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Goals for the lecture

you should understand the following concepts

• regularization

• different views of regularization

• norm constraint

• data augmentation

• early stopping

• dropout

• batch normalization
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What is regularization?

• In general: any method to prevent overfitting or help the 
optimization

• Specifically: additional terms in the training optimization 
objective to prevent overfitting or help the optimization



𝑡 = sin 2𝜋𝑥 + 𝜖

Figure from Machine Learning 

and Pattern Recognition, Bishop

Example: regression using polynomials



Figure from Machine Learning 

and Pattern Recognition, Bishop

Example: regression using polynomials



Overfitting

• Key: empirical loss and expected loss are different

• Smaller the data set, larger the difference between the two

• Larger the hypothesis class, easier to find a hypothesis that fits 
the difference between the two

• Thus has small training error but large test error (overfitting)

• Larger data set helps

• Throwing away useless hypotheses also helps (regularization)



Different views of regularization



Regularization as hard constraint

• Training objective

min
𝑓

෠𝐿 𝑓 =
1

𝑛
෍

𝑖=1

𝑛

𝑙(𝑓, 𝑥𝑖 , 𝑦𝑖)

subject to: 𝑓 ∈ 𝓗

• When parametrized

min
𝜃

෠𝐿 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑙(𝜃, 𝑥𝑖 , 𝑦𝑖)

subject to: 𝜃 ∈ 𝛺



Regularization as hard constraint

• When 𝛺 measured by some quantity 𝑅

min
𝜃

෠𝐿 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑙(𝜃, 𝑥𝑖 , 𝑦𝑖)

subject to: 𝑅 𝜃 ≤ 𝑟

• Example: 𝑙2 regularization

min
𝜃

෠𝐿 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑙(𝜃, 𝑥𝑖 , 𝑦𝑖)

subject to: | 𝜃| 2
2 ≤ 𝑟2



Regularization as soft constraint

• The hard-constraint optimization is equivalent to soft-constraint

min
𝜃

෠𝐿𝑅 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑙(𝜃, 𝑥𝑖 , 𝑦𝑖) + 𝜆∗𝑅(𝜃)

for some regularization parameter 𝜆∗ > 0

• Example: 𝑙2 regularization

min
𝜃

෠𝐿𝑅 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑙(𝜃, 𝑥𝑖 , 𝑦𝑖) + 𝜆∗| 𝜃| 2
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Regularization as soft constraint

• Showed by Lagrangian multiplier method

ℒ 𝜃, 𝜆 ≔ ෠𝐿 𝜃 + 𝜆[𝑅 𝜃 − 𝑟]

• Suppose 𝜃∗ is the optimal for hard-constraint optimization 

𝜃∗ = argmin
𝜃

max
𝜆≥0

ℒ 𝜃, 𝜆 ≔ ෠𝐿 𝜃 + 𝜆[𝑅 𝜃 − 𝑟]

• Suppose 𝜆∗ is the corresponding optimal for max

𝜃∗ = argmin
𝜃

ℒ 𝜃, 𝜆∗ ≔ ෠𝐿 𝜃 + 𝜆∗[𝑅 𝜃 − 𝑟]



Regularization as Bayesian prior

• Bayesian view: everything is a distribution

• Prior over the hypotheses: 𝑝 𝜃

• Posterior over the hypotheses: 𝑝 𝜃 | {𝑥𝑖 , 𝑦𝑖}

• Likelihood: 𝑝 𝑥𝑖 , 𝑦𝑖 𝜃)

• Bayesian rule:

𝑝 𝜃 | {𝑥𝑖 , 𝑦𝑖} =
𝑝 𝜃 𝑝 𝑥𝑖 , 𝑦𝑖 𝜃)

𝑝({𝑥𝑖 , 𝑦𝑖})



Regularization as Bayesian prior

• Bayesian rule:

𝑝 𝜃 | {𝑥𝑖 , 𝑦𝑖} =
𝑝 𝜃 𝑝 𝑥𝑖 , 𝑦𝑖 𝜃)

𝑝({𝑥𝑖 , 𝑦𝑖})

