

Goals for the lecture

you should understand the following concepts
 regularization
- different views of regularization
* norm constraint
» data augmentation
 early stopping
» dropout
* batch normalization

What Is regularization?

* In general: any method to prevent overfitting or help the
optimization

 Specifically: additional terms in the training optimization
objective to prevent overfitting or help the optimization

Example: regression using polynomials @

t =sin(2mx) + €

Figure from Machine Learning
1 and Pattern Recognition, Bish

Example: regression using polynomials @

ERrvs

05}

0

—6— Training
—S— Test

0 3

Figure from Machine Learning
and Pattern Recognition, Bishe

Overfitting

« Key: empirical loss and expected loss are different

« Smaller the data set, larger the difference between the two

 Larger the hypothesis class, easier to find a hypothesis that fits
the difference between the two
* Thus has small training error but large test error (overfitting)

 Larger data set helps
* Throwing away useless hypotheses also helps (regularization)

Different views of regularization

Reqgularization as hard constraint

* Training objective .
- 1
i L(f) = EZ L(fxi,¥:)
L=

subjectto: f € H

* When parametrized .
. 1
min L(O) = Ez [(8,x;,y;)
i=1

subject to: 6 € (2

Reqgularization as hard constraint
* When (2 measured by some quantity R
X 1%
min L(6) = 52 L(6,x;,¥;)
=1
subjectto: R(0) <r

« Example: [, regularization

subject to: ||8]|5 < r?

Reqgularization as soft constraint

» The hard-constraint optimization is equivalent to soft-constraint

n
) 1
min Ly (6) = i 16, x;,y:) + A"R(6)

=1
for some regularization parameter A* > 0

« Example: [, regularization

n
- 1
méi)n Lr(0) = EZ 1(6,x;,y;) + 211015
i=1

Reqgularization as soft constraint

« Showed by Lagrangian multiplier method

L£(6,1) :==L(6) + A[R(O) — 1]
» Suppose 6" is the optimal for hard-constraint optimization

0* = argmin max £(6,1) == L(6) + A[R(O) — 1]
0 =
e Suppose A" is the corresponding optimal for max

6* = argmin £(6,1%) = L(6) + A*[R(6) — 1]
0

Reqgularization as Bayesian prior

« Bayesian view: everything is a distribution

* Prior over the hypotheses: p(60)

* Posterior over the hypotheses: p(6 | {x;, v;})
e Likelihood: p({x;, y;}10)

e Bayesian rule:

0 i»Ji 6
p(O | {xi,y:}) :p()p(xi, yi316)

p({xi, ¥i})

Reqgularization as Bayesian prior

« Bayesian rule:
p(0)p({x;, ¥:316)

p({xi, ¥i})

p(0 | {x;,yi}) =

« Maximum A Posteriori (MAP):
max logp(6 | {x; y;}) = max logp(6) + logp({x;,y:} | 6)

\ J \ J
| |

Regularization MLE loss

Reqgularization as Bayesian prior

« Example: [, loss with [, regularization

n
R 1
min Lr(6) = EE(fH(xi) —y)* + 2°10]15
i=1

 Correspond to a normal likelihood p(x,y |) and a normal prior
p(6)

Three views

* Typical choice for optimization: soft-constraint

min Lr(8) = L(6) + AR(6)

« Hard constraint and Bayesian view: conceptual; or used for
derivation

Three views

» Hard-constraint preferred if
« Know the explicit bound R(6) < r

 Soft-constraint causes trapped in a local minima while projection back
to feasible set leads to stability

« Bayesian view preferred if
« Domain knowledge easy to represent as a prior

Examples of Reqgularization

Classical regularization

* Norm penalty
* [, regularization
* [; regularization

* Robustness to noise
* Noise to the input
* Noise to the weights

[, regularization
T oe) =] u 2
min Lp(8) = L(6) +§||9||2

« Effect on (stochastic) gradient descent
- Effect on the optimal solution

Effect on gradient descent

 Gradient of regularized objective
VLr(8) = VL(6) + ab
« Gradient descent update
0 —0—nVLis(0) =0 —nVL(O) —nad = (1 —na)d —n VL(O)
« Terminology: weight decay

