �ijy=F j � 
 in the 
ase of 
ontinuous inputs). ThenE[lGen;1(x)jy = T ℄ = 
(n), and �E[lGen;1(x)jy = F ℄ = 
(n).Thus, as long as the 
lass label gives information about an 
(1) fra
tion of thefeatures (or less formally, as long as most of the features are \relevant" to the 
lasslabel), the expe
ted value of jlGen;1(x)j will be 
(n). The proposition is easilyproved by showing that, 
onditioned on (say) the event y = T , ea
h of the termsin the summation in lGen;1(x) (as in Equation (2), but with p̂'s repla
ed by p's)has non-negative expe
tation (by non-negativity of KL-divergen
e), and moreoveran 
(1) fra
tion of them have expe
tation bounded away from zero.Proposition 5 guarantees that jlGen;1(x)j has large expe
tation, though what wewant in order to bound G is a
tually slightly stronger, namely that the randomvariable jlGen;1(x)j further be large/far from zero with high probability. Thereare several ways of deriving suÆ
ient 
onditions for ensuring that G is small. Oneway of obtaining a loose bound is via the Chebyshev inequality. For the rest ofthis dis
ussion, let us for simpli
ity impli
itly 
ondition on the event that a testexample x has label T . The Chebyshev inequality implies that Pr[lGen;1(x) �E[lGen;1(x)℄ � t℄ � Var(lGen;1(x))=t2. Now, lGen;1(x) is the sum of n randomvariables (ignoring the term involving the priors p(y)). If (still 
onditioned on y),these n random variables are independent (i.e. if the \naive Bayes assumption,"that the xi's are 
onditionally independent given y, holds), then its varian
e is O(n);even if the n random variables were not 
ompletely independent, the varian
e maystill be not mu
h larger than O(n) (and may even be smaller, depending on thesigns of the 
orrelations), and is at most O(n2). So, if E[lGen;1(x)jy = T ℄ = �n (aswould be guaranteed by Proposition 5) for some � > 0, by setting t = (� � �)n,Chebyshev's inequality gives Pr[lGen;1(x) � �n℄ � O(1=(�� �)2n�) (� < �), where� = 0 in the worst 
ase, and � = 1 in the independent 
ase. This thus givesa bound for G(�), but note that it will frequently be very loose. Indeed, in theunrealisti
 
ase in whi
h the naive Bayes assumption really holds, we 
an obtainthe mu
h stronger (via the Cherno� bound) G(�) � exp(�O((� � �)2n)), whi
h isexponentially small in n. In the 
ontinuous 
ase, if lGen;1(x) has a density that,within some small interval [��n; �n℄, is uniformly bounded by O(1=n), then we alsohave G(�) = O(�). In any 
ase, we also have the following Corollary to Theorem 4.Corollary 6 Let the 
onditions of Theorem 4 hold, and suppose that G(�) � �0=2+F (�) for some fun
tion F (�) (independent of n) that satis�es F (�) ! 0 as � ! 0,and some �xed �0 > 0. Then for "(hGen) � "(hGen;1) + �0 to hold with high
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Figure 1: Results of 15 experiments on datasets from the UCI Ma
hine Learningrepository. Plots are of generalization error vs. m (averaged over 1000 randomtrain/test splits). Dashed line is logisti
 regression; solid line is naive Bayes.