• Maximum A Posteriori (MAP):

max
𝜃

log 𝑝 𝜃 | {𝑥𝑖 , 𝑦𝑖} = max
𝜃

log 𝑝 𝜃 + log 𝑝 𝑥𝑖 , 𝑦𝑖 | 𝜃

Regularization MLE loss



Regularization as Bayesian prior

• Example: 𝑙2 loss with 𝑙2 regularization

min
𝜃

෠𝐿𝑅 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝜃 𝑥𝑖 − 𝑦𝑖
2 + 𝜆∗| 𝜃| 2
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• Correspond to a normal likelihood 𝑝 𝑥, 𝑦 | 𝜃 and a normal prior 
𝑝(𝜃)



Three views

• Typical choice for optimization: soft-constraint

min
𝜃

෠𝐿𝑅 𝜃 = ෠𝐿 𝜃 + 𝜆𝑅(𝜃)

• Hard constraint and Bayesian view: conceptual; or used for 
derivation



Three views

• Hard-constraint preferred if
• Know the explicit bound 𝑅 𝜃 ≤ 𝑟

• Soft-constraint causes trapped in a local minima while projection back 
to feasible set leads to stability

• Bayesian view preferred if
• Domain knowledge easy to represent as a prior



Examples of Regularization



Classical regularization

• Norm penalty
• 𝑙2 regularization

• 𝑙1 regularization

• Robustness to noise
• Noise to the input

• Noise to the weights



𝑙2 regularization

min
𝜃

෠𝐿𝑅 𝜃 = ෠𝐿(𝜃) +
𝛼

2
| 𝜃| 2

2

• Effect on (stochastic) gradient descent 

• Effect on the optimal solution



Effect on gradient descent

• Gradient of regularized objective

𝛻෠𝐿𝑅 𝜃 = 𝛻෠𝐿(𝜃) + 𝛼𝜃

• Gradient descent update 

𝜃 ← 𝜃 − 𝜂𝛻෠𝐿𝑅 𝜃 = 𝜃 − 𝜂 𝛻෠𝐿 𝜃 − 𝜂𝛼𝜃 = 1 − 𝜂𝛼 𝜃 − 𝜂 𝛻෠𝐿 𝜃

• Terminology: weight decay



Effect on the optimal solution

• Consider a quadratic approximation around 𝜃∗

෠𝐿 𝜃 ≈ ෠𝐿 𝜃∗ + 𝜃 − 𝜃∗ 𝑇𝛻෠𝐿 𝜃∗ +
1

2
𝜃 − 𝜃∗ 𝑇𝐻 𝜃 − 𝜃∗

• Since 𝜃∗ is optimal, 𝛻෠𝐿 𝜃∗ = 0

෠𝐿 𝜃 ≈ ෠𝐿 𝜃∗ +
1

2
𝜃 − 𝜃∗ 𝑇𝐻 𝜃 − 𝜃∗

𝛻෠𝐿 𝜃 ≈ 𝐻 𝜃 − 𝜃∗



Effect on the optimal solution

• Gradient of regularized objective 

𝛻෠𝐿𝑅 𝜃 ≈ 𝐻 𝜃 − 𝜃∗ + 𝛼𝜃

• On the optimal 𝜃𝑅
∗

0 = 𝛻෠𝐿𝑅 𝜃𝑅
∗ ≈ 𝐻 𝜃𝑅

∗ − 𝜃∗ + 𝛼𝜃𝑅
∗

𝜃𝑅
∗ ≈ 𝐻 + 𝛼𝐼 −1𝐻𝜃∗



Effect on the optimal solution

• The optimal

𝜃𝑅
∗ ≈ 𝐻 + 𝛼𝐼 −1𝐻𝜃∗

• Suppose 𝐻 has eigen-decomposition 𝐻 = 𝑄Λ𝑄𝑇 and assume 
Λ + 𝛼𝐼 −1 exists:

𝜃𝑅
∗ ≈ 𝐻 + 𝛼𝐼 −1𝐻𝜃∗ = 𝑄 Λ + 𝛼𝐼 −1Λ𝑄𝑇𝜃∗

• Effect: rescale along eigenvectors of 𝐻



Effect on the optimal solution

Figure from Deep Learning, 

Goodfellow, Bengio and Courville

Notations: 