Effect on the optimal solution

« Consider a quadratic approximation around 6°

L) = L(O") + (0 —-0)TVL(6Y) +%(9 —0)TH(6 — 6%)

« Since 6" is optimal, VL(6*) = 0
~ ~ 1
L(6) =~ L(6*) + 5(9 —09)TH(O — 6%)

VL(6) ~ H(B —6%)

Effect on the optimal solution

 Gradient of regularized objective

VL,(6) ~ H(6@ — 6*) + ab
* On the optimal 6,

0=VLg(0;) =~ H(O; — 0%) + ab;
0; ~(H+al)"HO*

Effect on the optimal solution

* The optimal
0, ~ (H+ al)"*HO*

 Suppose H has eigen-decomposition H = QAQ” and assume
(A + al)~ ! exists:

05 ~(H+al)™'HO* = Q(A + al)~1AQT 6"

- Effect: rescale along eigenvectors of H

Effect on the optimal solution

/ :
7~ ~ o
/ 1~ N\ .
e BN
i f \; \ l ‘
\ ~L”7 /7
~ ~ 7/

Notations:
0" =w*, 0y =W

Figure from Deep Learning,
Goodfellow, Bengio and Courville

[, regularization
mgn Lr(8) = L(O) + al|6]|4

« Effect on (stochastic) gradient descent
- Effect on the optimal solution

Effect on gradient descent

 Gradient of regularized objective

VLz(8) = VL(6) + a sign(6)
where sign applies to each element in 6
« Gradient descent update

0 0 —nVLes(8) =0 —nVL(O) — na sign(6)

Effect on the optimal solution

« Consider a quadratic approximation around 6°

L) =~ L")+ (6 —-06")TVL(6") +%(9 —0")TH(O — 6%)

« Since 6" is optimal, VL(6*) = 0

L(B) =~ L(6Y) +%(9 —0)TH(O — 6%)

Effect on the optimal solution

 Further assume that H is diagonal and positive (H;;> 0, Vi)
* not true in general but assume for getting some intuition

* The regularized objective is (ignoring constants)
- 1)
Lr(0) =~ ziHii(Hi —0;)° + a |6;]
i
* The optimal 6,

(o
0 ——,0¢ if 6; =20
max{ LT } if 6,

(Or);i =~

i

a
kmin{@{‘ +H_'O} if 6; <0

Effect on the optimal solution

- Effect: induce sparsity

(Or);
a a
Hli Hu

Effect on the optimal solution

» Further assume that H is diagonal
» Compact expression for the optimal 6,

* * a
(6r); = sign(6;) max{|6;| — . 0}
Ll

Bayesian view

» [, regularization corresponds to Laplacian prior

p(6) < exp(a) 16;1)

l

log p(0) = az |0;| + constant = «||6||; + constant
i

Multiple optimal solutions?

Class -1

Prefer w, (higher confidence)

Add noise to the input

Class -1

Prefer w, (higher confidence)

Caution: not too much noise @

Too much noise leads
to data points cross
the boundary

Prefer w, (higher confidence)

Equivalence to weight decay

« Suppose the hypothesis is f(x) = w’x, noise is e~N (0, AI)
« After adding noise, the loss is

L(f) = Ex,y,e[f(x +€) — 3}]2 —]Ex,y,e[f(x) +wle - Y]Z

L(f) :Ex,y,e[f(x) - y]z + ZEx,y,e[WTE(f(x) - y)] + [Ex,y,e [WTE]Z

L(f) =By [f(X) — y]? + A lwl|*

Add noise to the weights @

* For the loss on each data point, add a noise term to the weights
before computing the prediction

e~NO,n),w =w+¢€

» Prediction: f,,/(x) instead of f,, (x)
e LOoss becomes

L(f) = II3x,y,e[fw+e (x) — y]z

Add noise to the weights

e Loss becomes
L(f) — IIEx,y,e[fwﬁs (X) o y]z

 To simplify, use Taylor expansion

* fwte (x) = fw(x) + ETVfW(X)