probability, it suÆ
es to pi
k m = 
(logn).Note that the previous dis
ussion implies that the pre
onditions of the Corollarydo indeed hold in the 
ase that the naive Bayes (and Proposition 5's) assumptionholds, for any 
onstant �0 so long as n is large enough that �0 � exp(�O(�2n))(and similarly for the bounded Var(lGen;1(x)) 
ase, with the more restri
tive �0 �O(1=(�2n�))). This also means that either of these (the latter also requiring � > 0)is a suÆ
ient 
ondition for the asymptoti
 sample 
omplexity to be O(logn).4 ExperimentsThe results of the previous se
tion imply that even though the dis
riminative logis-ti
 regression algorithm has a lower asymptoti
 error, the generative naive Bayes
lassi�er may also 
onverge more qui
kly to its (higher) asymptoti
 error. Thus, asthe number of training examples m is in
reased, one would expe
t generative naiveBayes to initially do better, but for dis
riminative logisti
 regression to eventually
at
h up to, and quite likely overtake, the performan
e of naive Bayes.To test these predi
tions, we performed experiments on 15 datasets, 8 with 
ontin-uous inputs, 7 with dis
rete inputs, from the UCI Ma
hine Learning repository.2The results of these experiments are shown in Figure 1. We �nd that the theoreti
alpredi
tions are borne out surprisingly well. There are a few 
ases in whi
h logisti
regression's performan
e did not 
at
h up to that of naive Bayes, but this is observedprimarily in parti
ularly small datasets in whi
h m presumably 
annot grow largeenough for us to observe the expe
ted dominan
e of logisti
 regression in the largem limit.5 Dis
ussionEfron [2℄ also analyzed logisti
 regression and Normal Dis
riminant Analysis (for
ontinuous inputs), and 
on
luded that the former was only asymptoti
ally veryslightly (1/3{1/2 times) less statisti
ally eÆ
ient. This is in marked 
ontrast to ourresults, and one key di�eren
e is that, rather than assuming P (xjy) is Gaussian witha diagonal 
ovarian
e matrix (as we did), Efron 
onsidered the 
ase where P (xjy) ismodeled as Gaussian with a full 
onvarian
e matrix. In this setting, the estimated
ovarian
e matrix is singular if we have fewer than linear in n training examples, soit is no surprise that Normal Dis
riminant Analysis 
annot learn mu
h faster thanlogisti
 regression here. A se
ond important di�eren
e is that Efron 
onsideredonly the spe
ial 
ase in whi
h the P (xjy) is truly Gaussian. Su
h an asymptoti

omparison is not very useful in the general 
ase, sin
e the only possible 
on
lu-sion, if "(hDis;1) < "(hGen;1), is that logisti
 regression is the superior algorithm.In 
ontrast, as we saw previously, it is in the non-asymptoti
 
ase that the mostinteresting \two-regime" behavior is observed.Pra
ti
al 
lassi�
ation algorithms generally involve some form of regularization|inparti
ular logisti
 regression 
an often be improved upon in pra
ti
e by te
hniques2To maximize the 
onsisten
y with the theoreti
al dis
ussion, these experiments avoideddis
rete/
ontinuous hybrids by 
onsidering only the dis
rete or only the 
ontinuous-valuedinputs for a dataset where ne
essary. Train/test splits were random subje
t to there beingat least one example of ea
h 
lass in the training set, and 
ontinuous-valued inputs were alsores
aled to [0; 1℄ if ne
essary. In the 
ase of linearly separable datasets, logisti
 regressionmakes no distin
tion between the many possible separating planes. In this setting we usedan MCMC sampler to pi
k a 
lassi�er randomly from them (i.e., so the errors reportedare empiri
al averages over the separating hyperplanes). Our implementation of NormalDis
riminant Analysis also used the (standard) tri
k of adding � to the diagonal of the
ovarian
e matrix to ensure invertibility, and for naive Bayes we used l = 1.



su
h as shrinking the parameters via an L1 
onstraint, imposing a margin 
onstraintin the separable 
ase, or various forms of averaging. Su
h regularization te
hniques
an be viewed as 
hanging the model family, however, and as su
h they are largelyorthogonal to the analysis in this paper, whi
h is based on examining parti
ularly
lear 
ases of Generative-Dis
riminative model pairings. By developing a 
learerunderstanding of the 
onditions under whi
h pure generative and dis
riminativeapproa
hes are most su

essful, we should be better able to design hybrid 
lassi�ersthat enjoy the best properties of either a
ross a wider range of 
onditions.Finally, while our dis
ussion has fo
used on naive Bayes and logisti
 regression, it isstraightforward to extend the analyses to several other models, in
luding generative-dis
riminative pairs generated by using a �xed-stru
ture, bounded fan-in Bayesiannetwork model for P (xjy) (of whi
h naive Bayes is a spe
ial 
ase).A
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