𝜃∗ = 𝑤∗, 𝜃𝑅
∗ = ෥𝑤



𝑙1 regularization

min
𝜃

෠𝐿𝑅 𝜃 = ෠𝐿(𝜃) + 𝛼| 𝜃 |1

• Effect on (stochastic) gradient descent

• Effect on the optimal solution



Effect on gradient descent

• Gradient of regularized objective

𝛻෠𝐿𝑅 𝜃 = 𝛻෠𝐿 𝜃 + 𝛼 sign(𝜃)

where sign applies to each element in 𝜃

• Gradient descent update 

𝜃 ← 𝜃 − 𝜂𝛻෠𝐿𝑅 𝜃 = 𝜃 − 𝜂 𝛻෠𝐿 𝜃 − 𝜂𝛼 sign(𝜃)



Effect on the optimal solution

• Consider a quadratic approximation around 𝜃∗

෠𝐿 𝜃 ≈ ෠𝐿 𝜃∗ + 𝜃 − 𝜃∗ 𝑇𝛻෠𝐿 𝜃∗ +
1

2
𝜃 − 𝜃∗ 𝑇𝐻 𝜃 − 𝜃∗

• Since 𝜃∗ is optimal, 𝛻෠𝐿 𝜃∗ = 0

෠𝐿 𝜃 ≈ ෠𝐿 𝜃∗ +
1

2
𝜃 − 𝜃∗ 𝑇𝐻 𝜃 − 𝜃∗



Effect on the optimal solution

• Further assume that 𝐻 is diagonal and positive (𝐻𝑖𝑖> 0, ∀𝑖)
• not true in general but assume for getting some intuition

• The regularized objective is (ignoring constants)

෠𝐿𝑅 𝜃 ≈෍

𝑖

1

2
𝐻𝑖𝑖 𝜃𝑖 − 𝜃𝑖

∗ 2 + 𝛼 |𝜃𝑖|

• The optimal 𝜃𝑅
∗

(𝜃𝑅
∗)𝑖 ≈

max 𝜃𝑖
∗ −

𝛼

𝐻𝑖𝑖
, 0 if 𝜃𝑖

∗ ≥ 0

min 𝜃𝑖
∗ +

𝛼

𝐻𝑖𝑖
, 0 if 𝜃𝑖

∗ < 0



Effect on the optimal solution

• Effect: induce sparsity

−
𝛼

𝐻𝑖𝑖

𝛼

𝐻𝑖𝑖

(𝜃𝑅
∗)𝑖

(𝜃∗)𝑖



Effect on the optimal solution

• Further assume that 𝐻 is diagonal

• Compact expression for the optimal 𝜃𝑅
∗

(𝜃𝑅
∗)𝑖 ≈ sign 𝜃𝑖

∗ max{ 𝜃𝑖
∗ −

𝛼

𝐻𝑖𝑖
, 0}



Bayesian view

• 𝑙1 regularization corresponds to Laplacian prior

𝑝 𝜃 ∝ exp(𝛼෍

𝑖

|𝜃𝑖|)

log 𝑝 𝜃 = 𝛼෍

𝑖

|𝜃𝑖| + constant = 𝛼| 𝜃 |1 + constant



Multiple optimal solutions?

Class +1

Class -1

𝑤2 𝑤3𝑤1

Prefer 𝑤2 (higher confidence)



Add noise to the input

Class +1

Class -1

𝑤2

Prefer 𝑤2 (higher confidence)



Caution: not too much noise

Class +1

Class -1

𝑤2

Prefer 𝑤2 (higher confidence)

Too much noise leads 
to data points cross 

the boundary



Equivalence to weight decay

• Suppose the hypothesis is 𝑓 𝑥 = 𝑤𝑇𝑥, noise is 𝜖~𝑁(0, 𝜆𝐼)

• After adding noise, the loss is

𝐿(𝑓) = 𝔼𝑥,𝑦,𝜖 𝑓 𝑥 + 𝜖 − 𝑦 2 = 𝔼𝑥,𝑦,𝜖 𝑓 𝑥 + 𝑤𝑇𝜖 − 𝑦 2

𝐿(𝑓) =𝔼𝑥,𝑦,𝜖 𝑓 𝑥 − 𝑦 2 + 2𝔼𝑥,𝑦,𝜖 𝑤
𝑇𝜖 𝑓 𝑥 − 𝑦 + 𝔼𝑥,𝑦,𝜖 𝑤

𝑇𝜖 2

𝐿(𝑓) =𝔼𝑥,𝑦,𝜖 𝑓 𝑥 − 𝑦 2 + 𝜆 𝑤
2



Add noise to the weights

• For the loss on each data point, add a noise term to the weights 
before computing the prediction