 Plug in

* L(f) = E[fy, (x) — y]* + nE||V £, (x)]|?
\ J

Y
Regularization term

Other types of regularizations

« Data augmentation
« Early stopping

* Dropout

« Batch Normalization

Data augmentation @

Horizontal Flip
L 5
- EEER
,

Figure from Image Classification with Pyramid Representation
and Rotated Data Augmentation on Torch 7, by Keven Wang

Rotate

Data augmentation

« Adding noise to the input: a special kind of augmentation

» Be careful about the transformation applied:
« Example: classifying ‘b’ and ‘d’
« Example: classifying ‘6’ and ‘9’

Early stopping
* |dea: don't train the network to too small training error

» Recall overfitting: Larger the hypothesis class, easier to find a
hypothesis that fits the difference between the two

* Prevent overfitting: do not push the hypothesis too much; use
validation error to decide when to stop

Early stopping

Learning curves
| | |
*—e Training set loss

0.15 —— Validation set loss|H

Loss (negative log likelihood)

| 1

0 20 100 150 200 250

Time (epochs)

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Early stopping

« When training, also output validation error

« Every time validation error improved, store a copy of the
weights

« When validation error not improved for some time, stop
» Return the copy of the weights stored

Early stopping
» hyperparameter selection: training step is the hyperparameter

« Advantage
« Efficient: along with training; only store an extra copy of weights

« Simple: no change to the model/algo

 Disadvantage: need validation data

Early stopping as a regularizer

(= (=
\,’w_"’f:'f‘@\x“’
/ //"‘\\\
//\\\\
WM L~7 /!

~

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Dropout

« Randomly select weights to update

» More precisely, in each update step
« Randomly sample a different binary mask to all the input and hidden

units
« Multiple the mask bits with the units and do the update as usual

 Typical dropout probability: 0.2 for input and 0.5 for hidden units

Dropout

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Dropout

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Dropout

o e
:‘ ‘= Oo@ - @ @
gk

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Batch Normalization

* |f outputs of earlier layers are uniform or change greatly on one
round for one mini-batch, then neurons at next levels can’t keep
up: they output all high (or all low) values

* Next layer doesn’t have ability to change its outputs with
learning-rate-sized changes to its input weights

» We say the layer has “saturated”

Another View of Problem

* In ML, we assume future data will be drawn from same
probability distribution as training data

 For a hidden unit, after training, the earlier layers have new
weights and hence generate input data for this hidden unit from
a new distribution

* \WWant to reduce this internal covariate shift for the benefit of
later layers

Input: Values of x over a mini-batch: B = {z1. ., };
Parameters to be learned: ~, 3
Output: {y; = BN, s(z;)}

1 m
— — i // mini-batch mean
KB - ; x
o kS f:(x — ug)? // mini-batch variance
° m 1=1 Z
XT; < B // normalize
\/ 0125, + €
Y; < YZ; + 8 = BN, 5(z;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

Comments on Batch Normalization

* First three steps are just like standardization of input data, but
with respect to only the data in mini-batch. Can take derivative
and incorporate the learning of last step parameters into
backpropagation.

* Note last step can completely un-do previous 3 steps

 But if so this un-doing is driven by the later layers, not the
earlier layers; later layers get to “choose” whether they want
standard normal inputs or not

What regularizations are frequently used? @

* [, regularization
« Early stopping
» Dropout/Batch Normalization

« Data augmentation if the transformations known/easy to
Implement

THANK YOU

Some of the slides in these lectures have been adapted/borrowed
2 from materials developed by Mark Craven, David Rage, Jude
@b‘ Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan,
i

W) Tom %ietterich, and Pedro Domingos.
V) P