𝜖~𝑁(0, 𝜂𝐼), 𝑤′ = 𝑤 + 𝜖

• Prediction: 𝑓𝑤′ 𝑥 instead of 𝑓𝑤 𝑥

• Loss becomes
𝐿(𝑓) = 𝔼𝑥,𝑦,𝜖 𝑓𝑤+𝜖 𝑥 − 𝑦 2



Add noise to the weights

• Loss becomes
𝐿(𝑓) = 𝔼𝑥,𝑦,𝜖 𝑓𝑤+𝜖 𝑥 − 𝑦 2

• To simplify, use Taylor expansion

• 𝑓𝑤+𝜖 𝑥 ≈ 𝑓𝑤 𝑥 + 𝜖𝑇𝛻𝑓𝑤 𝑥

• Plug in

• 𝐿 𝑓 ≈ 𝔼 𝑓𝑤 𝑥 − 𝑦 2 + 𝜂𝔼||𝛻𝑓𝑤(𝑥)||
2

Regularization term



Other types of regularizations

• Data augmentation

• Early stopping

• Dropout

• Batch Normalization



Data augmentation

Figure from Image Classification with Pyramid Representation 
and Rotated Data Augmentation on Torch 7, by Keven Wang



Data augmentation

• Adding noise to the input: a special kind of augmentation

• Be careful about the transformation applied:
• Example: classifying ‘b’ and ‘d’

• Example: classifying ‘6’ and ‘9’



Early stopping

• Idea: don’t train the network to too small training error

• Recall overfitting: Larger the hypothesis class, easier to find a 
hypothesis that fits the difference between the two

• Prevent overfitting: do not push the hypothesis too much; use 
validation error to decide when to stop



Early stopping

Figure from Deep Learning, 
Goodfellow, Bengio and Courville



Early stopping

• When training, also output validation error

• Every time validation error improved, store a copy of the 
weights

• When validation error not improved for some time, stop

• Return the copy of the weights stored



Early stopping 

• hyperparameter selection: training step is the hyperparameter

• Advantage
• Efficient: along with training; only store an extra copy of weights

• Simple: no change to the model/algo

• Disadvantage: need validation data



Early stopping as a regularizer

Figure from Deep Learning, 
Goodfellow, Bengio and Courville



Dropout

• Randomly select weights to update

• More precisely, in each update step
• Randomly sample a different binary mask to all the input and hidden 

units

• Multiple the mask bits with the units and do the update as usual

• Typical dropout probability: 0.2 for input and 0.5 for hidden units



Dropout

Figure from Deep Learning, 
Goodfellow, Bengio and Courville



Dropout

Figure from Deep Learning, 
Goodfellow, Bengio and Courville



Dropout 

Figure from Deep Learning, 
Goodfellow, Bengio and Courville



• If outputs of earlier layers are uniform or change greatly on one 
round for one mini-batch, then neurons at next levels can’t keep 
up: they output all high (or all low) values 

• Next layer doesn’t have ability to change its outputs with 
learning-rate-sized changes to its input weights

• We say the layer has “saturated”
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Batch Normalization



Another View of Problem

• In ML, we assume future data will be drawn from same 
probability distribution as training data

• For a hidden unit, after training, the earlier layers have new 
weights and hence generate input data for this hidden unit from 
a new distribution

• Want to reduce this internal covariate shift for the benefit of 
later layers

52



53



Comments on Batch Normalization

• First three steps are just like standardization of input data, but 
with respect to only the data in mini-batch.  Can take derivative 
and incorporate the learning of last step parameters into 
backpropagation.

• Note last step can completely un-do previous 3 steps

• But if so this un-doing is driven by the later layers, not  the 
earlier layers; later layers get to “choose” whether they want 
standard normal inputs or not
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What regularizations are frequently used?

• 𝑙2 regularization

• Early stopping

• Dropout/Batch Normalization

• Data augmentation if the transformations known/easy to 
implement



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, 

Tom Dietterich, and Pedro Domingos. 


